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Motivation

¢ Need to continuously change software

e Lehman’s laws of software evolution [Lehman and Belady, 1985]
o Software aging [Parnas, 1994]

= Software evolution and maintenance
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e Software systems that are. ..
self- or context-aware
mission-critical
ultra-large-scale (ULS)
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Motivation

¢ Need to continuously change software
e Lehman’s laws of software evolution [Lehman and Belady, 1985]
o Software aging [Parnas, 1994]

= Software evolution and maintenance

e Software systems that are. ..
e self- or context-aware
e mission-critical
¢ ultra-large-scale (ULS)

“Evolution in ULS systems will rarely occur in discrete, planned steps in a closed
environment; instead it will be continuous and dynamic. The rules for continuous
evolution must therefore be built into ULS systems [... ] so that they will be [... ] able to
cope with dynamically changing environments without constant human intervention.
Achieving this goal requires research on in situ control, reflection, and adaptation to
ensure continuous adherence to system functional and quality-of-service policies in the
context of rapidly changing operational demands and resource availability.”

[Northrop et al., 2006, p.33]
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Motivation

¢ Need to continuously change software
e Lehman’s laws of software evolution [Lehman and Belady, 1985]
o Software aging [Parnas, 1994]

= Software evolution and maintenance

e Software systems that are. ..
self- or context-aware
mission-critical
ultra-large-scale (ULS)

= Self-adaptive Software [Cheng et al., 2009, de Lemos et al., 2012]
= Autonomic Computing [Kephart and Chess, 2003]

Remark: Co-existence of evolution/maintenance and self-adaptation
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Engineering Self-Adaptive Software

Adaptation Engine

(1
(2
(3
(

Cost-effective development
Reflection capabilities
Making feedback loops explicit

4) Flexible (runtime) solutions

~— ~— ~— ~—

Sensors Effector

Adaptable Software

Related approaches, e.g.:
e Rainbow [Garlan et al., 2004] : (1), (2), (3), (4)
e J3 Toolsuite [schmidt et al., 2008] : (1), (2), (3), (4)
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Engineering Self-Adaptive Software

Adaptation Engine

(1) Cost-effective development

(2) Reflection capabilities

(3) Making feedback loops explicit
(4)

4) Flexible (runtime) solutions

Sensors ",  Effector

Adaptable Software

Related approaches, e.g.:
e Rainbow [Garlan et al., 2004] : (1), (2), (3), (4)
e J3 Toolsuite [schmidt et al., 2008] : (1), (2), (3), (4)

Models@run.time for engineering adaptation engines: (1)-(4) |
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Adaptation Engine

L Adaptat|0n Engm e .............
Feedback Loop consisting of : . 7

R
« Adaptation steps Lralee ). @

Monitor, Analyze, Plan, Execute l ::Mw/e oo }
e Knowledge © Honitor @ :

about the managed system and
its context ....Sensors oy 7 Effectar

Managed System
e MAPE-K [Kephart and Chess, 2003]

EAdaptabIe Software

General goal: leverage MDE techniques and benefits to
the runtime environment [France and Rumpe, 2007, Blair et al., 2009]

= Models@run.time for adaptation steps & knowledge
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Knowledge

Models causally connected to the running system C—) Q—)

L (frovedee |
) . Honitor Execute )
« Typically, one model is employed (often an L) Q‘;
architectural model emphasizing one concern)

(cf. related work in [Vogel and Giese, 2010] )

e Simultaneous use of multiple runtime models
— abstraction levels — PSM vs. PIM (solution vs. problem space)

e PSM: easier to connect to the running system
o PIM: easier to use by adaptation steps

— concerns — failures, performance, architectural constraints, . ..

= Different views on a running system
= reflection capabilities enabled and used by adaptation steps

[ICAC09,MiSE10,SEAMS10]
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Knowledge — Reflection Models
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Knowledge — Reflection Models
Metamodel of a PSM

Simplified

E EjbContainer

0..
‘ E EjbModuleType ‘

E SessionBeanType H EjbinterfaceType [ 0..*
1.4

P
il 1
‘ B EnterpriseBeanType E EjbReferenceType m E JavalnterfaceType ‘
oA b

0. il &
‘E SimpleEnvironmentEntryType ‘ ‘ H MessageDrivenBeanType ‘ ‘ 5 MethodSpecification ‘

[E] EijoduIe‘ ‘ E SessionBean

F

‘ B EnterprlseBean E EjbReference

®.

1
0..%]
’E:W—M‘ 1callee
I
4 1
‘E ri e HE‘ i 1stance ‘

subCalls|0..*
B ApplicationCall

0.. 1 30..* [E] LlfecycIeCaII
‘ El all ‘ ‘ E Busi all ‘
| \ i
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Knowledge — Reflection Models

Metamodels for PIM

Failures

E ComponentPlatform

- B InterfaceType

icomponents (DR

H PropertyType ‘

& Connector ‘

.
7 state : ComponentLifeCycle

<<enumeration>>
2C itLifeCycle
- DEPLOYED

- STARTED

= UNDEPLOYED

- NOT_SUPPORTED

0..* | properties

E Propert:
= value : EJavaObject
]

provides 1..%

requires 0.."

source

B Interface

0..* |failures
H Failure
T name : EString
T opSignature : EString
= message : EString

Performance

H Server

@ es() : ELong

@ getinstanceCount() : ELong

@ getinvocationCount() : ELong

L @ getTotallnvocationTime() : ELong
components

B C

T uid : EString

% runninglnstances : ELong
7 instanceCount : ELong 1
= startTime : ELong

% runninglnstancesMax : ELong
T name : EString

target

@ getinvocationCount() : ELong
@ getMaxOfMaxTime() : ELong

@ getMinOfMinTime() : ELong

1.%
@ getTotallnvocationTime() : ELong

inConnectors

sources | 0..*

H Connector
7 uid : EString
¥ name : EString
0..* | 7 invocationCount : ELong
¥ maxTime : ELong
outConnectors © minTime : ELong
7 totalTime : ELong
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Monitor

< /«1
) K”o“’ledij _{
Synchronizing changes in the — Q‘?
system to the reflection models

Keeping runtime models up-to-date and consistent to each other
Sensors (instrumentation): management APls

Incremental, event-driven updates: System — PSM

(manually implemented adapter)

Incremental model synchronization: PSM — PIM;, PIM, ...
(Model synchronization engine based on Triple Graph Grammars (TGG))

[MRTO09,MiSE10]
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Monitor — TGG Rules

- corry: .
m:EjbModule CorrEjbModule c:Component

\,/ enterpriseBeans

sh:SessionBean

provides
++
ejb\nterfaces¢++ nn . .
ib:EjbInterface ++ corrz: L i:Interface
< CorrEjbinterface
uid := i.uid uid := ib.uid
++\|/ ejbinterfaceType ++\|/ type

- corrs: .
tb:EjbinterfaceType |_ | CorrEjbinterfaceType [ t:InterfaceType

PSM PIMiures

e Overall, 11 rules for PSM — PIMgjures
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Monitor — Development costs

generated code from TGG rules

Proposed solution / Batch
PIMs #Rules | #Nodes/Rules | LOC LOC
Simpl. Architectural Model 9 7,44 15259 357
Performance Model 4 6,25 5979 253
Failure Model 7 7,14 12133 292
[ Sum [ 20 ] [ 33371 [ 902 |

e Proposed solution — incremental synchronization
e System — PSM: 2685 LOC for the reusable adapter
e PSM — 3 PIMs: 20 TGG rules (generated >33k LOC)

e Batch — creates PIMs directly from scratch (non-incremental)
e 902 LOC (~ 20 TGG rules)

¢ Declarative vs. imperative approaches

Remark: done for slightly different metamodels than shown here
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Monitor — Performance

. Proposed Solution
Size n=0 n=1 n=pZ n=3 n=4 n=5 Batch
5 0 163 361 523 749 891 8037
10 0 152 272 457 585 790 9663
15 0 157 308 472 643 848 10811 [ms]
20 0 170 325 481 623 820 12257
25 0 178 339 523 708 850 15311
System — PSM | 0% | 92.8% | 94.1% | 95.6% | 95.2% | 96.3% -
PSM — 3 PIMs | 0% 7.2% 5.9% 4.4% 4.8% 3.7% -

e Size: number of deployed beans
e Structural monitoring through event-driven sensors

e Processing n events and invoking once the model synchronization
engine

Remark: done for slightly different metamodels than shown here
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Analyze

(/mcw-,/_‘ @
[ /«1
\ Knowledijl/i /
Analyzing the running system based Contr ) Coronte
on reflection models (PIMs) 5”“””

e |dentifying needs for adaptation (reactively)

Structural checks expressed in Story Patterns
(Story Pattern and Story Diagram Interpreter)

Under certain conditions, incremental execution of Story Patterns

Constraints expressed in the Object Constraint Language (OCL)
(Existing engine from the Eclipse Model Development Tools)

Model-based analysis techniques

[MRT11,MiSE12,SFM12]
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Analyze — Evaluation Models

Identifying failures or violations of architectural constraints

f.: Failure

Story Pattern

name = InvalidTX

failures
i>:Interface failures fo:Failure
name = IWarehousing name = InvalidTX
failures I
fz: Failure

name = InvalidTX

if self.name = ’TShop’ oCL 2L

then self.components.size() <= 1

else true
endif
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Plan

—
Knowledge |
COMN T
Planning adaptations based on analysis results === Ehtectors

Changing reflection models (PIMs) (and in the end the system)

Story Patterns defining in-place transformations
(Story Pattern and Story Diagram Interpreter)

Under certain conditions, incremental execution of Story Patterns

OCL expression to check and manipulate models
(Existing engine from the Eclipse Model Development Tools)

[MRT11,MiSE12,SFM12]
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Plan — Change Models

Switching connections between components

ci:Component cz:Component
name = Shop name = Warehousing
requires - provides
ix:Interface || coi:Connector || izInterface
name = [Warehousing name = cl name = I[Warehousing
++ il
coz:Connector || is!Interface
name = c2 name = IWarehousing
Story Pattern _
provides
cs:Component
name = Warehousing2
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Execute

Synchronizing changes of reflection Ma;;f;\‘”"“’e‘*iéw )
models to the system: PIMs — PSM — System e 7 ctacters

e PIM — PSM
¢ Incremental model synchronization: same rules as for monitoring
due to bidirectionality of TGG
o Story Patterns for default creation patterns in refinement
transformations (Factories)
e PSM — System
e Observing PSM changes performed by the model synch. engine
« Incrementally enacting these changes through effectors
(management APIs)

[SEAMS10]
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Factory
required!

Execute — TGG Rules

. corry:
m:EjbModule CorrEijloduIe c:Component
enterpriseBeans
sh:SessionBean provides
++

e
GJW L . R

ib:EjbInterface ++ corrz: L i:Interface

< CorrEjbinterface
uid := i.uid uid := ib.uid
++\|/ ejbinterfaceType ++\|/ type

tb:EjbinterfaceType

.

corrg:
CorrEjbInterfaceType

t:InterfaceType

PSM

PIM failures

e Overall, 11 rules and 1 factory for PSM > PIMajiures
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Interplay of all those models?

(G tsung_
Somure tswna
opsnaure €
—

aa:‘~

Long
&,

e
)

[Evs(uzﬁon Models [chznge Hodels ]

18

Sensors Effectors

Managed system

f2iInterface

name =

\WW

if self.name = 'Shl
then self.component
else true

endi

wwnm
,;1 Component

[MRT10,MiSE11,SEAMS12]
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Specifying and executing feedback loops

Specification — Modeling language
e Capturing the interplay of multiple runtime models
[Vogel et al., 2010b, Vogel et al., 2011]

e Making feedback loops explicit in the design of self-adaptive
systems [Milller et al., 2008, Brun et al., 2009]

Execution — Model interpreter
» Coordinated execution/usage of multiple runtime models

¢ Flexible solutions and structures for feedback loops

o Adaptable feedback loops (adaptive control)
e State-of-the-art frameworks often prescribe static solutions to single
feedback loops (e.g., [Garlan et al., 2004, Schmidt et al., 2008] )
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Specifying and executing feedback loops

Specification — Modeling language
e Capturing the interplay of multiple runtime models
[Vogel et al., 2010b, Vogel et al., 2011]
e Making feedback loops explicit in the design of self-adaptive
systems [Milller et al., 2008, Brun et al., 2009]
Execution — Model interpreter
» Coordinated execution/usage of multiple runtime models

¢ Flexible solutions and structures for feedback loops

o Adaptable feedback loops (adaptive control)
e State-of-the-art frameworks often prescribe static solutions to single
feedback loops (e.g., [Garlan et al., 2004, Schmidt et al., 2008] )

Executable Runtime Megamodels J
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Megamodels

Definition (Megamodel)

A megamodel is a model that contains models and relations by means
of model operations between those models.

In general:

Model é%ModelOp>H Model'

Model-Driven Architecture (MDA) example:
PIM —%Tra“s.f"' —> PsM
mation

e Research on model-driven software development (MDA, MDE)
[Favre, 2005, Bézivin et al., 2003, Bézivin et al., 2004, Barbero et al., 2007]

e “Toward Megamodels at Runtime” [Vogel et al., 2010b]
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An Example: Self-repair

Analyzed

gart Effected ®

Legend @ Initial state
(concrete syntax) @ Final state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]
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An Example: Self-repair

<<Analyze>> |failures

Check for
failures [failures,

<<Analyze>> .
Deep check | detailed

. results
for failures

Analyzed ~Pianss
Repair repaired
& <Monitor>>|yp-
Update |[dated <<Execute>>
model Effect |done
Start Effected @
Legend @ Initial state Model la
. Operation 2
(concrete syntax) @ Final state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]
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An Example: Self-repair

[else]

<<Analyze>>
Check for
failures

[c since
'no failures' > 5]

<<Analyze>>
Deep check
for failures

detailed
results

<<Plan>>
Repair repaired

Analyzed

< <Monitor>>

Update

<<Execute>>
done

Start Effected

Legend @ Initial state : Model |a Control flow else]

. Operation
(concrete syntax) @ Final state Y =2

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]
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An Example: Self-repair

<<EvaluationModel>> lelse] <<EvaluationModel>>
Failure analysis rules Deep analysis rules
[c since <<Analyze>> <<ChangeModel>>
Deep check |detailed Repair
for failures | ™" strategies

'no failures' > 5]
<<Plan>>
Repair repaired

<<Execute>>

<<Analyze>>
Check for
failures

Analyzed

<<ReflectionModel>>
Architectural Model

< <Monitor>>

Update

done

<<MonitoringModel>>
<<ExecutionModel>>

Start TGG Rules Effected

Legend @ Initial state : Model |a Control flow i else] -
Operation
@ Final state P ©2 Em—

(concrete syntax) {condition]

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]
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An Example: Self-repair

<<EvaluationModel>>
Failure analysis rules

Hs

< <Monitor>>

Update

Start

<<Analyze>>
Check for
failures

[else]

[c since
'no failures' > 5]

<<EvaluationModel>>
Deep analysis rules

T

Analyzed

<<Analyze>> <<ChangeMode|>>
Deep check dEtal“ed Repair

. results A
for failures strategies

ar

<<ReflectionModel>>
Architectural Model

<<Plan>>
Repair repaired

4

<<MonitoringModel>>
<<ExecutionModel>>

TGG Rules

<<Execute>>

done

Effected
Legend @ Initial state Model |a Control flow else] Model
Operation usage
(concrete syntax) @ Final state 2> = | >

[condition]

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]
Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012

21



Modeling Interacting Feedback Loops

Self-repair

(elsel <<EvaluationModel>>
Deep analysis rules

<<Evaluatontioder=>
Failure analysis rules|
y O " L
fao s > 1 N Eooze=
¢ failures

hmyzees
Chack for e

failures

=
Repair |fepaired

=<h

G=Monitor==]

op-
Update [dated
model

<<WonitoringHoder=>
-] <<ExecutionModel>> |.....
Start TGG Rules

Self-optimization

<<EvaluationModel>>

<<ChangeModel>>
Parameter variability

Queueing Model
A, Analyzed 7
H Y
~<Analyzes> [no botte- <<Pn>>
Bottieneck [necks AGjUSt [agjusted
icati params

:
Undate a..m>
¥ - <<MonitoringModel>>

| <executiontodeis> Eftected
M TGG Rules
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Modeling Interacting Feedback Loops

Self-repair

Self-optimization

<<EvaluationModel>>

<<Evaluatontioder=>
Failure analysis rules|

A
Checkor

failures

(elsel <<EvaluationModel>>
Deep analysis rules
P s

Queueing Model |-

Analyzed

<<ChangeModel>>
Parameter variability

<<Analyzes>
tleneck

necks

7o bottle-

{O

<Pan>s
Adjust
params

~ B

adjusted)

Analyze

=Montor=>up-

Architectural Model L

P
dated -
Update [dated ¥ -

<<WonitoringHoder=>
-] <<ExecutionModel>> |....
Start TGG Rules

Self-manage

o
Self-repair.

Start

r
dated
odel,

Effect |done Update

¥

Self-optimization.
Analyze

. <<MonitoringModel>>
Effected -] <<ExecutionModel>> f.--
Start TGG Rules

Effected

Self-managed

Start

Self-optimization.

Effected

r 4’w
<<ReflectionModel>>
Architectural Model

One solution: Linearizing Complete Feedback Loops
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Modeling Interacting Feedback Loops

Self-repair

<<Evaluatontioder=>
Failure analysis rules|
<<hnayzess]
Check fo

failures

(elsel <<EvaluationModel>>
Deep analysis rules

®
Analyzed

=<h

Repair |fepaired

<<EvaluationModel>>

Self-optimization

<<ChangeModel>>
Parameter variability

Queueing Model
<G P ansys ™ §
<t oo b <
strategies Bottleneck |[necks Adjust  [agjusted)
3 icati ms

Analyze

G=Monitor==]

\

<<ReflectionModel>>
i Model

up-
Update |dated

Complex model
operations

Self-manage Start

Effect |done )
¥
Effected J

o
Self-repair.

Update

Start

r
dated
model,

Effected

<<MonitoringModel>>
<..] <<ExecutionModel>> |.---
TGG Rules

Analyze

Self-optimization.

Self-managed

Self-opti

Start Effected

. . o
mization.

r 4’w
<<ReflectionModel>>
Architectural Model

One solution: Linearizing Complete Feedback Loops
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Modeling Interacting Feedback Loops

Self-repair Self-optimization

—_— <<Evaluationtiode>> <<Changetiodei>>
Queueing Model arameter variability
Repair <<An: \yxe = [no bottle- <P
susegies feheck o
<<Fan>
Repair |repares Analyze
P \ T
o P
) Update | ;¢:‘> Effect |done ) Update d"ed>
v ¥ mode,
. s —<Hontoringhioders”
e TG Rules Etected Lo....] <<ExecutionModel>> f..-- Effected
Q. TGG Rules
Complex model mization & selfmanaged
\ Self-optimization.
operations P Analyze
p Self-repair. A
Self-manage Start Effected o
. Self-optimization.
. Start Effected
rﬂ;w

<<ReflectionModel>>
Architectural Model

One solution: Linearizing Complete Feedback Loops
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Modeling Interacting Feedback Loops

Self-optimization

Self-repair

<<Evaluatontioder=>
Failure analysis rules|

failures

®
Analyzed .

<<Reflectiontlodel>>

G=Monitor==] Architectural Model

(elsel <<EvaluationModel>>
Deep analysis rules
T — L
oo taiures'> 51 D;E;‘g;eck
failures

Repair

<<CrangeModer=>
strategies

<<Plan=>

up-
Update |dated

= <<WonitoringHoder=>
.| <<ExecutionModel>> |......
Start TGG Rules

Shared runtime model

Self-manage Start

o
Self-repair.

Effect |done

Effected

<<EvaluationModel>>
Queueing Model

<<ChangeModel>>
Parameter variability

Analyzed

<<Analyzes>
tleneck

7o bottle-
necks

adjusted)

A 4
<<Pn>>

> Adjust
ms

Analyze

Update

<<ReflectionModel>>
it Model

r
dated
model,

¥

Start

<<MonitoringModel>>
<..] <<ExecutionModel>> |.---
TGG Rules

Self-optimization.
Analyze

<<ReflectionModel>>
Architectural Model

Effected

Self-managed

Start

Self-optimization.

Effected

One solution: Linearizing Complete Feedback Loops
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Other Solutions...

Generic Self-repair Self-optimization Composition

Analyzed Analyzed “
‘ E‘_’ A Planned AP A [P] [P]
AP . ﬂ . ﬂ Planned m E

~ Patterns for control in self-adaptive systems [weyns et al., 2012]
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Modeling Hierarchies of Feedback Loops
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Modeling Hierarchies of Feedback Loops

Self-repair
<<EvaluationModel>> e since
Failure analysis rules 'no failures’ > 51
T

<<Analyze>>
Check for m

failures

=)
Self-repair-
. | Adapted

Adapt

<<ChangeModel>>
Repair
strategies

7

Layer;

Analyzed
a

Architectural Model
<<MonitoringModel>>
<] <<ExecutionModel>> |..
TGG Rules

Running System

\C<Monitor>>] up-.

Update |dated
model

Layery
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Modeling Hierarchies of Feedback Loops

Layer;

Layery

Self-repair

=)
Self-repair-

Adapted
<<ChangeModel>>
Adapt Repair
strategies

7

<<Plan>>
Repair |repaired
... ph\=<Execute>>]
Effect

Effected @

<<EvaluationModel>> [esince
Failure analysis rules 'no failures' > 51
T

&
Gredktor
o

failures

\C<Monitor>>] up-.

Update |dated
model

Start

Running System

Causal connection

e sensors + effectors required

e implementation efforts!
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Modeling Hierarchies of Feedback Loops
[ Self-repair-strategies |

<<EvaluationModel>> <<ChangeModel>>
Repair sFrategies Repair st_rategies
analysis rules synthesis rules
Brs 9
Y A 4
Layer2 BT I A=
eck checked Synthesize new | synthe-

sized

success rate

\<<Monitor>>
Observe [dated
odel
w..

Adapt

Self-repair
<<EvaluationModel>> [csince
Failure analysis rules 'no failures' > 51
T

&
Ghekror
-

repair strategies;
4

W
<<ReflectionModel>> ©
Self-repair

<<Execute>>] -
Replace f .,
strategies

Adapted (@)

=
Self-repair-
. | Adapted

Adapt

<<ChangeModel>>
Repair
strategies

failures

Layer;

®
Analyzed
a

\C<Monitor>>] up-

Update |dated
model

= <<MonitoringModel>>
-] <<ExecutionModel>> |
Start TGG Rules

Running System

Architectural Model 4

Causal connection

e sensors + effectors required
e implementation efforts!

Effected @

Layery
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Modeling Hierarchies of Feedback Loops

Self-repair-strategies

<<EvaluationModel>>

<<ChangeModel>>
Repair strategies Repair strategies
analysis rules synthesis rules
L ayer Y —r
.y 2 Cheyck checked\ kSynthesize new | synthe-
'/ repair strategies| 5% i
Layer, directly uses the
e e [ Megamodel of Layer,
If- ir K strategies e
e s e no specific sensors and
Adapt apted (@) .
. effectors required
Self-repair
— : — e adapts the models or control
Folur onlysis ies , seftrepai- flow of the Layer; megamodel
Adapt : . o
Layer, cfh‘kf strategies e interpreter (flexibility)!
<Monttor>=]up- Architectural Model A
Update [zt .. Causal connection
/ | “aa Rules | e sensors + effectors required
e implementation efforts!
Layery

Running System
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Conclusion

. [Za/mm Models que Madeﬂ
Models at runtime - /j\ —
e Adaptation steps and knowledge ol e},
e Single and multiple feedback loops Chontor >
- - Sensors P Effectors
Discussion [reetzes ]

(1) Cost-effective development
(2) Reflection capabilities
(3) Making feedback loops explicit
(4) Flexible (runtime) solutions
. while being runtime efficient (incremental, on-line techniques)
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