

IT Systems Engineering | Universität Potsdam

Towards Verifying Cyber-Physical Systems with Structural Dynamism

Dagstuhl Seminar 11441-1 Science and Engineering of Cyber-Physical Systems, 02.11.2011

Holger Giese and Basil Becker System Analysis & Modeling Group, Hasso Plattner Institute for Software Systems Engineering at the University of Potsdam, Germany

holger.giese@hpi.uni-potsdam.de

Application Example:Combine shuttles as a CPS

2

1) Modeling with Graph Transformation Systems

3

Apply Graph Transformation Systems

- Map the tracks
- Map the shuttles
- Map the shuttle movement to rules (movement equals reconfiguration)

2) Modeling with Graph Transformation Systems

Forbidden Graph

t:Track

Shuttle1

Shuttle2

Shuttle2

Shuttle2

Li:Track

Shuttle1

Shuttle1

Shuttle1

Shuttle2

Shuttle2

Shuttle2

Shuttle2

Shuttle2

Shuttle2

Shuttle3

Shuttle4

Shuttle4

Shuttle4

Shuttle5

Correctness: all reachable system graphs do not match the forbidden graph pattern

Idea for hybrid behavior: continuous attributes and modes with continuous laws

 Correctness: all reachable hybrid system graphs do not match the forbidden hybrid graph pattern

02.11.2011 | Giese & Becker | Towards Verifying CPS with Structural Dynamism

Modeling the Railcab System

trolMode

nation

5 0 4 1 1

Meta Model:

Discrete Behavior (Rule):

Continuous Behavior:

Forbidden Situation (Graph Pattern):

Basic Verification Idea

Idea (invariant checking):

- Look only for a transition from a safe to an unsafe state
- Found a case leading from a safe to a forbidden graph pattern

Timed:

Found a case leading from a safe to a forbidden graph pattern also fulfilling the time constraints that is not prevented by other rules (system of linear inequality; CPLEX solver)

Hybrid:

Construct hybrid automata for the check (PHAVer)

Verification of the Application Example

7

 Structural Check returns possible counterexamples (not taking the continuous behavior and constraints into account)

 Modelchecking a related hybrid automata disproof or conforms each counterexample

```
automaton GenericHybridGTS
  contr_var: s1_pos.s2_pos.s1_v.s2_v.s1_a.s2_a.
      v-ref.pos-ref. timer:
  parameter: distance, failure:
  synclabs: void;
  loc sourcePattern: while t <= 0 wait {timer' ==
       1);
   when timer >= 0 sync void do {pos-ref' ==
       sl_pos - distance - 2 & sl_pos ' ==
       s1_pos & s2_pos ' -- s2_pos & s2_v ' --
       s2_v & s1_v ' -- s1_v & s1_a ' -- s1_a &
       s2-a' == s2-a & v-ref' == v-ref &
        failure ' == 0} goto targetPattern;
 loc targetPattern: while sl_pos - distance -
      s2_pos >= 0 wait (s1_pos' == s1_v & s1_v'
      -- s1_a & s1_a' -- P + (v_ref - s1_v) &
      s2-v' == P-2 * (s1-pos - distance - 10 -
      s2_pos) - Q_2 * (s2_v - 3 - s1_v) &
      pos_ref ' - s1_pos ' & v_ref ' - 0};
   when sl_pos - distance - s2_pos <= 0 sync
        void do {failure ' == 1} goto
        failureState:
  loc failureState: while true wait {true};
  loc urgentTransition: while true wait {true}:
  initially: sourcePattern & s1_pos > s2_pos +
      distance + 10 & s2-pos > 0 & 60 < v-ref &
      v_ref < 200 & 60 < sl_v & sl_v < 200 & 3
      <= s1_v - s2_v & s1_v - s2_v <= 3 &
      failure - 0 & 5 < distance & distance <
end
```

Summary

- Very expressive model in form of hybrid graph transformation model containing
 - **Discrete behavior** with structural dynamism (which potentially leads to a discrete infinite states paces in form of graphs)
 - Continuous behavior in form of mode nodes and their continuous laws that can in principle reference all continuous variables of reachable other nodes
- Invariant checker for restricted variant where for all counterexamples a closed continuous system of inequalities can be derived.
- Tool support is still under development ...