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Motivation
• Need to continuously change software

• Lehman’s laws of software evolution [Lehman and Belady, 1985]
• Software aging [Parnas, 1994]

⇒ Software evolution and maintenance

• Software systems that are. . .
• self- or context-aware
• mission-critical
• ultra-large-scale (ULS)
• . . .

⇒ Self-adaptive Software [Cheng et al., 2009, de Lemos et al., 2012]

⇒ Autonomic Computing [Kephart and Chess, 2003]

Remark: Co-existence of evolution/maintenance and self-adaptation
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“Evolution in ULS systems will rarely occur in discrete, planned steps in a closed
environment; instead it will be continuous and dynamic. The rules for continuous
evolution must therefore be built into ULS systems [. . . ] so that they will be [. . . ] able to
cope with dynamically changing environments without constant human intervention.
Achieving this goal requires research on in situ control, reflection, and adaptation to
ensure continuous adherence to system functional and quality-of-service policies in the
context of rapidly changing operational demands and resource availability.”
[Northrop et al., 2006, p.33]
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Engineering Self-Adaptive Software

(1) Cost-effective development
(2) Reflection capabilities
(3) Making feedback loops explicit
(4) Flexible (runtime) solutions

Related approaches, e.g.:
• Rainbow [Garlan et al., 2004] : (1), (2), (3), (4)
• J3 Toolsuite [Schmidt et al., 2008] : (1), (2), (3), (4)

Models@run.time for engineering adaptation engines: (1)-(4)
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Adaptation Engine

Feedback Loop consisting of
• Adaptation steps

Monitor, Analyze, Plan, Execute

• Knowledge
about the managed system and
its context

• MAPE-K [Kephart and Chess, 2003]

General goal: leverage MDE techniques and benefits to
the runtime environment [France and Rumpe, 2007, Blair et al., 2009]

⇒ Models@run.time for adaptation steps & knowledge
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Knowledge

Models causally connected to the running system

• Typically, one model is employed (often an
architectural model emphasizing one concern)
(cf. related work in [Vogel and Giese, 2010] )

• Simultaneous use of multiple runtime models
→ abstraction levels — PSM vs. PIM (solution vs. problem space)

• PSM: easier to connect to the running system
• PIM: easier to use by adaptation steps

→ concerns — failures, performance, architectural constraints, . . .

⇒ Different views on a running system
⇒ reflection capabilities enabled and used by adaptation steps
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[ICAC09,MiSE10,SEAMS10]



Knowledge — Reflection Models
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Knowledge — Reflection Models
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Metamodels for PIMs

Failures Performance



Monitor

Synchronizing changes in the
system to the reflection models

• Keeping runtime models up-to-date and consistent to each other
• Sensors (instrumentation): management APIs
• Incremental, event-driven updates: System→ PSM

(manually implemented adapter)

• Incremental model synchronization: PSM→ PIM1, PIM2, . . .
(Model synchronization engine based on Triple Graph Grammars (TGG))
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[MRT09,MiSE10]



Monitor — TGG Rules
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TGG rule for PSM→ PIMfailures

m:EjbModule

uid := ib.uid

i:Interface

c:Component

uid := i.uid

ib:EjbInterface

sb:SessionBean

tb:EjbInterfaceType t:InterfaceType

corr1:

CorrEjbModule

corr2:

CorrEjbInterface

corr3:

CorrEjbInterfaceType

enterpriseBeans

ejbInterfaces

ejbInterfaceType

provides

type

++

++

++

++

++

++ ++

++
++

PSM PIMfailures

• Overall, 11 rules for PSM→ PIMfailures



Monitor — Development costs

PIMs
Proposed solution Batch

#Rules #Nodes/Rules LOC LOC
Simpl. Architectural Model 9 7,44 15259 357

Performance Model 4 6,25 5979 253
Failure Model 7 7,14 12133 292

Sum 20 33371 902

• Proposed solution — incremental synchronization
• System→ PSM: 2685 LOC for the reusable adapter
• PSM→ 3 PIMs: 20 TGG rules (generated >33k LOC)

• Batch — creates PIMs directly from scratch (non-incremental)
• 902 LOC (≈ 20 TGG rules)

• Declarative vs. imperative approaches

Remark: done for slightly different metamodels than shown here
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generated code from TGG rules



Monitor — Performance

Size Proposed Solution Batchn=0 n=1 n=2 n=3 n=4 n=5
5 0 163 361 523 749 891 8037
10 0 152 272 457 585 790 9663
15 0 157 308 472 643 848 10811
20 0 170 325 481 623 820 12257
25 0 178 339 523 708 850 15311

System → PSM 0% 92.8% 94.1% 95.6% 95.2% 96.3% -
PSM → 3 PIMs 0% 7.2% 5.9% 4.4% 4.8% 3.7% -

[ms]

• Size: number of deployed beans
• Structural monitoring through event-driven sensors
• Processing n events and invoking once the model synchronization

engine

Remark: done for slightly different metamodels than shown here
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Analyze

Analyzing the running system based
on reflection models (PIMs)

• Identifying needs for adaptation (reactively)
• Structural checks expressed in Story Patterns

(Story Pattern and Story Diagram Interpreter)

• Under certain conditions, incremental execution of Story Patterns
• Constraints expressed in the Object Constraint Language (OCL)

(Existing engine from the Eclipse Model Development Tools)

• Model-based analysis techniques

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 12

[MRT11,MiSE12,SFM12]



Analyze — Evaluation Models
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Identifying failures or violations of architectural constraints

name = InvalidTX

 f1:

name = IWarehousing

i2:Interface

Failure

name = InvalidTX

 f3:

failures

Failure

name = InvalidTX

 f2:failures Failure

failures

if self.name = ’TShop’
then self.components.size() <= 1
else true
endif

Story Pattern

OCL expression



Plan

Planning adaptations based on analysis results

• Changing reflection models (PIMs) (and in the end the system)
• Story Patterns defining in-place transformations

(Story Pattern and Story Diagram Interpreter)

• Under certain conditions, incremental execution of Story Patterns
• OCL expression to check and manipulate models

(Existing engine from the Eclipse Model Development Tools)
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[MRT11,MiSE12,SFM12]



Plan — Change Models
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Switching connections between components

name = Shop

c1:Component

name = Warehousing

c2:Component

name = IWarehousing

i1:Interface

name = IWarehousing

i2:Interface

name = IWarehousing

i3:Interface

name = Warehousing2

c3:Component

name = c1

co1:Connector

name = c2

co2:Connector

requires provides

-- --

++++

provides

++

--

Story Pattern



Execute

Synchronizing changes of reflection
models to the system: PIMs→ PSM→ System

• PIM→ PSM
• Incremental model synchronization: same rules as for monitoring

due to bidirectionality of TGG
• Story Patterns for default creation patterns in refinement

transformations (Factories)
• PSM→ System

• Observing PSM changes performed by the model synch. engine
• Incrementally enacting these changes through effectors

(management APIs)
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[SEAMS10]



Execute — TGG Rules
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TGG rule for PSM↔ PIMfailures

m:EjbModule

uid := ib.uid

i:Interface

c:Component

uid := i.uid

ib:EjbInterface

sb:SessionBean

tb:EjbInterfaceType t:InterfaceType

corr1:

CorrEjbModule

corr2:

CorrEjbInterface

corr3:

CorrEjbInterfaceType

enterpriseBeans

ejbInterfaces

ejbInterfaceType

provides

type

++

++

++

++

++

++ ++

++
++

PSM PIMfailures

Factory
required!

• Overall, 11 rules and 1 factory for PSM↔ PIMfailures



Interplay of all those models?

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 18

m:EjbModule

uid := ib.uid

i:Interface

c:Component

uid := i.uid

ib:EjbInterface

sb:SessionBean

tb:EjbInterfaceType

t:InterfaceType

corr1:

CorrEjbModule

corr2:

CorrEjbInterface

corr3:

CorrEjbInterfaceType

enterpriseBeans

ejbInterfaces

ejbInterfaceType

provides

type
++

++

++
++

++

++

++

++

++

if self.name = ’TShop’
then self.components.size() <= 1
else true
endif

name = InvalidTX

 f1:

name = IWarehousing

i2:Interface

Failure

name = InvalidTX

 f3:

failures

Failure

name = InvalidTX

 f2:failures Failure

failures

name = Shop

c1:Component
name = Warehousing

c2:Component

name = IWarehousing

i1:Interface
name = IWarehousing

i2:Interface

name = IWarehousing

i3:Interface

name = Warehousing2

c3:Component

name = c1

co1:Connector

name = c2

co2:Connector

requires
provides

--
--

++
++

provides

++

--

?⇒

[MRT10,MiSE11,SEAMS12]



Specifying and executing feedback loops

Specification — Modeling language
• Capturing the interplay of multiple runtime models

[Vogel et al., 2010b, Vogel et al., 2011]

• Making feedback loops explicit in the design of self-adaptive
systems [Müller et al., 2008, Brun et al., 2009]

Execution — Model interpreter
• Coordinated execution/usage of multiple runtime models
• Flexible solutions and structures for feedback loops

• Adaptable feedback loops (adaptive control)
• State-of-the-art frameworks often prescribe static solutions to single

feedback loops (e.g., [Garlan et al., 2004, Schmidt et al., 2008] )
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Megamodels

Definition (Megamodel)
A megamodel is a model that contains models and relations by means
of model operations between those models.

• Research on model-driven software development (MDA, MDE)
[Favre, 2005, Bézivin et al., 2003, Bézivin et al., 2004, Barbero et al., 2007]

• “Toward Megamodels at Runtime” [Vogel et al., 2010b]
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An Example: Self-repair

Analyzed

Start Effected

Legend
(concrete syntax) Final state

Initial state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]
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An Example: Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax)

t1Model
Operation t2Final state

Initial state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]
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An Example: Self-repair

[c since 
'no failures' > 5]

[else]

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax) [condition]

[else]Control flow
t1Model

Operation t2Final state

Initial state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]
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An Example: Self-repair

Failure analysis rules
<<EvaluationModel>>

Deep analysis rules
<<EvaluationModel>>

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>

Repair
strategies

<<ChangeModel>>[c since 
'no failures' > 5]

[else]

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax)

Model

[condition]

[else]Control flow
t1Model

Operation t2Final state

Initial state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]
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An Example: Self-repair

r

w

r a

r

r
a

r

r

w

r

r

r

Failure analysis rules
<<EvaluationModel>>

Deep analysis rules
<<EvaluationModel>>

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>

Repair
strategies

<<ChangeModel>>[c since 
'no failures' > 5]

[else]

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax)

Model
usageModel

[condition]

[else]Control flow
t1Model

Operation t2Final state

Initial state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]
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Modeling Interacting Feedback Loops
Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [c since 
'no failures' > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-optimization

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

w
r

Effect
<<Execute>>

done

Effected

r

r

Start

w

Analyze

r

w

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
<<ReflectionModel>>

r

wr

w

wr

One solution: Linearizing Complete Feedback Loops
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Modeling Interacting Feedback Loops
Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [c since 
'no failures' > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-optimization

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

w
r

Effect
<<Execute>>

done

Effected

r

r

Start

w

Analyze

r

w

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
<<ReflectionModel>>

r

wr

w

wr

One solution: Linearizing Complete Feedback Loops
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Self-repair

up-
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Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
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TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
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r [c since 
'no failures' > 5] Deep check
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<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-optimization

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

w
r

Effect
<<Execute>>

done

Effected

r

r

Start

w

Analyze

r

w

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
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r

wr

w

wr
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Modeling Interacting Feedback Loops
Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [c since 
'no failures' > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-optimization

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

w
r

Effect
<<Execute>>

done

Effected

r

r

Start

w

Analyze

r

w

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
<<ReflectionModel>>

r

wr

w

wr

One solution: Linearizing Complete Feedback Loops
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Modeling Interacting Feedback Loops
Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [c since 
'no failures' > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-optimization

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

w
r

Effect
<<Execute>>

done

Effected

r

r

Start

w

Analyze

r

w

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
<<ReflectionModel>>

r

wr

w

wr

One solution: Linearizing Complete Feedback Loops
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Other Solutions. . .

Generic Self-repair Self-optimization Composition

M

A P

EStart Effected

Analyzed

M

A P

EStart

Analyzed

Analyze

Effected
M

A P

E M

A P

E

M E A P
Analyzed

AP

Planned AP

Planned
A P

Analyzed

A P A P

M E

 Patterns for control in self-adaptive systems [Weyns et al., 2012]
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Modeling Hierarchies of Feedback Loops

Layer2

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate
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Conclusion

Models at runtime
• Adaptation steps and knowledge
• Single and multiple feedback loops

Discussion
(1) Cost-effective development
(2) Reflection capabilities
(3) Making feedback loops explicit
(4) Flexible (runtime) solutions
. . . while being runtime efficient (incremental, on-line techniques)
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