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Definition of Multi-Paradigm Modeling: 
§
§
§
§
§

but then I realized ...

Ok, then let’s talk 
about what is really 
interesting for MPM 
in our CPSLab ...
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1. Foundations
(1) What are Models?

Models are in general abstract representations of existing or envisioned 
originals

■ Representation of an original: it exists always a point of reference
□ A function a which assign a model M to the original O (abstraction).
□ A not unique backward mapping i assigns originals O to each model M  

(interpretation).
■ Reduction: not all properties are represented
■ Pragmatics: replaces the original only for a specific purpose

MO

a
Original Model

omitted
properties

superfluous
properties

Herbert Stachowiak; Allgemeine Modelltheorie,
Springer-Verlag, Wien 1973.
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But Nowadays we often 
have Multiple Models?

Each model Mj is an abstract representations of of a part or multiple parts of 
an existing or envisioned original used for a specific purpose.

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1
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Benefits of Multiple 
Models?

Benefit: For purposej we replace the original O by a suitable model Mj that 
does not contain any irrelevant information (reduced complexity!)

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1
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Drawback of 
Multiple Models?

Drawback: Does an original O consistent with both models M1 and M2 really 
exist (consistency)?

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1
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How to Handle
Multiple Models?

Idea 1: Try for each purposes to find a model Mj that replace the original O, 
does not contain any irrelevant information (reduced complexity!), and is 
completely orthogonal to all other model. 

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1

1

2
∃
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How to Handle
Multiple Models?

Idea 2: Try for each purposes to find a model Mj that replace the original O, 
does not contain any irrelevant information (reduced complexity!), and 
integrate the models systematically to establish consistency. 

M2O

a2
Original Model

omitted

properties

superfluous

propertiesM1

a1
Model

superfluous

properties

purpose2purpose1

establish 

consistency

✓

Key questions: 
§ How many models are helpful (tradeoff benefits vs. integration effort)?

§ When and how is integration happen for these models?

Why this focus? 
This is the heart of the 

matter of MPM4CPS!



(1) How Many Models?
Multi-Formalisms

Specific for purpose1: 

n Chosen formalism (semantics)

n Chosen level of detail

Specific for purpose2: 

n Chosen formalism (semantics)

n Chosen level of detail
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M2O

a2
Original Model

omitted
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superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1

Integration has to consider more ...



How Many Models?
Multiple Paradigms

Specific for purpose1: 

n Chosen paradigm

■ Formalism(s) + semantics

■ Workflows and tools used

■ Local consistency needs

Specific for purpose2: 

n Chosen paradigm

■ Formalism(s) + semantics

■ Workflows and tools used

■ Local consistency needs
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M2O

a2
Original Model

omitted
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superfluous
propertiesM1

a1
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superfluous
properties

purpose2purpose1

Integration has to bridge/link the paradigms



(2) Integration: 
When &  How
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The explicit composition brings together subsystems which have been devel-
oped in parallel. In the ideal case all relevant system or subsystem characteristics
are captured during the decomposition and are guaranteed when doing the com-
position. However, often this is not the case. For example, when using separation
of concerns several aspects are often not covered during decomposition but be-
come relevant when doing the composition (potentially in a later development
stage) or when the composition not only exhibits the characteristics of its com-
ponents but also characteristics which are determined by the composition (some-
times call emergent) itself. It is particularly relevant for the integration that all
system requirements that have not been broken down into subsystems require-
ments are checked for the composition result. This includes that characteristics
such as deadlocks which can often not be predicted when doing the decompo-
sition have to be addressed when doing the composition. Therefore, depending
on the question of which characteristics are compositional or not resp. which
requirements have been broken down to local properties of the subsystems more
or fewer characteristics of the composition have to be checked at composition
time to ensure a proper integration.

The standard case for composition is that the individual constituent parts
are simply combined by some generic form of composition (e.g., scheduling in
the case of processes on an operating system). More advanced cases employ
declarative constraints contained in the specification of the components to ensure
that the composition behaves properly (e.g., scheduling with guaranteed deadline
in case of processes on a real-time operating system).

(a) composition (b) abstraction (c) consistency

Fig. 2. Fundamental techniques employed to approach integration

The resulting interplay of decomposition and composition is depicted in Fig-
ure 2 (a). At a rather high level of abstract the system is decomposed into two
or more subsystems that are developed in parallel. These subsystems, which
are then further elaborated in parallel, are composed later on according to the
decomposition done upfront.

7

Fundamental Techniques for Integration:

[Giese+2011]

Warning: We use a less restricted notion of integration than many others ... 

https://www.hpi.uni-potsdam.de/giese/bibadmin/show.php?year=2011


Integration via Explicit De-
composition & Composition

n explicit (horizontal) decomposition

n constant level of abstraction 

n subsystems can be developed in parallel 

Point in time:
n Decomposition: interfaces guarantees integration during the later 

composition (e.g., syntax-level for programming languages)

n Composition: risk that integration problems are detected rather late

n Synthesis: automated techniques that can generate a solution that 
solves the integration problem (if possible)

Remarks: 
n Ideal case: all relevant characteristics are guaranteed for composition 

n Real case: only a few relevant characteristics are guaranteed for composition 

n Separation of concerns may not be enough to exclude that concern span multiple 
models

n Emergent phenomena can only be observed for the composition (e.g., deadlock)
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Integration via Vertical 
Abstraction & Enrichment 

n change of the abstraction level

n implicit separation by omitting the details for a certain time

n Vertical enrichment can happen in two fundamentally different forms:

■ unconstrained enrichment (orthogonal characteristics)

■ constrained enrichment (refinement/approximation)

Point in time:

n During abstraction: can be employed to ease development when 
there is only a unidirectional dependency between the upfront-
addressed details and the omitted ones

n During enrichment: the integration problem has to be addressed 
late when the enrichment happens, as the initial abstraction step does 
not provide any guarantee for the later enrichments.

n During enrichment by synthesis: used to automatically apply 
enrichment (if possible)

Examples:

n Architecture layers with std. interface (operating system, hardware) 
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Integration via Consistency 
& Synchronization 

n approach the dependencies between the different 
artifacts throughout the parallel development

■ check consistency & resolve issue immediately

■ synchronization � automatically keep consistent

Point in time:

n Frequently: do a horizontal integration of models that 
evolve in parallel

Remarks:
n the in parallel developed models can more freely evolve

n consistency resp. synchronization covers usually not all 
integration problems later on (example co-simulation 
and scheduling)
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Kind of Integration 
(to Bridge Paradigms)

n Formalism-based: Having a single formalism in a paradigm 
that includes multiple paradigms (e.g., hybrid automata 
contain differential equations and automata) 

n Composition-based: We compose formalism supporting 
different paradigms into a single paradigm by a suitable 
model of computation that composes the multiple formalisms 
(e.g., Simulink/Stateflow) 

n Tool-based: We consider formalisms supporting different 
paradigms together via tools (e.g., co-simulation of a 
Simulink model and a plant specific simulator) 
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Level of Integration

n Representation-level: integration efforts only guarantee that a 
joint representation is reached 

n Syntax-level: integration efforts lead to correct syntax

n Semantics-level: integration efforts lead to compatibility at the 
level of the semantics

Examples from software engineering:

n Merge is usually only ad hoc achieving representation-level 
integration and compilation is expected to ensure syntax-level 
integration

n Continuous integration = fully automated regression testing 
ensures some degree of semantic-level integration (changes do not 
break the semantic needs encoded in the tests)
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3. Cyber-Physical Systems 
& Integration
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Ultra-Large-Scale Systems

[Broy+2012]
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A Selection of Critical 
Future Challenges

n Operational and managerial independence

■ operated independent from each other without 
global coordination

■ no centralized management decisions (possibly 
confliction decisions)

n Dynamic architecture and openness

■ must be able to dynamically adapt/absorb 
structural deviations 

■ subsystems may join or leave over time in a not 
pre-planned manner

n Advanced adaptation 
n Resilience
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A Selection of Critical 
Future Challenges

n Operational and managerial independence

■ operated independent from each other without 
global coordination

■ no centralized management decisions (possibly 
confliction decisions)

n Dynamic architecture and openness

■ must be able to dynamically adapt/absorb 
structural deviations 

■ subsystems may join or leave over time in a not 
pre-planned manner

n Advanced adaptation 
n Resilience

n Cross-Domain Integration 
n Integrate Models of Computation
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Challenge: Cross-
Domain Integration
Example: A convoy of 

fully autonomous cars 

abandons the premium track 

in order to give way to an 

ambulance (intersection of 

CPS specific for traffic and 
health care)

CPS of different domains 
have to be connected:
¨ According to social and spatial network topologies, CPS operate across 

different nested spheres of uncertainty

¨ CPS dedicated to different domains have to to interact and coordinate. 
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[Broy+2012]

Integration has to cover multiple domains and their paradigms



Challenge: Integrate 
Models of Computation
n Problem to integrate models 

within one layer as different 
models of computation are 
employed

n Leaky abstractions are 
caused by lack of 
composability across system 
layers. Consequences:

■ intractable interactions

■ unpredictable system 
level behavior

■ full-system verification 
does not scale
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Heterogeneity within Layers

Integration has to cover multiple layers and their paradigms



purpose2purpose1

M2O
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Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

[Broman+2012]
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How to Handle
Multiple Models?

Idea 1: Try for each purposes to find a model Mj that replace the original O, 
does not contain any irrelevant information (reduced complexity!), and is 
completely orthogonal to all other model. 

Formalisms Languages and ToolsViewpoints

supported by implemented by

based on

Figure 1: Framework for Viewpoints, Formalisms,
Languages and Tools.

Methodologically, we envision a process where stakeholders
first identify a given viewpoint or set of viewpoints, then de-
termine one or more formalisms that are most appropriate
for these viewpoints, and finally choose one or more concrete
languages and tools supporting these formalisms. Our con-
tribution lies in introducing the framework. As part of the
framework, we survey various formalisms, languages, and
tools and explain how they are related. We also provide
examples of viewpoints and discuss how they are related to
formalisms.

2. VIEWPOINTS
We adopt the terminology of the ISO/IEEE standard 42010
[22] and apply and adapt it to CPS. We say that each stake-
holder has concerns which can be captured (or framed) into
viewpoints. For the advanced driver assistance system ex-
ample mentioned above, the control designers are interested
in control system performance and robustness, given con-
straints imposed by the plant, senors and actuators. A soft-
ware engineer is another stakeholder. While both control
and software stakeholders may have performance as a key
concern, the interpretation of performance would be differ-
ent, for example in terms of ‘throughput’ for the software
engineer vs. ‘bandwidth’ or ‘rise time’ for the control engi-
neer. Even when different stakeholders are interested in the
same system parts and have same concerns (e.g., a software
design engineer and a software tester are likely to both be
interested in the software performance), their different roles
will determine a slightly different emphasis of their work and
how they develop and use related models. We therefore say
that a viewpoint is characterized by one or more concerns,
parts (interests) and the role of the stakeholder.

To elicit viewpoints, we thus identify stakeholders, their
concerns and the parts they are interested in. This concept
is depicted in Figure 2, illustrating three example viewpoints
identified by a name, the involved concern(s) (such as e.g.
robustness or performance), and the system parts/subsystems
of interest (note that the parts dimension is not explicitly
identified in [22]).

As illustrated in Figure 2, we use the term concern to
refer to both functional and non-functional aspects of a sys-
tem (these can be seen as a requirements dimension) whereas
the parts refer to realization components/platforms (at some
level of abstraction). In the example of the figure, the con-
trol performance viewpoint encompasses the control algo-
rithm functionality and its performance (the concerns) and
components corresponding to the controller, sensors, actu-
ators and physical plant (the parts). The software view-
point, dealing with controller realization, encompasses per-
formance and control algorithm coding concerns as well as
software and computing platform parts. The determination
of appropriate viewpoints is up to each organization. For

Energy
Robustness
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ADAS Algorithm

Concerns

Parts

Controller

Software

Sensors and 
Actuators

Physical Plant

Computing
Platform

Control Robustness 
Design Viewpoint

Software
Design

Viewpoint

Control Performance 
Design Viewpoint

Figure 2: Example of a viewpoints matrix.

example, the control performance and control robustness
viewpoints could well be merged into one viewpoint. The
more stakeholders, the more complete the set of concerns
and parts will be.

According to [22], establishing a viewpoint means defining
guidelines and conventions such as recommended types of
models, languages, design rules, modeling methods and anal-
ysis techniques. The modeling choices will thus be driven by
the context of the design task at hand, including the stake-
holder concerns. Our framework follows the same spirit,
however, a major difference and contribution is that we iden-
tify a common ground in terms of formalisms.

3. FORMALISMS
In this section, we review some formalisms which are useful
in modeling CPS. Our goal is by no means to be exhaustive,
but merely to give examples of formalisms; in particular,
those listed in Figure 3. Notable omissions include stochas-
tic formalisms, as well as formalisms used in scheduling and
real-time scheduling theory. The links between the view-
points and formalisms shown in this figure are ‘support’ rela-
tions, loosely interpreted to mean formalisms which are suit-
able for modeling various aspects of the corresponding view-
point. For instance, the ‘Control Robustness Design’ view-
point is supported by the ‘Timed and Hybrid Automata’ and
‘Differential Equations’ formalisms. Again, we do not neces-
sarily mean to be exhaustive in our description of such links.
We also note that the formalisms presented below are not
necessarily disjoint with each other in terms of expressive-
ness, e.g., hybrid automata subsume finite state machines or
classes of differential equations.

3.1 State Machines
State machines and automata are basic formalisms to de-
scribe discrete dynamical systems. State machines and au-
tomata come in many variants, therefore forming a class
of formalisms rather than a single formalism. Finite-state
machines [24] consist of finite sets of inputs, outputs, and
states, an output function that describes how outputs are
computed, and a transition function that describes how the
system changes state. The model can be generalized so
that states, inputs, or outputs are modeled by variables

50

1

Check:Is integration unavoidable for 
complex CPS?
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How to Handle
Multiple Models?

Idea 1: Try for each purposes to find a model Mj that replace the original O, 
does not contain any irrelevant information (reduced complexity!), and is 
completely orthogonal to all other model. 
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CyberPhysics
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example, the control performance and control robustness
viewpoints could well be merged into one viewpoint. The
more stakeholders, the more complete the set of concerns
and parts will be.

According to [22], establishing a viewpoint means defining
guidelines and conventions such as recommended types of
models, languages, design rules, modeling methods and anal-
ysis techniques. The modeling choices will thus be driven by
the context of the design task at hand, including the stake-
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sarily mean to be exhaustive in our description of such links.
We also note that the formalisms presented below are not
necessarily disjoint with each other in terms of expressive-
ness, e.g., hybrid automata subsume finite state machines or
classes of differential equations.

3.1 State Machines
State machines and automata are basic formalisms to de-
scribe discrete dynamical systems. State machines and au-
tomata come in many variants, therefore forming a class
of formalisms rather than a single formalism. Finite-state
machines [24] consist of finite sets of inputs, outputs, and
states, an output function that describes how outputs are
computed, and a transition function that describes how the
system changes state. The model can be generalized so
that states, inputs, or outputs are modeled by variables
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How to Handle
Multiple Models?

Idea 1: Try for each purposes to find a model Mj that replace the original O, 
does not contain any irrelevant information (reduced complexity!), and is 
completely orthogonal to all other model. 

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1

1

2
∃

Conclusion:Integration seems 
unavoidable for 

complex CPS!
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3. HPI CPSLab & 
Integration: 
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HPI CPSLab:
Industry 4.0 Production 
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■ Robots in Production Setting

■ Transportation of Goods 

■ represented by Pucks

■ Different Production Locations

■ Puck Dispenser

■ Conveyor Belt

■ “Rooms”

■ Obstacle Avoidance 

■ Walls

■ Doors

■ Other Robots



HPI CPSLab:
Industry 4.0 Production 
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Basic Robotino Robot:
■ Omni directional drive permits 

to move in all directions

■ Distance / obstacles sensors

■ Bumper to detect collisions

■ Coordination via W-LAN

Extensions:
■ GPS-like system: Northstar

■ Camera & Vision

■ Metal detector

■ Gripper

■ ...

HPI CPSLab: 
Robotino Robot - Overview
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Model Test (MT)

n Layer: Abstract Control Algorithm

n Domains: Control/Software (+ Physics)

n Multi-Paradigm: Yes, if control is discrete and input continuous

n Cyber-Physical system: Yes, as control is cyber and input is 
(conceptually) from the physical world

n Integration: Decomposition and composition-based
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Model in the Loop 
(MiL)

n Layer: Abstract Control Algorithm + Idealized Plant

n Domain: Control/Software + Physics

n Multi-Paradigm: Yes, if control is discrete 

n Cyber-Physical system: Yes, as control is cyber world and plant is 
from the physical world

n Integration: Decomposition & Composition compostion-based
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plant
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34



Rapid Prototyping (RP) 
vs. Robot Simulator

n Layer: Abstract Control Algorithm + Realistic Plant

n Domain: Control/Software + Physics

n Multi-Paradigm: Yes, if control is discrete 

n Cyber-Physical system: Yes, as control is cyber world and plant is 
from the physical world

n Integration: Consistency via co-simulation (tool-based)
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Rapid Prototyping 
(RP) vs. Robot

n Layer: Abstract Control Algorithm + Real Plant

n Domain: Control/Software + Real Physics

n Multi-Paradigm: Yes, if control is discrete 

n Cyber-Physical system: Yes, as control is cyber world and plant is 
from the physical world

n Integration: Consistency via rapid protoyping (tool-based)
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Software in the Loop 
(SiL) vs. Desktop + Sim

n Layer: Control Software + Architecture + Realistic Plant
n Domain: Control/Software + Scheduling + Realistic Physics

n Multi-Paradigm: 1) Yes, if control is discrete 2) Combine architecture and 
control

n Cyber-Physical system: Yes, as control is cyber world and plant is from the 
physical world (control and architecture are both cyber)

n Integration for 1): Consistency via co-simulation (tool-based)

n Integration for 2): Decomposition and synthesis composition-based
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control
control

Software in the Loop 
(SiL) vs. Desktop + Robot

n Layer: Control Software + Architecture + idealized 
Hardware + Real Plant

n Domain: Control/Software +Architecture +  Scheduling + 
WLAN + Real Physics

n Multi-Paradigm: 1) Yes, if control is discrete 2) Combine 
architecture and control

n Cyber-Physical system: Yes, as control is cyber world and 
plant is from the physical world (control and architecture 
are both cyber)

n Integration for 1): Consistency via rapid-protoyping (tool-
based) via WLAN

n Integration for 2): Decomposition and synthesis 
composition-based
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control
control

Hardware in the Loop 
(HiL)

n Layer: Control Software + Architecture + Real Hardware + 
Real Plant

n Domain: Control/Software +Architecture +  Scheduling + 
Real Physics

n Multi-Paradigm: 1) Yes, if control is discrete 2) Combine 
architecture and control

n Cyber-Physical system: Yes, as control is cyber world and 
plant is from the physical world (control and architecture 
are both cyber)

n Integration for 1): Consistency via execution (tool-based)

n Integration for 2): Decomposition and synthesis 
composition-based
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control

linking

Legend:

model
operation

model(s)

architecture



control
control

control
control

control
control
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MT/MiL

RP
SiL

HiL

ST

Simulation
stage

Prototyping
stage

Pre-production
stage

input

Output

control

Output

control

plant

Outputcontrol

RoboSimplant

Output
control

control

RoboSimplant

control

control

limking

MT

MiL

RP

SiL

SiL

HiL

Legend:

tool

model

n Vertical refinement of functional 
models (consistency manually)

n Horizontal integration of 
functional and plant models

n Horizontal integration of 
multiple functional models, an 
architecture model, and a plant 
model

n Vertical refinement of functional 
models (to realize functions while 
meeting resource constraints)



control
control

Vertical Enrichment & 
Transformation

n Vertical enrichment of functional 
models and architecture

n Floating-Point 2 Fix-Point to reduce 
resource demands models 
(consistency manually)

n Fix-Point data-flow model 2 C-code 
models (consistency automatically)

n Autosar 2 C-code models (consistency 
automatically)
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model Different paradigms
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4. Future Needs for 
Integration

n Operational and managerial independence

■ operated independent from each other without 
global coordination

■ no centralized management decisions (possibly 
confliction decisions)

n Dynamic architecture and openness

■ must be able to dynamically adapt/absorb 
structural deviations 

■ subsystems may join or leave over time in a not 
pre-planned manner

n Advanced adaptation 
n Resilience

n Cross-Domain Integration 
n Integrate Models of Computation
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s1:system1

s3:system3

s2:system2

s4:system2’

s5:system4

collaboration

collaboration2 

m1:
FSM

m2:
ODE

s5:system4



Bridging Paradigms & 
Formalism as Backbone
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Tool-based 
integration of the 
models

Requires an implicit 
notion of composition 
combining the 
formalisms of the 
models

Requires an implicit 
notion of formalism 
bridging the 
formalisms of the 
models

Composition-based 
integration of the 
models

Requires an implicit 
notion of formalism 
bridging the 
formalisms of the 
models

Formalism-based 
integration of the 
models (formalism 
covers the 
formalisms of the 
models)



Model Characteristics:

n Compositionality

n Dynamic structures

n Abstraction

n Hybrid behavior
n Non-deterministic

n Reflection for models

n Incremental extensions 

n Probabilistic

Overview over the
Needs for Formalisms
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Needs:

n Operational and managerial
independence

n Dynamic architecture and 
openness

n Scale for local systems or 
networked resp. large-scale 
systems of systems

n Integration of the physical, 
cyber, (and social) dimension 

n Incremental adaptation at 
the system and system of 
system level 

n Independent evolution of the 
systems and joint evolution
the system of system

n Resilience of the system of 
system



Model Characteristics:

n Compositionality

n Dynamic structures

n Abstraction

n Hybrid behavior
n Non-deterministic

n Reflection for models

n Incremental extensions 

n Probabilistic

Coverage of the 
Needs for Formalisms
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Needs:

n Operational and managerial
independence

n Dynamic architecture and 
openness

n Scale for local systems or 
networked resp. large-scale 
systems of systems

n Integration of the physical, 
cyber, (and social) dimension 

n Incremental adaptation at 
the system and system of 
system level 

n Independent evolution of the 
systems and joint evolution
the system of system

n Resilience of the system of 
system

Our Work:

n SMARTSOS (employing 
Timed and Hybrid GTS 
[Giese+2015])

n Timed GTS 
([Becker&Giese2008])

n Hybrid GTS 
([Becker&Giese2012])

n Probabilistic GTS 
([Krause&Giese2012])BUT: We would need as foundation formalisms that 

supports all required characteristics at once!

Probabilistic 
timed GTS 
([Maximova2018])

?
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5. Conclusion 
& Outlook

n Multiple models and their integration is the heart of 
the matter developing complex systems

n In case of cyber-physical systems it holds:
■ models employ different paradigms specific for 

their layer and/or domain
■ Integration of the models is of paramount 

importance during the development

n Current challenges:

■ Build cost-effectively the required formalisms / 
compositions / tools to integrate the models

■ Support analysis also for emergent properties
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Conclusion 
& Outlook

n Future cyber-physical systems have many 
additional needs (compositionality, dynamic 
structures, reflection, ...) we have to address at 
once (via formalism, composition, or tool).

n Future challenges:

■ Setup the foundation for the required formalisms
/ compositions / tools to integrate the models 
covering the additional needs

■ Support analysis for emergent properties 
covering also the additional needs

■ Support integration at runtime
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