
Engineering Self-Adaptive Software
Systems with Runtime Models
Symposium on Future Trends in Service-Oriented Computing
Potsdam, Germany, June 14-15, 2012

Thomas Vogel
HPI Research School

System Analysis and Modeling Group
University of Potsdam, Germany

Motivation
• Need to continuously change software

• Lehman’s laws of software evolution [Lehman and Belady, 1985]
• Software aging [Parnas, 1994]

⇒ Software evolution and maintenance

• Software systems that are. . .
• self- or context-aware
• mission-critical
• ultra-large-scale (ULS)
• . . .

⇒ Self-adaptive Software [Cheng et al., 2009, de Lemos et al., 2012]

⇒ Autonomic Computing [Kephart and Chess, 2003]

Remark: Co-existence of evolution/maintenance and self-adaptation

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 2

Motivation
• Need to continuously change software

• Lehman’s laws of software evolution [Lehman and Belady, 1985]
• Software aging [Parnas, 1994]

⇒ Software evolution and maintenance

• Software systems that are. . .
• self- or context-aware
• mission-critical
• ultra-large-scale (ULS)
• . . .

⇒ Self-adaptive Software [Cheng et al., 2009, de Lemos et al., 2012]

⇒ Autonomic Computing [Kephart and Chess, 2003]

Remark: Co-existence of evolution/maintenance and self-adaptation

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 2

Motivation
• Need to continuously change software

• Lehman’s laws of software evolution [Lehman and Belady, 1985]
• Software aging [Parnas, 1994]

⇒ Software evolution and maintenance

• Software systems that are. . .
• self- or context-aware
• mission-critical
• ultra-large-scale (ULS)
• . . .

⇒ Self-adaptive Software [Cheng et al., 2009, de Lemos et al., 2012]

⇒ Autonomic Computing [Kephart and Chess, 2003]

Remark: Co-existence of evolution/maintenance and self-adaptation

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 2

“Evolution in ULS systems will rarely occur in discrete, planned steps in a closed
environment; instead it will be continuous and dynamic. The rules for continuous
evolution must therefore be built into ULS systems [. . .] so that they will be [. . .] able to
cope with dynamically changing environments without constant human intervention.
Achieving this goal requires research on in situ control, reflection, and adaptation to
ensure continuous adherence to system functional and quality-of-service policies in the
context of rapidly changing operational demands and resource availability.”
[Northrop et al., 2006, p.33]

Motivation
• Need to continuously change software

• Lehman’s laws of software evolution [Lehman and Belady, 1985]
• Software aging [Parnas, 1994]

⇒ Software evolution and maintenance

• Software systems that are. . .
• self- or context-aware
• mission-critical
• ultra-large-scale (ULS)
• . . .

⇒ Self-adaptive Software [Cheng et al., 2009, de Lemos et al., 2012]

⇒ Autonomic Computing [Kephart and Chess, 2003]

Remark: Co-existence of evolution/maintenance and self-adaptation

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 2

Engineering Self-Adaptive Software

(1) Cost-effective development
(2) Reflection capabilities
(3) Making feedback loops explicit
(4) Flexible (runtime) solutions

Related approaches, e.g.:
• Rainbow [Garlan et al., 2004] : (1), (2), (3), (4)
• J3 Toolsuite [Schmidt et al., 2008] : (1), (2), (3), (4)

Models@run.time for engineering adaptation engines: (1)-(4)

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 3

Adaptation Engine

Adaptable Software

Engineering Self-Adaptive Software

(1) Cost-effective development
(2) Reflection capabilities
(3) Making feedback loops explicit
(4) Flexible (runtime) solutions

Related approaches, e.g.:
• Rainbow [Garlan et al., 2004] : (1), (2), (3), (4)
• J3 Toolsuite [Schmidt et al., 2008] : (1), (2), (3), (4)

Models@run.time for engineering adaptation engines: (1)-(4)

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 3

Adaptation Engine

Adaptable Software

Adaptation Engine

Feedback Loop consisting of
• Adaptation steps

Monitor, Analyze, Plan, Execute

• Knowledge
about the managed system and
its context

• MAPE-K [Kephart and Chess, 2003]

General goal: leverage MDE techniques and benefits to
the runtime environment [France and Rumpe, 2007, Blair et al., 2009]

⇒ Models@run.time for adaptation steps & knowledge

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 4

Adaptation Engine

Adaptable Software

Knowledge

Models causally connected to the running system

• Typically, one model is employed (often an
architectural model emphasizing one concern)
(cf. related work in [Vogel and Giese, 2010])

• Simultaneous use of multiple runtime models
→ abstraction levels — PSM vs. PIM (solution vs. problem space)

• PSM: easier to connect to the running system
• PIM: easier to use by adaptation steps

→ concerns — failures, performance, architectural constraints, . . .

⇒ Different views on a running system
⇒ reflection capabilities enabled and used by adaptation steps

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 5

[ICAC09,MiSE10,SEAMS10]

Knowledge — Reflection Models

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 6

Metamodel of a PSM

Simplified

Knowledge — Reflection Models

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 6

Metamodel of a PSM
Simplified

Knowledge — Reflection Models

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 7

Metamodels for PIMs

Failures Performance

Monitor

Synchronizing changes in the
system to the reflection models

• Keeping runtime models up-to-date and consistent to each other
• Sensors (instrumentation): management APIs
• Incremental, event-driven updates: System→ PSM

(manually implemented adapter)

• Incremental model synchronization: PSM→ PIM1, PIM2, . . .
(Model synchronization engine based on Triple Graph Grammars (TGG))

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 8

[MRT09,MiSE10]

Monitor — TGG Rules

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 9

TGG rule for PSM→ PIMfailures

m:EjbModule

uid := ib.uid

i:Interface

c:Component

uid := i.uid

ib:EjbInterface

sb:SessionBean

tb:EjbInterfaceType t:InterfaceType

corr1:

CorrEjbModule

corr2:

CorrEjbInterface

corr3:

CorrEjbInterfaceType

enterpriseBeans

ejbInterfaces

ejbInterfaceType

provides

type

++

++

++

++

++

++ ++

++
++

PSM PIMfailures

• Overall, 11 rules for PSM→ PIMfailures

Monitor — Development costs

PIMs
Proposed solution Batch

#Rules #Nodes/Rules LOC LOC
Simpl. Architectural Model 9 7,44 15259 357

Performance Model 4 6,25 5979 253
Failure Model 7 7,14 12133 292

Sum 20 33371 902

• Proposed solution — incremental synchronization
• System→ PSM: 2685 LOC for the reusable adapter
• PSM→ 3 PIMs: 20 TGG rules (generated >33k LOC)

• Batch — creates PIMs directly from scratch (non-incremental)
• 902 LOC (≈ 20 TGG rules)

• Declarative vs. imperative approaches

Remark: done for slightly different metamodels than shown here

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 10

generated code from TGG rules

Monitor — Performance

Size Proposed Solution Batchn=0 n=1 n=2 n=3 n=4 n=5
5 0 163 361 523 749 891 8037
10 0 152 272 457 585 790 9663
15 0 157 308 472 643 848 10811
20 0 170 325 481 623 820 12257
25 0 178 339 523 708 850 15311

System → PSM 0% 92.8% 94.1% 95.6% 95.2% 96.3% -
PSM → 3 PIMs 0% 7.2% 5.9% 4.4% 4.8% 3.7% -

[ms]

• Size: number of deployed beans
• Structural monitoring through event-driven sensors
• Processing n events and invoking once the model synchronization

engine

Remark: done for slightly different metamodels than shown here

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 11

Analyze

Analyzing the running system based
on reflection models (PIMs)

• Identifying needs for adaptation (reactively)
• Structural checks expressed in Story Patterns

(Story Pattern and Story Diagram Interpreter)

• Under certain conditions, incremental execution of Story Patterns
• Constraints expressed in the Object Constraint Language (OCL)

(Existing engine from the Eclipse Model Development Tools)

• Model-based analysis techniques

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 12

[MRT11,MiSE12,SFM12]

Analyze — Evaluation Models

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 13

Identifying failures or violations of architectural constraints

name = InvalidTX

 f1:

name = IWarehousing

i2:Interface

Failure

name = InvalidTX

 f3:

failures

Failure

name = InvalidTX

 f2:failures Failure

failures

if self.name = ’TShop’
then self.components.size() <= 1
else true
endif

Story Pattern

OCL expression

Plan

Planning adaptations based on analysis results

• Changing reflection models (PIMs) (and in the end the system)
• Story Patterns defining in-place transformations

(Story Pattern and Story Diagram Interpreter)

• Under certain conditions, incremental execution of Story Patterns
• OCL expression to check and manipulate models

(Existing engine from the Eclipse Model Development Tools)

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 14

[MRT11,MiSE12,SFM12]

Plan — Change Models

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 15

Switching connections between components

name = Shop

c1:Component

name = Warehousing

c2:Component

name = IWarehousing

i1:Interface

name = IWarehousing

i2:Interface

name = IWarehousing

i3:Interface

name = Warehousing2

c3:Component

name = c1

co1:Connector

name = c2

co2:Connector

requires provides

-- --

++++

provides

++

--

Story Pattern

Execute

Synchronizing changes of reflection
models to the system: PIMs→ PSM→ System

• PIM→ PSM
• Incremental model synchronization: same rules as for monitoring

due to bidirectionality of TGG
• Story Patterns for default creation patterns in refinement

transformations (Factories)
• PSM→ System

• Observing PSM changes performed by the model synch. engine
• Incrementally enacting these changes through effectors

(management APIs)

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 16

[SEAMS10]

Execute — TGG Rules

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 17

TGG rule for PSM↔ PIMfailures

m:EjbModule

uid := ib.uid

i:Interface

c:Component

uid := i.uid

ib:EjbInterface

sb:SessionBean

tb:EjbInterfaceType t:InterfaceType

corr1:

CorrEjbModule

corr2:

CorrEjbInterface

corr3:

CorrEjbInterfaceType

enterpriseBeans

ejbInterfaces

ejbInterfaceType

provides

type

++

++

++

++

++

++ ++

++
++

PSM PIMfailures

Factory
required!

• Overall, 11 rules and 1 factory for PSM↔ PIMfailures

Interplay of all those models?

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 18

m:EjbModule

uid := ib.uid

i:Interface

c:Component

uid := i.uid

ib:EjbInterface

sb:SessionBean

tb:EjbInterfaceType

t:InterfaceType

corr1:

CorrEjbModule

corr2:

CorrEjbInterface

corr3:

CorrEjbInterfaceType

enterpriseBeans

ejbInterfaces

ejbInterfaceType

provides

type
++

++

++
++

++

++

++

++

++

if self.name = ’TShop’
then self.components.size() <= 1
else true
endif

name = InvalidTX

 f1:

name = IWarehousing

i2:Interface

Failure

name = InvalidTX

 f3:

failures

Failure

name = InvalidTX

 f2:failures Failure

failures

name = Shop

c1:Component
name = Warehousing

c2:Component

name = IWarehousing

i1:Interface
name = IWarehousing

i2:Interface

name = IWarehousing

i3:Interface

name = Warehousing2

c3:Component

name = c1

co1:Connector

name = c2

co2:Connector

requires
provides

--
--

++
++

provides

++

--

?⇒

[MRT10,MiSE11,SEAMS12]

Specifying and executing feedback loops

Specification — Modeling language
• Capturing the interplay of multiple runtime models

[Vogel et al., 2010b, Vogel et al., 2011]

• Making feedback loops explicit in the design of self-adaptive
systems [Müller et al., 2008, Brun et al., 2009]

Execution — Model interpreter
• Coordinated execution/usage of multiple runtime models
• Flexible solutions and structures for feedback loops

• Adaptable feedback loops (adaptive control)
• State-of-the-art frameworks often prescribe static solutions to single

feedback loops (e.g., [Garlan et al., 2004, Schmidt et al., 2008])

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 19

Executable Runtime Megamodels

Specifying and executing feedback loops

Specification — Modeling language
• Capturing the interplay of multiple runtime models

[Vogel et al., 2010b, Vogel et al., 2011]

• Making feedback loops explicit in the design of self-adaptive
systems [Müller et al., 2008, Brun et al., 2009]

Execution — Model interpreter
• Coordinated execution/usage of multiple runtime models
• Flexible solutions and structures for feedback loops

• Adaptable feedback loops (adaptive control)
• State-of-the-art frameworks often prescribe static solutions to single

feedback loops (e.g., [Garlan et al., 2004, Schmidt et al., 2008])

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 19

Executable Runtime Megamodels

Megamodels

Definition (Megamodel)
A megamodel is a model that contains models and relations by means
of model operations between those models.

• Research on model-driven software development (MDA, MDE)
[Favre, 2005, Bézivin et al., 2003, Bézivin et al., 2004, Barbero et al., 2007]

• “Toward Megamodels at Runtime” [Vogel et al., 2010b]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 20

An Example: Self-repair

Analyzed

Start Effected

Legend
(concrete syntax) Final state

Initial state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 21

An Example: Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax)

t1Model
Operation t2Final state

Initial state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 21

An Example: Self-repair

[c since
'no failures' > 5]

[else]

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax) [condition]

[else]Control flow
t1Model

Operation t2Final state

Initial state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 21

An Example: Self-repair

Failure analysis rules
<<EvaluationModel>>

Deep analysis rules
<<EvaluationModel>>

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>

Repair
strategies

<<ChangeModel>>[c since
'no failures' > 5]

[else]

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax)

Model

[condition]

[else]Control flow
t1Model

Operation t2Final state

Initial state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 21

An Example: Self-repair

r

w

r a

r

r
a

r

r

w

r

r

r

Failure analysis rules
<<EvaluationModel>>

Deep analysis rules
<<EvaluationModel>>

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>

Repair
strategies

<<ChangeModel>>[c since
'no failures' > 5]

[else]

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Deep check
for failures

<<Analyze>>
detailed
results

Repair
<<Plan>>

repaired

Effect
<<Execute>>

done

Analyzed

Start Effected

Legend
(concrete syntax)

Model
usageModel

[condition]

[else]Control flow
t1Model

Operation t2Final state

Initial state

Remark: Abstract syntax defined by a metamodel [Vogel and Giese, 2012a]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 21

Modeling Interacting Feedback Loops
Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [c since
'no failures' > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-optimization

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

w
r

Effect
<<Execute>>

done

Effected

r

r

Start

w

Analyze

r

w

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
<<ReflectionModel>>

r

wr

w

wr

One solution: Linearizing Complete Feedback Loops

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 22

Complex model
operations

Shared runtime model

Modeling Interacting Feedback Loops
Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [c since
'no failures' > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-optimization

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

w
r

Effect
<<Execute>>

done

Effected

r

r

Start

w

Analyze

r

w

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
<<ReflectionModel>>

r

wr

w

wr

One solution: Linearizing Complete Feedback Loops

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 22

Complex model
operations

Shared runtime model

Modeling Interacting Feedback Loops
Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [c since
'no failures' > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-optimization

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

w
r

Effect
<<Execute>>

done

Effected

r

r

Start

w

Analyze

r

w

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
<<ReflectionModel>>

r

wr

w

wr

One solution: Linearizing Complete Feedback Loops

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 22

Complex model
operations

Shared runtime model

Modeling Interacting Feedback Loops
Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [c since
'no failures' > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-optimization

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

w
r

Effect
<<Execute>>

done

Effected

r

r

Start

w

Analyze

r

w

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
<<ReflectionModel>>

r

wr

w

wr

One solution: Linearizing Complete Feedback Loops

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 22

Complex model
operations

Shared runtime model

Modeling Interacting Feedback Loops
Self-repair

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [c since
'no failures' > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-optimization

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

w
r

Effect
<<Execute>>

done

Effected

r

r

Start

w

Analyze

r

w

AnalyzedSelf-repair.
Start

Self-optimization.
Start

Self-managed

Self-manage Effected Analyzed

Effected

Self-optimization.
Analyze

Analyzed

Effected

Architectural Model
<<ReflectionModel>>

r

wr

w

wr

One solution: Linearizing Complete Feedback Loops

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 22

Complex model
operations

Shared runtime model

Other Solutions. . .

Generic Self-repair Self-optimization Composition

M

A P

EStart Effected

Analyzed

M

A P

EStart

Analyzed

Analyze

Effected
M

A P

E M

A P

E

M E A P
Analyzed

AP

Planned AP

Planned
A P

Analyzed

A P A P

M E

 Patterns for control in self-adaptive systems [Weyns et al., 2012]

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 23

Modeling Hierarchies of Feedback Loops

Layer2

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies

Layer1

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-repair

Self-repair-
strategies.

Adapt

Adapted

Layer0 Running System

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 24

Causal connection

• sensors + effectors required
• implementation efforts!

Layer2 directly uses the
megamodel of Layer1

• no specific sensors and
effectors required

• adapts the models or control
flow of the Layer1 megamodel

• interpreter (flexibility)!

Modeling Hierarchies of Feedback Loops

Layer2

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies

Layer1

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-repair

Self-repair-
strategies.

Adapt

Adapted

Layer0 Running System

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 24

Causal connection

• sensors + effectors required
• implementation efforts!

Layer2 directly uses the
megamodel of Layer1

• no specific sensors and
effectors required

• adapts the models or control
flow of the Layer1 megamodel

• interpreter (flexibility)!

Modeling Hierarchies of Feedback Loops

Layer2

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies

Layer1

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-repair

Self-repair-
strategies.

Adapt

Adapted

Layer0 Running System

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 24

Causal connection

• sensors + effectors required
• implementation efforts!

Layer2 directly uses the
megamodel of Layer1

• no specific sensors and
effectors required

• adapts the models or control
flow of the Layer1 megamodel

• interpreter (flexibility)!

Modeling Hierarchies of Feedback Loops

Layer2

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies

Layer1

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-repair

Self-repair-
strategies.

Adapt

Adapted

Layer0 Running System

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 24

Causal connection

• sensors + effectors required
• implementation efforts!

Layer2 directly uses the
megamodel of Layer1

• no specific sensors and
effectors required

• adapts the models or control
flow of the Layer1 megamodel

• interpreter (flexibility)!

Modeling Hierarchies of Feedback Loops

Layer2

up-
dated
model

Observe
<<Monitor>>

checkedCheck
success rate

<<Analyze>>

Self-repair
<<ReflectionModel>>

w

r a

Repair strategies
analysis rules

<<EvaluationModel>>

r

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

Repair strategies
synthesis rules

<<ChangeModel>>

r

w
r

Replace
strategies

<<Execute>> re-
placed

Adapted

r

Adapt

Self-repair-strategies

Layer1

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules

<<MonitoringModel>>
<<ExecutionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r

[c since
'no failures' > 5]

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Effected

r

r

[else]

Start

Self-repair

Self-repair-
strategies.

Adapt

Adapted

Layer0 Running System

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 24

Causal connection

• sensors + effectors required
• implementation efforts!

Layer2 directly uses the
megamodel of Layer1

• no specific sensors and
effectors required

• adapts the models or control
flow of the Layer1 megamodel

• interpreter (flexibility)!

Conclusion

Models at runtime
• Adaptation steps and knowledge
• Single and multiple feedback loops

Discussion
(1) Cost-effective development
(2) Reflection capabilities
(3) Making feedback loops explicit
(4) Flexible (runtime) solutions
. . . while being runtime efficient (incremental, on-line techniques)

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 25

References I
[Andersson et al., 2012] Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla, A., Inverardi, P., and Vogel, T. (2012).

Software engineering processes for self-adaptive systems.
In de Lemos, R., Giese, H., Müller, H., and Shaw, M., editors, Software Engineering for Self-Adaptive Systems 2, volume tbd of Lecture Notes in Computer Science (LNCS), page tbd.
Springer-Verlag.
(to be published).

[Barbero et al., 2007] Barbero, M., Fabro, M. D., and Bézivin, J. (2007).
Traceability and Provenance Issues in Global Model Management.
In Proc. of 3rd Workshop on Traceability (ECMDA-TW 2007), pages 47–55.

[Bézivin et al., 2003] Bézivin, J., Gerard, S., Muller, P.-A., and Rioux, L. (2003).
MDA components: Challenges and Opportunities.
In First Intl. Workshop on Metamodelling for MDA, pages 23–41.

[Bézivin et al., 2004] Bézivin, J., Jouault, F., and Valduriez, P. (2004).
On the Need for Megamodels.
In Proc. of the Workshop on Best Practices for Model-Driven Software Development.

[Blair et al., 2009] Blair, G., Bencomo, N., and France, R. B. (2009).
Models@run.time.
Computer, 42(10):22–27.

[Bruhn et al., 2008] Bruhn, J., Niklaus, C., Vogel, T., and Wirtz, G. (2008).
Comprehensive support for management of Enterprise Applications.
In Proceedings of the 6th ACS/IEEE International Conference on Computer Systems and Applications (AICCSA 2008), Doha, Katar, pages 755–762. IEEE Computer Society.

[Brun et al., 2009] Brun, Y., Serugendo, G. D. M., Gacek, C., Giese, H. M., Kienle, H. M., Litoiu, M., Müller, H. A., Pezzè, M., and Shaw, M. (2009).
Engineering Self-Adaptive Systems through Feedback Loops.
In Software Engineering for Self-Adaptive Systems, volume 5525 of LNCS, pages 48–70. Springer.

[Cheng et al., 2009] Cheng, B. H. C., Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B., Bencomo, N., Brun, Y., Cukic, B., Serugendo, G. D. M., Dustdar, S., Finkelstein,
A., Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H. M., Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H. A., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., and Whittle, J.
(2009).
Software Engineering for Self-Adaptive Systems: A Research Roadmap.
In Cheng, B. H. C., Lemos, R., Giese, H., Inverardi, P., and Magee, J., editors, Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer Science, pages
1–26. Springer.

[de Lemos et al., 2012] de Lemos, R., Giese, H., Müller, H. A., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B., Tamura, G., Villegas, N. M., Vogel, T., Weyns, D., Baresi, L., Becker, B.,
Bencomo, N., Brun, Y., Cukic, B., Desmarais, R., Dustdar, S., Engels, G., Geihs, K., Goeschka, K. M., Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer, J., Lopes, A., Magee, J., Malek,
S., Mankovskii, S., Mirandola, R., Mylopoulos, J., Nierstrasz, O., Pezze, M., Prehofer, C., Schäfer, W., Schlichting, R., Smith, D. B., Sousa, J. P., Tahvildari, L., Wong, K., and Wuttke, J. (2012).
Software Engineering for Self-Adaptive Systems: A Second Research Roadmap.
In de Lemos, R., Giese, H., Müller, H. A., and Shaw, M., editors, Software Engineering for Self-Adaptive Systems 2, Lecture Notes in Computer Science. Springer.
(to be published).

[Favre, 2005] Favre, J.-M. (2005).
Foundations of Model (Driven) (Reverse) Engineering : Models – Episode I: Stories of The Fidus Papyrus and of The Solarus.
In Language Engineering for Model-Driven Software Development, number 04101 in Dagstuhl Seminar Proc. IBFI.

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 26

References II
[France and Rumpe, 2007] France, R. and Rumpe, B. (2007).

Model-driven Development of Complex Software: A Research Roadmap.
In FOSE ’07: 2007 Future of Software Engineering, pages 37–54, Washington, DC, USA. IEEE Computer Society.

[Garlan et al., 2004] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. (2004).
Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure.
Computer, 37(10):46–54.

[Giese et al., 2012] Giese, H., Lambers, L., Becker, B., Hildebrandt, S., Neumann, S., Vogel, T., and Wätzoldt, S. (2012).
Graph Transformations for MDE, Adaptation, and Models at Runtime, volume 7320 of LNCS.
Springer.
(to be published).

[Giese et al., 2009] Giese, H., Seibel, A., and Vogel, T. (2009).
A Model-Driven Configuration Management System for Advanced IT Service Management.
In Bencomo, N., Blair, G., France, R., Jeanneret, C., and Munoz, F., editors, Proceedings of the 4th International Workshop on Models@run.time at the 12th IEEE/ACM International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2009), Denver, Colorado, USA, volume 509 of CEUR Workshop Proceedings, pages 61–70. CEUR-WS.org.

[Kephart and Chess, 2003] Kephart, J. O. and Chess, D. (2003).
The Vision of Autonomic Computing.
Computer, 36(1):41–50.

[Lehman and Belady, 1985] Lehman, M. M. and Belady, L. A., editors (1985).
Program evolution: processes of software change.
Academic Press Professional, Inc., San Diego, CA, USA.

[Müller et al., 2008] Müller, H. A., Pezzè, M., and Shaw, M. (2008).
Visibility of control in adaptive systems.
In Proc. of the 2nd Intl. Workshop on Ultra-large-scale Software-intensive Systems (ULSSIS 2008), pages 23–26. ACM.

[Northrop et al., 2006] Northrop, L., Feiler, P. H., Gabriel, R. P., Linger, R., Longstaff, T., Kazman, R., Klein, M., and Schmidt, D. (2006).
Ultra-Large-Scale Systems: The Software Challenge of the Future.
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

[Parnas, 1994] Parnas, D. L. (1994).
Software aging.
In ICSE ’94: Proceedings of the 16th International Conference on Software Engineering, pages 279–287, Los Alamitos, CA, USA. IEEE Computer Society Press.

[Schmidt et al., 2008] Schmidt, D., White, J., and Gokhale, A. (2008).
Simplifying autonomic enterprise Java Bean applications via model-driven engineering and simulation.
Software and Systems Modeling, 7(1):3–23.

[Vogel et al., 2008] Vogel, T., Bruhn, J., and Wirtz, G. (2008).
Autonomous Reconfiguration Procedures for EJB-based Enterprise Applications.
In Proceedings of the 20th International Conference on Software Engineering and Knowledge Engineering (SEKE 2008), San Francisco, CA, USA, pages 48–53. Knowledge Systems
Institute Graduate School.

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 27

References III
[Vogel and Giese, 2010] Vogel, T. and Giese, H. (2010).

Adaptation and Abstract Runtime Models.
In Proc. of the 5th ICSE Workshop on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2010), pages 39–48. ACM.

[Vogel and Giese, 2011] Vogel, T. and Giese, H. (2011).
Language and Framework Requirements for Adaptation Models.
In Bencomo, N., Blair, G., Cheng, B. H. C., France, R. B., and Jeanneret, C., editors, Proceedings of the 6th International Workshop on Models@run.time at the 14th IEEE/ACM International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2011), Wellington, New Zealand, volume 794 of CEUR Workshop Proceedings, pages 1–12. CEUR-WS.org.
(best paper).

[Vogel and Giese, 2012a] Vogel, T. and Giese, H. (2012a).
A Language for Feedback Loops in Self-Adaptive Systems: Executable Runtime Megamodels.
In Proceedings of the 7th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2012). IEEE Computer Society.

[Vogel and Giese, 2012b] Vogel, T. and Giese, H. (2012b).
Requirements and Assessment of Languages and Frameworks for Adaptation Models.
In MoDELS 2011 Workshops, volume 7167 of LNCS, pages 167–182. Springer.

[Vogel et al., 2009a] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2009a).
Incremental Model Synchronization for Efficient Run-time Monitoring.
In Bencomo, N., Blair, G., France, R., Jeanneret, C., and Munoz, F., editors, Proceedings of the 4th International Workshop on Models@run.time at the 12th IEEE/ACM International
Conference on Model Driven Engineering Languages and Systems (MoDELS 2009), Denver, Colorado, USA, volume 509 of CEUR Workshop Proceedings, pages 1–10. CEUR-WS.org.

[Vogel et al., 2009b] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2009b).
Model-Driven Architectural Monitoring and Adaptation for Autonomic Systems.
In Proceedings of the 6th IEEE/ACM International Conference on Autonomic Computing and Communications (ICAC 2009), Barcelona, Spain, pages 67–68. ACM.

[Vogel et al., 2010a] Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., and Becker, B. (2010a).
Incremental Model Synchronization for Efficient Run-Time Monitoring.
In MoDELS 2009 Workshops, volume 6002 of LNCS, pages 124–139. Springer.

[Vogel et al., 2010b] Vogel, T., Seibel, A., and Giese, H. (2010b).
Toward Megamodels at Runtime.
In Proc. of the 5th Intl. Workshop on Models@run.time, volume 641 of CEUR Workshop Proceedings, pages 13–24. CEUR-WS.org.
(best paper).

[Vogel et al., 2011] Vogel, T., Seibel, A., and Giese, H. (2011).
The Role of Models and Megamodels at Runtime.
In MoDELS 2010 Workshops, volume 6627 of LNCS, pages 224–238. Springer.

[Weyns et al., 2012] Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Prehofer, C., Wuttke, J., Andersson, J., Giese, H., and Göschka, K. (2012).
On Patterns for Decentralized Control in Self-Adaptive Systems.
In de Lemos, R., Giese, H., Müller, H. A., and Shaw, M., editors, Software Engineering for Self-Adaptive Systems 2, volume tbd of Lecture Notes in Computer Science (LNCS), page tbd.
Springer-Verlag.
(to be published).

Thomas Vogel | Engineering SASS with Runtime Models | FutureSOC 2012 | June 14-15, 2012 28

	Motivation
	Engineering Self-Adaptive Software Systems with Runtime Models
	Knowledge
	Monitor
	Analyze
	Plan
	Execute

	Megamodels
	Single Feedback Loop
	Multiple, Interacting Feedback Loop
	Hierarchy of Feedback Loops

	Conclusion
	References

