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1. Cyber-Physical Systems 
& Integration
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Challenge: Integrate 
Models of Computation
n Problem to integrate models 

within one layer as different 
models of computation are 
employed

n Leaky abstractions are 
caused by lack of 
composability across system 
layers. Consequences:

■ intractable interactions

■ unpredictable system 
level behavior

■ full-system verification 
does not scale
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Heterogeneity within Layers

Integration has to cover multiple layers and their paradigms
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2. Multiple Models and ...
(1) Multiple Models ...

Each model Mj is an abstract representations of of a part or multiple parts of 
an existing or envisioned original used for a specific purpose.

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1

Benefit: For purposej we replace the original O by a suitable model Mj that 
does not contain any irrelevant information (reduced complexity!)
Drawback: Does an original O consistent with both models M1 and M2 really 
exist (consistency)? – simple existence is often not enough!
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How to Handle
Multiple Models?

Try for each purposes to find a model Mj that replace the original O, does not 
contain any irrelevant information (reduced complexity!), and integrate the 
models systematically to establish consistency. 

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1

establish 
consistency

Key questions: 
§ How many models are helpful (tradeoff benefits vs. integration effort)?
§ When and how is integration happen for these models?



(2) Integration: 
When &  How
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The explicit composition brings together subsystems which have been devel-
oped in parallel. In the ideal case all relevant system or subsystem characteristics
are captured during the decomposition and are guaranteed when doing the com-
position. However, often this is not the case. For example, when using separation
of concerns several aspects are often not covered during decomposition but be-
come relevant when doing the composition (potentially in a later development
stage) or when the composition not only exhibits the characteristics of its com-
ponents but also characteristics which are determined by the composition (some-
times call emergent) itself. It is particularly relevant for the integration that all
system requirements that have not been broken down into subsystems require-
ments are checked for the composition result. This includes that characteristics
such as deadlocks which can often not be predicted when doing the decompo-
sition have to be addressed when doing the composition. Therefore, depending
on the question of which characteristics are compositional or not resp. which
requirements have been broken down to local properties of the subsystems more
or fewer characteristics of the composition have to be checked at composition
time to ensure a proper integration.

The standard case for composition is that the individual constituent parts
are simply combined by some generic form of composition (e.g., scheduling in
the case of processes on an operating system). More advanced cases employ
declarative constraints contained in the specification of the components to ensure
that the composition behaves properly (e.g., scheduling with guaranteed deadline
in case of processes on a real-time operating system).

(a) composition (b) abstraction (c) consistency

Fig. 2. Fundamental techniques employed to approach integration

The resulting interplay of decomposition and composition is depicted in Fig-
ure 2 (a). At a rather high level of abstract the system is decomposed into two
or more subsystems that are developed in parallel. These subsystems, which
are then further elaborated in parallel, are composed later on according to the
decomposition done upfront.
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Fundamental Techniques for Integration: [Giese+2011]

Warning: We use a less restricted notion of integration than many others ... 



Level of Integration

n Representation-level: integration efforts only 
guarantee that a joint representation is reached 

n Syntax-level: integration efforts lead to correct 
syntax

n Semantics-level: integration efforts lead to 
compatibility at the level of the semantics
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3. CPSLab & 
Integration: 
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Methodology Tool landscape

Hardware

Big Picture

NEW
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Legend:

tool

model

n Vertical enrichment of functional 
models (consistency manually)

n Horizontal integration of functional 
and plant models

n Horizontal integration of multiple 
functional models, an architecture 
model, and a plant model

n Vertical enrichment of multiple 
functional models, an architecture 
model, and a plant model (to realize 
functions while meeting resource 
constraints)



Model in the Loop 
(MiL)

n Layer: Abstract Control Algorithm + Idealized Plant

n Domain: Control/Software + Physics

n Multi-Paradigm: Yes, if control is discrete 

n Cyber-Physical system: Yes, as control is cyber world and plant is 
from the physical world

n Integration: Decomposition & Composition + parallel development; 
semantics-level
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Scenario: Complex 
Horizontal Integration

n Horizontal combination of multiple functional models by the 
architecture via the generated software (integration by composition 
for functions, integration by abstraction for OS)

n Downwards propagation can be expected, but must be managed

n Upwards propagation is usually forbidden (suppressed)

n Horizontal propagation is therefore also forbidden (suppressed)
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Scenario: More Complex 
Horizontal Integration

n Horizontal combination of multiple specific structures (Autosar: software; 
VHDL: hardware, Matlab/Modelica: plant) via a generic structure (SysML) 

n Downwards propagation can be expected, but must be managed

n Upwards propagation is usually forbidden (suppressed)

n Horizontal propagation is therefore also forbidden (suppressed)
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Scenario: More Complex 
Horizontal Integration

n Vertical decomposition via a generic system structure (SysML) 
containing multiple specific structures (Matlab: control; Autosar: 
software; VHDL: hardware, Matlab/Modelica: plant; ...)

n Consistency between models and in the models interact, which may 
lead to transitive propagation/conflicts
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4. Needs for 
Integration
Observations:

n A horizontal composition is often mainly done to establish 
consistency at the semantics-level to ensure that the different 
models fit together (“virtual integration”). Keep syntax-level 
consistency throughout the development for a horizontal 
composition of n models (a multidirectional transformation or 
synchronization) is not really an issue.

Implications: 

n We can help as semantics-level checks for the horizontal 
composition of n models requires syntax-level consistency as 
prerequisite! 
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Needs for Integration
Observations:

n Often propagation between multiple models (multidirectional 
transformation or synchronization) was not wanted/permitted. 

Implications: 

n Need for concepts to manage permission to do only changes as 
permitted (interfaces?)  

n To unleash the full potential of multidirectional transformation 
or synchronization we have to study the context (processes, 
activities, ... = mega models / paradigm) and identify how 
processes and activities can be improved.
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Needs for Integration
Observations:

n The overlapping parts are linked to not overlapping parts and 
therefore conflicts may also result w.r.t. not overlapping parts.

Implications: 

n For the overlapping parts we cannot expect to achieve more than 
has been achieved for the merging of multiple versions and also 
related finding may be relevant to us (limits for merging, living with 
inconsistencies, ...). => semantics-level likely not feasible
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5. Conclusion 
& Outlook
n Multiple models and their integration is the heart of the matter 

developing complex systems

n In case of cyber-physical systems it holds:
■ models employ different paradigms specific for their layer
■ Integration of the models is of paramount importance

n Current integration challenges:

■ Build cost-effectively tools to integrate the models at the 
semantics-level (not only syntax-level) for a “virtual 
integration” to also support analysis of emergent properties

■ Multidirectional transformation and synchronization may 
establish syntax-level consistency throughout the 
development to enable automated semantics-level 
integration checks
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For Future MPM4CPS with self-adaptation we get: 
- Runtime model sync. 
- Executable Runtime Mega Models organizing the sync. and other model operations- ... 
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