

IT Systems Engineering | Universität Potsdam

Teaching Requirements Engineering with Virtual Stakeholders without Software Engineering Knowledge

Gregor GabrysiakHolger GieseStefan Neumanngregor.gabrysiak@hpi.uni-potsdam.deholger.giese@hpi.uni-potsdam.destefan.neumann@hpi.uni-potsdam.de

Andreas Seibel andreas.seibel@hpi.uni-potsdam.de

System Analysis and Modeling Group, Hasso Plattner Institute at the University of Potsdam, Germany

REET'10 : International Workshop on Requirements Engineering Education and Training

28th September 2010

- Requirements engineering important to success of software engineering projects
 - SE students tend to be solution oriented but not problem oriented
 - SE students **not sensed** to importance of RE
- Teaching RE successfully requires a realistic experience to students
 - Experience the need for RE methods by experiencing the problems these methods try to solve first hand

Motivation

- What is a realistic experience?
 - 1. semantic gap during elicitation (G1)
 - 2. **consistency issues** when **synthesizing** information gathered during an interview (G2)
 - 3. **usual problems** when **validating** requirements due to inappropriate presentations (G3)
- How to create a realistic experience?
 - 1. realistic stakeholders with real needs
 - 2. realistic sessions (elicitation, specification, validation)
 - 3. Authentic environment

Motivation

- What do we need for a realistic experience?
 - Real stakeholders form real companies
 - Not feasible in teaching RE because they have real needs and, thus, want real values
 - Not replicable!
- Students without SE knowledge as virtual stakeholders?

PRO

uncomplicated easy to motivate no SE experts replicable

CONTRA

no needs no stakes in results no authenticity

Hypothesis:teaching RE successfully with moderatecosts and efforts by employing virtualstakeholders without SE knowledge

Preparing Virtual Stakeholders
Teaching Requirements Engineering
Evaluation
Lessons Learned

Preparing Virtual Stakeholders

Preparing Virtual Stakeholders

- We need **multiple** virtual stakeholders which
 - 1. have the same needs
 - 2. are authentic -- can play a role convincing
- Casted 9 out of 200 non-faculty students to enact as virtual stakeholder for 36 SE students
- Conducted a 3 hours preparation session with all virtual stakeholders:
 - 1. briefly explain RE and our goals
 - 2. explaining the case study (online supermarket)
 - 3. interactive development of scenarios of their role as stakeholder

Teaching Requirements Engineering

Teaching Requirements Engineering

- Teaching RE embedded into a SE course
 - SE students are 2nd semester undergraduates
- Implementation
 - Lecture: modeling software systems with UML
 - **Project**: modeling real-world scenarios
- Current issues
 - Predefined assignment
 - No elicitation and validation sessions

Teaching Requirements Engineering

Hasso

IT Systems Engineering

- "... predefined assignment is incomplete ... one role of the client's company was forgotten"
- 4 students per project group (9 groups) have participated in the sessions
 - 1h elicitation
 - 2h specification
 - 1h validation

Andreas Seibel (andreas.seibel@hpi.uni-potsdam.de), REET'10, 28th September 2010 Teaching Requirements Engineering with Virtual Stakeholders without Software Engineering Knowledge

- Data foundation
 - Questionnaires after each part of a session (for students and stakeholders)
 - Visual recordings of each session
- Efforts and costs?
 - Low efforts because ...
 - ... students are very flexible
 - ... one preparation session for all virtual stakeholders
 - Whole setup was possible with a funding of 1.200 \clubsuit

• Atmosphere

• Atmosphere

Mutual assessment

14

- Did students experience a semantic gap during elicitation (G1)?
 - Students that were "leading" the interview had to reformulate their questions several times
 - All stakeholders perceived that questions were asked multiple times
 - Not recognized by students just writing down

- Did students experience a semantic gap during elicitation (G1)?
 - Students that were "leading" the interview had to reformulate their questions several times
 - All stakeholders perceived that questions were asked multiple times
 - Not recognized by students just writing down

Result: at least several students experienced a semantic gap

15

- Did students experience consistency issues when synthesizing information gathered during an interview (G2)?
 - Perceived a process of agreement when talking about their inconsistent individual views

- Did students experience consistency issues when synthesizing information gathered during an interview (G2)?
 - Perceived a process of agreement when talking about their inconsistent individual views

Result: consistency issues were experienced by the students

- Did students experience usual problems when validating requirements because of inappropriate presentations (G3)?
 - Students did not think that their formal models were technical (UML)
 - Stakeholders generally agreed that they understood what the students presented
 - Depends highly on individual capacity of stakeholders to provide critical feedback

- Did students experience usual problems when validating requirements because of inappropriate presentations (G3)?
 - Students did not think that their formal models were technical (UML)
 - Stakeholders generally agreed that they understood what the students presented
 - Depends highly on individual capacity of stakeholders to provide critical feedback

Result: we could not clearly observe that students indeed experienced problems when validating requirements

Lessons learned

- Give feedback to students immediately
 - What has happened and what is important
 - They might miss the point
- More iterations of the sessions with more time inbetween
- More time for preparing virtual stakeholders
- Introduce virtual stakeholders with different roles in a company
- ... <many more>