Engineering Self-Adaptive Software
Systems with Runtime Models

Symposium on Future Trends in Service-Oriented Computing
Potsdam, Germany, June 14-15, 2012

Thomas Vogel

HPI Research School
System Analysis and Modeling Group
University of Potsdam, Germany

Motivation

¢ Need to continuously change software

e Lehman’s laws of software evolution [Lehman and Belady, 1985]
o Software aging [Parnas, 1994]

= Software evolution and maintenance

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Motivation

¢ Need to continuously change software
e Lehman’s laws of software evolution [Lehman and Belady, 1985]
o Software aging [Parnas, 1994]

= Software evolution and maintenance

e Software systems that are. ..
self- or context-aware
mission-critical
ultra-large-scale (ULS)

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Motivation

¢ Need to continuously change software
e Lehman’s laws of software evolution [Lehman and Belady, 1985]
o Software aging [Parnas, 1994]

= Software evolution and maintenance

e Software systems that are. ..
e self- or context-aware
e mission-critical
¢ ultra-large-scale (ULS)

“Evolution in ULS systems will rarely occur in discrete, planned steps in a closed
environment; instead it will be continuous and dynamic. The rules for continuous
evolution must therefore be built into ULS systems [...] so that they will be [...] able to
cope with dynamically changing environments without constant human intervention.
Achieving this goal requires research on in situ control, reflection, and adaptation to
ensure continuous adherence to system functional and quality-of-service policies in the
context of rapidly changing operational demands and resource availability.”

[Northrop et al., 2006, p.33]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Motivation

¢ Need to continuously change software
e Lehman’s laws of software evolution [Lehman and Belady, 1985]
o Software aging [Parnas, 1994]

= Software evolution and maintenance

e Software systems that are. ..
self- or context-aware
mission-critical
ultra-large-scale (ULS)

= Self-adaptive Software [Cheng et al., 2009, de Lemos et al., 2012]
= Autonomic Computing [Kephart and Chess, 2003]

Remark: Co-existence of evolution/maintenance and self-adaptation

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Engineering Self-Adaptive Software

Adaptation Engine

(1
(2
(3
(

Cost-effective development
Reflection capabilities
Making feedback loops explicit

4) Flexible (runtime) solutions

~— ~— ~— ~—

Sensors Effector

Adaptable Software

Related approaches, e.g.:
e Rainbow [Garlan et al., 2004] : (1), (2), (3), (4)
e J3 Toolsuite [schmidt et al., 2008] : (1), (2), (3), (4)

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Engineering Self-Adaptive Software

Adaptation Engine

(1) Cost-effective development

(2) Reflection capabilities

(3) Making feedback loops explicit
(4)

4) Flexible (runtime) solutions

Sensors ", Effector

Adaptable Software

Related approaches, e.g.:
e Rainbow [Garlan et al., 2004] : (1), (2), (3), (4)
e J3 Toolsuite [schmidt et al., 2008] : (1), (2), (3), (4)

Models@run.time for engineering adaptation engines: (1)-(4) |

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 3

Adaptation Engine

L Adaptat|0n Engm e
Feedback Loop consisting of : . 7

R
« Adaptation steps Lralee). @

Monitor, Analyze, Plan, Execute l ::Mw/e oo }
e Knowledge © Honitor @ :

about the managed system and
its contextSensors oy 7 Effectar

Managed System
e MAPE-K [Kephart and Chess, 2003]

EAdaptabIe Software

General goal: leverage MDE techniques and benefits to
the runtime environment [France and Rumpe, 2007, Blair et al., 2009]

= Models@run.time for adaptation steps & knowledge

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 4

Knowledge

Models causally connected to the running system C—) Q—)

L (frovedee |
) . Honitor Execute)
« Typically, one model is employed (often an L) Q‘;
architectural model emphasizing one concern)

(cf. related work in [Vogel and Giese, 2010])

e Simultaneous use of multiple runtime models
— abstraction levels — PSM vs. PIM (solution vs. problem space)

e PSM: easier to connect to the running system
o PIM: easier to use by adaptation steps

— concerns — failures, performance, architectural constraints, . ..

= Different views on a running system
= reflection capabilities enabled and used by adaptation steps

[ICAC09,MiSE10,SEAMS10]
Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 5

Knowledge — Reflection Models

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Knowledge — Reflection Models
Metamodel of a PSM

Simplified

E EjbContainer

0..
‘ E EjbModuleType ‘

E SessionBeanType H EjbinterfaceType [0..*
1.4

P
il 1
‘ B EnterpriseBeanType E EjbReferenceType m E JavalnterfaceType ‘
oA b

0. il &
‘E SimpleEnvironmentEntryType ‘ ‘ H MessageDrivenBeanType ‘ ‘ 5 MethodSpecification ‘

[E] EijoduIe‘ ‘ E SessionBean

F

‘ B EnterprlseBean E EjbReference

®.

1
0..%]
’E:W—M‘ 1callee
I
4 1
‘E ri e HE‘ i 1stance ‘

subCalls|0..*
B ApplicationCall

0.. 1 30..* [E] LlfecycIeCaII
‘ El all ‘ ‘ E Busi all ‘
| \ i

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Knowledge — Reflection Models

Metamodels for PIM

Failures

E ComponentPlatform

- B InterfaceType

icomponents (DR

H PropertyType ‘

& Connector ‘

.
7 state : ComponentLifeCycle

<<enumeration>>
2C itLifeCycle
- DEPLOYED

- STARTED

= UNDEPLOYED

- NOT_SUPPORTED

0..* | properties

E Propert:
= value : EJavaObject
]

provides 1..%

requires 0.."

source

B Interface

0..* |failures
H Failure
T name : EString
T opSignature : EString
= message : EString

Performance

H Server

@ es() : ELong

@ getinstanceCount() : ELong

@ getinvocationCount() : ELong

L @ getTotallnvocationTime() : ELong
components

B C

T uid : EString

% runninglnstances : ELong
7 instanceCount : ELong 1
= startTime : ELong

% runninglnstancesMax : ELong
T name : EString

target

@ getinvocationCount() : ELong
@ getMaxOfMaxTime() : ELong

@ getMinOfMinTime() : ELong

1.%
@ getTotallnvocationTime() : ELong

inConnectors

sources | 0..*

H Connector
7 uid : EString
¥ name : EString
0..* | 7 invocationCount : ELong
¥ maxTime : ELong
outConnectors © minTime : ELong
7 totalTime : ELong

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Monitor

< /«1
) K”o“’ledij _{
Synchronizing changes in the — Q‘?
system to the reflection models

Keeping runtime models up-to-date and consistent to each other
Sensors (instrumentation): management APls

Incremental, event-driven updates: System — PSM

(manually implemented adapter)

Incremental model synchronization: PSM — PIM;, PIM, ...
(Model synchronization engine based on Triple Graph Grammars (TGG))

[MRTO09,MiSE10]
Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 8

Monitor — TGG Rules

- corry: .
m:EjbModule CorrEjbModule c:Component

\,/ enterpriseBeans

sh:SessionBean

provides
++
ejb\nterfaces¢++ nn . .
ib:EjbInterface ++ corrz: L i:Interface
< CorrEjbinterface
uid := i.uid uid := ib.uid
++\|/ ejbinterfaceType ++\|/ type

- corrs: .
tb:EjbinterfaceType |_ | CorrEjbinterfaceType [t:InterfaceType

PSM PIMiures

e Overall, 11 rules for PSM — PIMgjures

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Monitor — Development costs

generated code from TGG rules

Proposed solution / Batch
PIMs #Rules | #Nodes/Rules | LOC LOC
Simpl. Architectural Model 9 7,44 15259 357
Performance Model 4 6,25 5979 253
Failure Model 7 7,14 12133 292
[Sum [20] [33371 [902 |

e Proposed solution — incremental synchronization
e System — PSM: 2685 LOC for the reusable adapter
e PSM — 3 PIMs: 20 TGG rules (generated >33k LOC)

e Batch — creates PIMs directly from scratch (non-incremental)
e 902 LOC (~ 20 TGG rules)

¢ Declarative vs. imperative approaches

Remark: done for slightly different metamodels than shown here

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Monitor — Performance

. Proposed Solution
Size n=0 n=1 n=pZ n=3 n=4 n=5 Batch
5 0 163 361 523 749 891 8037
10 0 152 272 457 585 790 9663
15 0 157 308 472 643 848 10811 [ms]
20 0 170 325 481 623 820 12257
25 0 178 339 523 708 850 15311
System — PSM | 0% | 92.8% | 94.1% | 95.6% | 95.2% | 96.3% -
PSM — 3 PIMs | 0% 7.2% 5.9% 4.4% 4.8% 3.7% -

e Size: number of deployed beans
e Structural monitoring through event-driven sensors

e Processing n events and invoking once the model synchronization
engine

Remark: done for slightly different metamodels than shown here

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 11

Analyze

(/mcw-,/_‘ @
[/«1
\ Knowledijl/i /
Analyzing the running system based Contr) Coronte
on reflection models (PIMs) 5”“””

e |dentifying needs for adaptation (reactively)

Structural checks expressed in Story Patterns
(Story Pattern and Story Diagram Interpreter)

Under certain conditions, incremental execution of Story Patterns

Constraints expressed in the Object Constraint Language (OCL)
(Existing engine from the Eclipse Model Development Tools)

Model-based analysis techniques

[MRT11,MiSE12,SFM12]
Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 12

Analyze — Evaluation Models

Identifying failures or violations of architectural constraints

f.: Failure

Story Pattern

name = InvalidTX

failures
i>:Interface failures fo:Failure
name = IWarehousing name = InvalidTX
failures I
fz: Failure

name = InvalidTX

if self.name = ’TShop’ oCL 2L

then self.components.size() <= 1

else true
endif

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Plan

—
Knowledge |
COMN T
Planning adaptations based on analysis results === Ehtectors

Changing reflection models (PIMs) (and in the end the system)

Story Patterns defining in-place transformations
(Story Pattern and Story Diagram Interpreter)

Under certain conditions, incremental execution of Story Patterns

OCL expression to check and manipulate models
(Existing engine from the Eclipse Model Development Tools)

[MRT11,MiSE12,SFM12]
Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 14

Plan — Change Models

Switching connections between components

ci:Component cz:Component
name = Shop name = Warehousing
requires - provides
ix:Interface || coi:Connector || izInterface
name = [Warehousing name = cl name = I[Warehousing
++ il
coz:Connector || is!Interface
name = c2 name = IWarehousing
Story Pattern _
provides
cs:Component
name = Warehousing2

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Execute

Synchronizing changes of reflection Ma;;f;\‘”"“’e‘*iéw)
models to the system: PIMs — PSM — System e 7 ctacters

e PIM — PSM
¢ Incremental model synchronization: same rules as for monitoring
due to bidirectionality of TGG
o Story Patterns for default creation patterns in refinement
transformations (Factories)
e PSM — System
e Observing PSM changes performed by the model synch. engine
« Incrementally enacting these changes through effectors
(management APIs)

[SEAMS10]
Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 16

Factory
required!

Execute — TGG Rules

. corry:
m:EjbModule CorrEijloduIe c:Component
enterpriseBeans
sh:SessionBean provides
++

e
GJW L . R

ib:EjbInterface ++ corrz: L i:Interface

< CorrEjbinterface
uid := i.uid uid := ib.uid
++\|/ ejbinterfaceType ++\|/ type

tb:EjbinterfaceType

.

corrg:
CorrEjbInterfaceType

t:InterfaceType

PSM

PIM failures

e Overall, 11 rules and 1 factory for PSM > PIMajiures

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Interplay of all those models?

(G tsung_
Somure tswna
opsnaure €
—

aa:‘~

Long
&,

e
)

[Evs(uzﬁon Models [chznge Hodels]

18

Sensors Effectors

Managed system

f2iInterface

name =

\WW

if self.name = 'Shl
then self.component
else true

endi

wwnm
,;1 Component

[MRT10,MiSE11,SEAMS12]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 18

Specifying and executing feedback loops

Specification — Modeling language
e Capturing the interplay of multiple runtime models
[Vogel et al., 2010b, Vogel et al., 2011]

e Making feedback loops explicit in the design of self-adaptive
systems [Milller et al., 2008, Brun et al., 2009]

Execution — Model interpreter
» Coordinated execution/usage of multiple runtime models

¢ Flexible solutions and structures for feedback loops

o Adaptable feedback loops (adaptive control)
e State-of-the-art frameworks often prescribe static solutions to single
feedback loops (e.g., [Garlan et al., 2004, Schmidt et al., 2008])

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 19

Specifying and executing feedback loops

Specification — Modeling language
e Capturing the interplay of multiple runtime models
[Vogel et al., 2010b, Vogel et al., 2011]
e Making feedback loops explicit in the design of self-adaptive
systems [Milller et al., 2008, Brun et al., 2009]
Execution — Model interpreter
» Coordinated execution/usage of multiple runtime models

¢ Flexible solutions and structures for feedback loops

o Adaptable feedback loops (adaptive control)
e State-of-the-art frameworks often prescribe static solutions to single
feedback loops (e.g., [Garlan et al., 2004, Schmidt et al., 2008])

Executable Runtime Megamodels J

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 19

Megamodels

Definition (Megamodel)

A megamodel is a model that contains models and relations by means
of model operations between those models.

In general:

Model é%ModelOp>H Model'

Model-Driven Architecture (MDA) example:
PIM —%Tra“s.f"' —> PsM
mation

e Research on model-driven software development (MDA, MDE)
[Favre, 2005, Bézivin et al., 2003, Bézivin et al., 2004, Barbero et al., 2007]

e “Toward Megamodels at Runtime” [Vogel et al., 2010b]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 20

An Example: Self-repair

Analyzed

gart Effected ®

Legend @ Initial state
(concrete syntax) @ Final state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]
Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

21

An Example: Self-repair

<<Analyze>> |failures

Check for
failures [failures,

<<Analyze>> .
Deep check | detailed

. results
for failures

Analyzed ~Pianss
Repair repaired
& <Monitor>>|yp-
Update |[dated <<Execute>>
model Effect |done
Start Effected @
Legend @ Initial state Model la
. Operation 2
(concrete syntax) @ Final state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 21

An Example: Self-repair

[else]

<<Analyze>>
Check for
failures

[c since
'no failures' > 5]

<<Analyze>>
Deep check
for failures

detailed
results

<<Plan>>
Repair repaired

Analyzed

< <Monitor>>

Update

<<Execute>>
done

Start Effected

Legend @ Initial state : Model |a Control flow else]

. Operation
(concrete syntax) @ Final state Y =2

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

21

An Example: Self-repair

<<EvaluationModel>> lelse] <<EvaluationModel>>
Failure analysis rules Deep analysis rules
[c since <<Analyze>> <<ChangeModel>>
Deep check |detailed Repair
for failures | ™" strategies

'no failures' > 5]
<<Plan>>
Repair repaired

<<Execute>>

<<Analyze>>
Check for
failures

Analyzed

<<ReflectionModel>>
Architectural Model

< <Monitor>>

Update

done

<<MonitoringModel>>
<<ExecutionModel>>

Start TGG Rules Effected

Legend @ Initial state : Model |a Control flow i else] -
Operation
@ Final state P ©2 Em—

(concrete syntax) {condition]

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 21

An Example: Self-repair

<<EvaluationModel>>
Failure analysis rules

Hs

< <Monitor>>

Update

Start

<<Analyze>>
Check for
failures

[else]

[c since
'no failures' > 5]

<<EvaluationModel>>
Deep analysis rules

T

Analyzed

<<Analyze>> <<ChangeMode|>>
Deep check dEtal“ed Repair

. results A
for failures strategies

ar

<<ReflectionModel>>
Architectural Model

<<Plan>>
Repair repaired

4

<<MonitoringModel>>
<<ExecutionModel>>

TGG Rules

<<Execute>>

done

Effected
Legend @ Initial state Model |a Control flow else] Model
Operation usage
(concrete syntax) @ Final state 2> = | >

[condition]

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]
Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

21

Modeling Interacting Feedback Loops

Self-repair

(elsel <<EvaluationModel>>
Deep analysis rules

<<Evaluatontioder=>
Failure analysis rules|
y O " L
fao s > 1 N Eooze=
¢ failures

hmyzees
Chack for e

failures

=
Repair |fepaired

=<h

G=Monitor==]

op-
Update [dated
model

<<WonitoringHoder=>
-] <<ExecutionModel>> |.....
Start TGG Rules

Self-optimization

<<EvaluationModel>>

<<ChangeModel>>
Parameter variability

Queueing Model
A, Analyzed 7
H Y
~<Analyzes> [no botte- <<Pn>>
Bottieneck [necks AGjUSt [agjusted
icati params

:
Undate a..m>
¥ - <<MonitoringModel>>

| <executiontodeis> Eftected
M TGG Rules

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

22

Modeling Interacting Feedback Loops

Self-repair

Self-optimization

<<EvaluationModel>>

<<Evaluatontioder=>
Failure analysis rules|

A
Checkor

failures

(elsel <<EvaluationModel>>
Deep analysis rules
P s

Queueing Model |-

Analyzed

<<ChangeModel>>
Parameter variability

<<Analyzes>
tleneck

necks

7o bottle-

{O

<Pan>s
Adjust
params

~ B

adjusted)

Analyze

=Montor=>up-

Architectural Model L

P
dated -
Update [dated ¥ -

<<WonitoringHoder=>
-] <<ExecutionModel>> |....
Start TGG Rules

Self-manage

o
Self-repair.

Start

r
dated
odel,

Effect |done Update

¥

Self-optimization.
Analyze

. <<MonitoringModel>>
Effected -] <<ExecutionModel>> f.--
Start TGG Rules

Effected

Self-managed

Start

Self-optimization.

Effected

r 4’w
<<ReflectionModel>>
Architectural Model

One solution: Linearizing Complete Feedback Loops

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Modeling Interacting Feedback Loops

Self-repair

<<Evaluatontioder=>
Failure analysis rules|
<<hnayzess]
Check fo

failures

(elsel <<EvaluationModel>>
Deep analysis rules

®
Analyzed

=<h

Repair |fepaired

<<EvaluationModel>>

Self-optimization

<<ChangeModel>>
Parameter variability

Queueing Model
<G P ansys ™ §
<t oo b <
strategies Bottleneck |[necks Adjust [agjusted)
3 icati ms

Analyze

G=Monitor==]

\

<<ReflectionModel>>
i Model

up-
Update |dated

Complex model
operations

Self-manage Start

Effect |done)
¥
Effected J

o
Self-repair.

Update

Start

r
dated
model,

Effected

<<MonitoringModel>>
<..] <<ExecutionModel>> |.---
TGG Rules

Analyze

Self-optimization.

Self-managed

Self-opti

Start Effected

. . o
mization.

r 4’w
<<ReflectionModel>>
Architectural Model

One solution: Linearizing Complete Feedback Loops

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

22

Modeling Interacting Feedback Loops

Self-repair Self-optimization

—_— <<Evaluationtiode>> <<Changetiodei>>
Queueing Model arameter variability
Repair <<An: \yxe = [no bottle- <P
susegies feheck o
<<Fan>
Repair |repares Analyze
P \ T
o P
) Update | ;¢:‘> Effect |done) Update d"ed>
v ¥ mode,
. s —<Hontoringhioders”
e TG Rules Etected Lo....] <<ExecutionModel>> f..-- Effected
Q. TGG Rules
Complex model mization & selfmanaged
\ Self-optimization.
operations P Analyze
p Self-repair. A
Self-manage Start Effected o
. Self-optimization.
. Start Effected
rﬂ;w

<<ReflectionModel>>
Architectural Model

One solution: Linearizing Complete Feedback Loops

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 22

Modeling Interacting Feedback Loops

Self-optimization

Self-repair

<<Evaluatontioder=>
Failure analysis rules|

failures

®
Analyzed .

<<Reflectiontlodel>>

G=Monitor==] Architectural Model

(elsel <<EvaluationModel>>
Deep analysis rules
T — L
oo taiures'> 51 D;E;‘g;eck
failures

Repair

<<CrangeModer=>
strategies

<<Plan=>

up-
Update |dated

= <<WonitoringHoder=>
.| <<ExecutionModel>> |......
Start TGG Rules

Shared runtime model

Self-manage Start

o
Self-repair.

Effect |done

Effected

<<EvaluationModel>>
Queueing Model

<<ChangeModel>>
Parameter variability

Analyzed

<<Analyzes>
tleneck

7o bottle-
necks

adjusted)

A 4
<<Pn>>

> Adjust
ms

Analyze

Update

<<ReflectionModel>>
it Model

r
dated
model,

¥

Start

<<MonitoringModel>>
<..] <<ExecutionModel>> |.---
TGG Rules

Self-optimization.
Analyze

<<ReflectionModel>>
Architectural Model

Effected

Self-managed

Start

Self-optimization.

Effected

One solution: Linearizing Complete Feedback Loops

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

22

Other Solutions...

Generic Self-repair Self-optimization Composition

Analyzed Analyzed “
‘ E‘_’ A Planned AP A [P] [P]
AP . ﬂ . ﬂ Planned m E

~ Patterns for control in self-adaptive systems [weyns et al., 2012]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 23

Modeling Hierarchies of Feedback Loops

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

24

Modeling Hierarchies of Feedback Loops

Self-repair
<<EvaluationModel>> e since
Failure analysis rules 'no failures’ > 51
T

<<Analyze>>
Check for m

failures

=)
Self-repair-
. | Adapted

Adapt

<<ChangeModel>>
Repair
strategies

7

Layer;

Analyzed
a

Architectural Model
<<MonitoringModel>>
<] <<ExecutionModel>> |..
TGG Rules

Running System

\C<Monitor>>] up-.

Update |dated
model

Layery

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

Modeling Hierarchies of Feedback Loops

Layer;

Layery

Self-repair

=)
Self-repair-

Adapted
<<ChangeModel>>
Adapt Repair
strategies

7

<<Plan>>
Repair |repaired
... ph\=<Execute>>]
Effect

Effected @

<<EvaluationModel>> [esince
Failure analysis rules 'no failures' > 51
T

&
Gredktor
o

failures

\C<Monitor>>] up-.

Update |dated
model

Start

Running System

Causal connection

e sensors + effectors required

e implementation efforts!

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

24

Modeling Hierarchies of Feedback Loops
[Self-repair-strategies |

<<EvaluationModel>> <<ChangeModel>>
Repair sFrategies Repair st_rategies
analysis rules synthesis rules
Brs 9
Y A 4
Layer2 BT I A=
eck checked Synthesize new | synthe-

sized

success rate

\<<Monitor>>
Observe [dated
odel
w..

Adapt

Self-repair
<<EvaluationModel>> [csince
Failure analysis rules 'no failures' > 51
T

&
Ghekror
-

repair strategies;
4

W
<<ReflectionModel>> ©
Self-repair

<<Execute>>] -
Replace f .,
strategies

Adapted (@)

=
Self-repair-
. | Adapted

Adapt

<<ChangeModel>>
Repair
strategies

failures

Layer;

®
Analyzed
a

\C<Monitor>>] up-

Update |dated
model

= <<MonitoringModel>>
-] <<ExecutionModel>> |
Start TGG Rules

Running System

Architectural Model 4

Causal connection

e sensors + effectors required
e implementation efforts!

Effected @

Layery

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 24

Modeling Hierarchies of Feedback Loops

Self-repair-strategies

<<EvaluationModel>>

<<ChangeModel>>
Repair strategies Repair strategies
analysis rules synthesis rules
L ayer Y —r
.y 2 Cheyck checked\ kSynthesize new | synthe-
'/ repair strategies| 5% i
Layer, directly uses the
e e [Megamodel of Layer,
If- ir K strategies e
e s e no specific sensors and
Adapt apted (@) .
. effectors required
Self-repair
— : — e adapts the models or control
Folur onlysis ies , seftrepai- flow of the Layer; megamodel
Adapt : . o
Layer, cfh‘kf strategies e interpreter (flexibility)!
<Monttor>=]up- Architectural Model A
Update [zt .. Causal connection
/ | “aa Rules | e sensors + effectors required
e implementation efforts!
Layery

Running System

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 24

Conclusion

. [Za/mm Models que Madeﬂ
Models at runtime - /j\ —
e Adaptation steps and knowledge ol e},
e Single and multiple feedback loops Chontor >
- - Sensors P Effectors
Discussion [reetzes]

(1) Cost-effective development
(2) Reflection capabilities
(3) Making feedback loops explicit
(4) Flexible (runtime) solutions
. while being runtime efficient (incremental, on-line techniques)

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

References |

[Andersson et al., 2012] Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla, A., Inverardi, P, and Vogel, T. (2012).
Software engineering processes for self-adaptive systems.
In de Lemos, R., Giese, H., Miller, H., and Shaw, M., editors, Software Engineering for Self-Adaptive Systems 2, volume tbd of Lecture Notes in Computer Science (LNCS), page tod.
Springer-Verlag
(to be published)

[Barbero et al., 2007] ~ Barbero, M., Fabro, M. D., and Bézivin, J. (2007)

Traceability and Provenance Issues in Global Model Management.
In Proc. of 3rd Workshop on Traceability (ECMDA-TW 2007), pages 47-55

[Bézivin et al., 2003] Bézivin, J., Gerard, S., Muller, P-A., and Rioux, L. (2003)
MDA components: Challenges and Opportunities.
In First Intl. Workshop on Metamodelling for MDA, pages 23-41

[Bézivin et al., 2004] Bézivin, J., Jouault, F,, and Valduriez, P. (2004)
On the Need for Megamodels.
In Proc. of the Workshop on Best Practices for Model-Driven Software Development.

[Blair et al., 2009] Blair, G., Bencomo, N., and France, R. B. (2009).

Models@run.time.

Computer, 42(1
[Bruhn etal, 2008] Bruhn, J., Niklaus, C., Vogel, T., and Wirtz, G. (2008).

ive support for of E

\n Proceedings of the 6th ACS/IEEE International Conference on Computer Systems and Applications (AICGSA 2008), Doha, Katar, pages 755-762. IEEE Computer Society.
[Brun etal., 2009] Brun, Y., Serugendo, G. D. M., Gacek, C., Giese, H. M., Kienle, H. M., Litoiu, M., Miiler, H. A., Pezzé, M., and Shaw, M. (2009).

Engineering Self-Adaptive Systems through Feedback Loops.

In Software Engineering for Self-Adaptive Systems, volume 5525 of LNCS, pages 48-70. Springer.

[Cheng etal., 2009] Cheng, B. H. C., Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B., Bencomo, ., Brun, Y., Cukic, B., Serugendo, G. D. M., Dustdar, S., Finkelstein,
. Gacek, C., Geihs, K., Grassi, V.. Karsai, G., Kienle, H. M., Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Miller, H. A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., and Whitle, J.
(2009).
Software Engineering for Seli-Adaptive Systems: A Research Roadmap.
In Cheng, B. H. C., Lemos, R., Giese, H., Inverardi, P., and Magee, J., editors, Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer Science, pages
1-26. Springer.

[de Lemos et al., 2012] de Lemos, R., Giese, H., Miiller, H. A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B., Tamura, G., Villegas, N. M., Vogel, T., Weyns, D., Baresi, L., Becker, B.,
Bencomo, N., Brun, Y., Cukic, B., Desmarais, R., Dustdar, S., Engels, G., Geihs, K., Goeschka, K. M., Gorla, A., Grassi, V., Inverardi, P,, Karsai, G., Kramer, J., Lopes, A., Magee, J., Malek,
S., Mankovskii, S., Mirandola, R., Mylopoulos, J., Nierstrasz, O., Pezze, M., Prehofer, C., Schafer, W., Schlichting, R., Smith, D. B., Sousa, J. P., Tahvildari, L., Wong, K., and Wuttke, J. (2012).
Software Engineering for Self-Adaptive Systems: A Second Research Roadmap.
In de Lemos, R., Giese, H., Miller, H. A., and Shaw, M., editors, Software Engineering for Self-Adaptive Systems 2, Lecture Notes in Computer Science. Springer.
(to be published)

[Favre, 2005] Favre, J.-M. (2005).

Foundations of Model (Driven) (Reverse) Engineering : Models — Episode I: Stories of The Fidus Papyrus and of The Solarus.
In Language Engineering for Model-Driven Software Development, number 04101 in Dagstuhl Seminar Proc. IBFI

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 26

References Il

[France and Rumpe, 2007] France, R. and Rumpe, B. (2007).
Model-driven Development of Complex Software: A Research Roadmap.
In FOSE '07: 2007 Future of Software Engineering, pages 3754, Washington, DC, USA. IEEE Computer Society.

[Garlan et al., 2004] ~ Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. (2004).
Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure.
Computer, 37(10):46-54,

[Giese etal., 2012] Giese, H., Lambers, L., Becker, B., Hildebrand, S., Neumann, S., Vogel, T., and Watzoldt, S. (2012).
Graph Transformations for MDE, Adaptation, and Models at Runtime, volume 7320 of LNCS.
Springer.
(to be published)

[Giese et al., 2009] Giese, H., Seibel, A., and Vogel, . (2009).
A Model-Driven Configuration Management System for Advanced IT Service Management.
In Bencomo, N., Blair, G., France, R., Jeanneret, C., and Munoz, F,, editors, Proceedings of the 4th International Workshop on Models@run.time at the 12th IEEE/ACM International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2009), Denver, Colorado, USA, volume 509 of CEUR Workshop Proceedings, pages 61-70. CEUR-WS.org

[Kephart and Chess, 2003] ~ Kephart, J. O. and Chess, D. (2003).
The Vision of Autonomic Computing.
Computer, 36(1):41-50.

[Lehman and Belady, 1985] Lehman, M. M. and Belady, L. A., editors (1985)
Program evolution: processes of software change.
Academic Press Professional, Inc., San Diego, CA, USA.

[Miller etal., 2008] ~ Miller, H. A., Pezzé, M., and Shaw, M. (2008).
Visibility of control in adaptive systems.
In Proc. of the 2nd Intl. Workshop on Ultra-large-scale Software-intensive Systems (ULSSIS 2008), pages 23-26. ACM

[Northrop et al., 2006] Northrop, L., Feiler, P. H., Gabriel, R. P, Linger, R., Longstaff, T., Kazman, R., Klein, M., and Schmid, D. (2006)
Ultra-Large-Scale Systems: The Software Challenge of the Future.
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA

[Parnas, 1994] Parnas, D. L. (1994)
Software aging.
In ICSE '94: Proceedings of the 16th International Conference on Software Engineering, pages 279-287, Los Alamitos, CA, USA. IEEE Computer Society Press.

[Schmidt et al., 2008] ~ Schmidt, D., White, J., and Gokhale A. (2008).
Simplifying autonomic enterprise Java Bean via model-drit i and simulation.
Software and Systems Modeling, 7(1):3-23

[Vogel et al,, 2008] ~ Vogel, T., Bruhn, J., and Wirtz, G. (2008).
for EJB-based
in of the 20th on Software and Knowledge (SEKE 2008), San Francisco, CA, USA, pages 48-53. Knowledge Systems
Institute Graduate School

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 27

References lli

[Vogel and Giese, 2010] Vogel, T. and Giese, H. (2010).
Adaptation and Abstract Runtime Models.
In Proc. of the 5th ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2010), pages 39-48. ACM.

[Vogel and Giese, 2011] Vogel, T. and Giese, H. (2011).
Language and Framework Requirements for Adaptation Models.
In Bencomo, N., Blair, G., Cheng, B. H. C., France, R. B., and Jeanneret, C.. editors of the 6th Workshop on time at the 14th IEEE/ACM International
on Model Driven Languages and Systems (MoDELS 2011), Wellington, New Zealand, volume 794 of CEUR Workshop Proceedings, pages 1-12. CEUR-WS.org.
(best paper).

[Vogel and Giese, 2012a] Vogel, T. and Giese, H. (2012a).
A Language for Feedback Loops in Self-Adaptive Systems: Executable Runtime Megamodels.
of the 7th on Software E for Adaptive and Self-M: Systems (SEAMS 2012). IEEE Computer Society.

[Vogel and Giese, 2012b] ~ Vogel, . and Giese, H. (2012b).
Requirements and Assessment of Languages and Frameworks for Adaptation Models.
In MoDELS 2011 Workshops, volume 7167 of LNCS, pages 167-182. Springer.

[Vogel et al., 2009a] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2009a)
Incremental Model Synchronization for Efficient Run-time Monitoring.
In Bencomo, N., Blair, G., France, R., Jeanneret, C., and Munoz, F., editors, Proceedings of the 4th International Workshop on Models@run.time at the 12th IEEE/ACM International

on Model Driven anguages and Systems (MoDELS 2009), Denver, Colorado, USA, volume 509 of CEUR Workshop Proceedings, pages 1-10. CEUR-WS.org
[Vogel et al,, 2009b] Vogel, T., Neumann, ., Hildebrandt, S., Giese, H., and Becker, B. (2009b).
Model-Driven Archi and Adaptation for ic Systems.
In Proceedings of the 6th IEEE/ACM C on Computing and (ICAC 2009), Barcelona, Spain, pages 67-68. ACM.

[Vogel et al., 2010a] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2010a).
Incremental Model Synchronization for Efficient Run-Time Monitoring.
In MoDELS 2009 Workshops, volume 6002 of LNCS, pages 124—139. Springer.

[Vogel et al., 2010b] Vogel, T., Seibel, A., and Giese, H. (2010b).
Toward Megamodels at Runtime.
In Proc. of the 5th Intl. Workshop on Models@run.time, volume 641 of CEUR Workshop Proceedings, pages 13-24. CEUR-WS.org
(best paper)
[Vogel etal., 2011] Vogel, T., Seibel, A., and Giese, H. (2011).
The Role of Models and Megamodels at Runtime.
In MoDELS 2010 Workshops, volume 6627 of LNCS, pages 224-238. Springer.
[Weyns et al., 2012] ~ Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke, J., Andersson, J., Giese, H., and Gdschka, K. (2012).
On Patterns for Decentralized Control in Self-Adaptive Systems.
In de Lemos, R., Giese, H., Milller, H. A., and Shaw, M., editors, Software Engineering for Self-Adaptive Systems 2, volume tbd of Lecture Notes in Computer Science (LNCS), page tbd
Springer-Verlag
(to be published)

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 28

	Motivation
	Engineering Self-Adaptive Software Systems with Runtime Models
	Knowledge
	Monitor
	Analyze
	Plan
	Execute

	Megamodels
	Single Feedback Loop
	Multiple, Interacting Feedback Loop
	Hierarchy of Feedback Loops

	Conclusion
	References

