
The Challenge of Model-
Based Integration for
Cyber-Physical Systems
MPM4CPS Conference, Pisa, Italy, 18-23 November 2018

Holger Giese
System Analysis & Modeling Group,
Hasso Plattner Institute, University of Potsdam, Germany
holger.giese@hpi.uni-potsdam.de

Prelude

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

2

Ultra-Large-Scale Systems
(Networked)
Cyber-Physical Systems

System of Systems

http://oceanservice.noaa.gov/news/weeklynews/nov13/ioos-awards.html

Micro Grids

Internet of Things

E-Health

Ambient
Assisted Living

Smart Home

Smart City

Smart Logistic

Smart Factory -
E.g. Industry 4.0

Definition of Multi-Paradigm Modeling:
§
§
§
§
§

but then I realized ...

Ok, then let’s talk
about what is really
interesting for MPM
in our CPSLab ...

Outline

1. Foundations

2. Cyber-Physical Systems
3. HPI CPSLab & Integration

4. Future Needs for Integration

5. Conclusion & Outlook

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

3

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

4

1. Foundations
(1) What are Models?

Models are in general abstract representations of existing or envisioned
originals

■ Representation of an original: it exists always a point of reference
□ A function a which assign a model M to the original O (abstraction).
□ A not unique backward mapping i assigns originals O to each model M

(interpretation).
■ Reduction: not all properties are represented
■ Pragmatics: replaces the original only for a specific purpose

MO

a
Original Model

omitted
properties

superfluous
properties

Herbert Stachowiak; Allgemeine Modelltheorie,
Springer-Verlag, Wien 1973.

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

5

But Nowadays we often
have Multiple Models?

Each model Mj is an abstract representations of of a part or multiple parts of
an existing or envisioned original used for a specific purpose.

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

6

Benefits of Multiple
Models?

Benefit: For purposej we replace the original O by a suitable model Mj that
does not contain any irrelevant information (reduced complexity!)

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

7

Drawback of
Multiple Models?

Drawback: Does an original O consistent with both models M1 and M2 really
exist (consistency)?

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

8

How to Handle
Multiple Models?

Idea 1: Try for each purposes to find a model Mj that replace the original O,
does not contain any irrelevant information (reduced complexity!), and is
completely orthogonal to all other model.

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1

1

2
∃

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

9

How to Handle
Multiple Models?

Idea 2: Try for each purposes to find a model Mj that replace the original O,
does not contain any irrelevant information (reduced complexity!), and
integrate the models systematically to establish consistency.

M2O

a2
Original Model

omitted

properties

superfluous

propertiesM1

a1
Model

superfluous

properties

purpose2purpose1

establish

consistency

✓

Key questions:
§ How many models are helpful (tradeoff benefits vs. integration effort)?

§ When and how is integration happen for these models?

Why this focus?
This is the heart of the

matter of MPM4CPS!

(1) How Many Models?
Multi-Formalisms

Specific for purpose1:

n Chosen formalism (semantics)

n Chosen level of detail

Specific for purpose2:

n Chosen formalism (semantics)

n Chosen level of detail

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

10

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1

Integration has to consider more ...

How Many Models?
Multiple Paradigms

Specific for purpose1:

n Chosen paradigm

■ Formalism(s) + semantics

■ Workflows and tools used

■ Local consistency needs

Specific for purpose2:

n Chosen paradigm

■ Formalism(s) + semantics

■ Workflows and tools used

■ Local consistency needs

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

11

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1

Integration has to bridge/link the paradigms

(2) Integration:
When & How

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

12

Holger Giese, Stefan Neumann, Oliver Niggemann and Bernhard Schätz. Model-Based Integration. In Model-
Based Engineering of Embedded Real-Time Systems - International Dagstuhl Workshop, Dagstuhl Castle,
Germany, November 4-9, 2007. Revised Selected Papers, Vol. 6100:17-54 of Lecture Notes in Computer Science,
Springer, 2011.

The explicit composition brings together subsystems which have been devel-
oped in parallel. In the ideal case all relevant system or subsystem characteristics
are captured during the decomposition and are guaranteed when doing the com-
position. However, often this is not the case. For example, when using separation
of concerns several aspects are often not covered during decomposition but be-
come relevant when doing the composition (potentially in a later development
stage) or when the composition not only exhibits the characteristics of its com-
ponents but also characteristics which are determined by the composition (some-
times call emergent) itself. It is particularly relevant for the integration that all
system requirements that have not been broken down into subsystems require-
ments are checked for the composition result. This includes that characteristics
such as deadlocks which can often not be predicted when doing the decompo-
sition have to be addressed when doing the composition. Therefore, depending
on the question of which characteristics are compositional or not resp. which
requirements have been broken down to local properties of the subsystems more
or fewer characteristics of the composition have to be checked at composition
time to ensure a proper integration.

The standard case for composition is that the individual constituent parts
are simply combined by some generic form of composition (e.g., scheduling in
the case of processes on an operating system). More advanced cases employ
declarative constraints contained in the specification of the components to ensure
that the composition behaves properly (e.g., scheduling with guaranteed deadline
in case of processes on a real-time operating system).

(a) composition (b) abstraction (c) consistency

Fig. 2. Fundamental techniques employed to approach integration

The resulting interplay of decomposition and composition is depicted in Fig-
ure 2 (a). At a rather high level of abstract the system is decomposed into two
or more subsystems that are developed in parallel. These subsystems, which
are then further elaborated in parallel, are composed later on according to the
decomposition done upfront.

7

Fundamental Techniques for Integration:

[Giese+2011]

Warning: We use a less restricted notion of integration than many others ...

https://www.hpi.uni-potsdam.de/giese/bibadmin/show.php?year=2011

Integration via Explicit De-
composition & Composition

n explicit (horizontal) decomposition

n constant level of abstraction

n subsystems can be developed in parallel

Point in time:
n Decomposition: interfaces guarantees integration during the later

composition (e.g., syntax-level for programming languages)

n Composition: risk that integration problems are detected rather late

n Synthesis: automated techniques that can generate a solution that
solves the integration problem (if possible)

Remarks:
n Ideal case: all relevant characteristics are guaranteed for composition

n Real case: only a few relevant characteristics are guaranteed for composition

n Separation of concerns may not be enough to exclude that concern span multiple
models

n Emergent phenomena can only be observed for the composition (e.g., deadlock)

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

13

The explicit composition brings together subsystems which have been devel-
oped in parallel. In the ideal case all relevant system or subsystem characteristics
are captured during the decomposition and are guaranteed when doing the com-
position. However, often this is not the case. For example, when using separation
of concerns several aspects are often not covered during decomposition but be-
come relevant when doing the composition (potentially in a later development
stage) or when the composition not only exhibits the characteristics of its com-
ponents but also characteristics which are determined by the composition (some-
times call emergent) itself. It is particularly relevant for the integration that all
system requirements that have not been broken down into subsystems require-
ments are checked for the composition result. This includes that characteristics
such as deadlocks which can often not be predicted when doing the decompo-
sition have to be addressed when doing the composition. Therefore, depending
on the question of which characteristics are compositional or not resp. which
requirements have been broken down to local properties of the subsystems more
or fewer characteristics of the composition have to be checked at composition
time to ensure a proper integration.

The standard case for composition is that the individual constituent parts
are simply combined by some generic form of composition (e.g., scheduling in
the case of processes on an operating system). More advanced cases employ
declarative constraints contained in the specification of the components to ensure
that the composition behaves properly (e.g., scheduling with guaranteed deadline
in case of processes on a real-time operating system).

(a) composition (b) abstraction (c) consistency

Fig. 2. Fundamental techniques employed to approach integration

The resulting interplay of decomposition and composition is depicted in Fig-
ure 2 (a). At a rather high level of abstract the system is decomposed into two
or more subsystems that are developed in parallel. These subsystems, which
are then further elaborated in parallel, are composed later on according to the
decomposition done upfront.

7

[Giese+2011]

Integration via Vertical
Abstraction & Enrichment

n change of the abstraction level

n implicit separation by omitting the details for a certain time

n Vertical enrichment can happen in two fundamentally different forms:

■ unconstrained enrichment (orthogonal characteristics)

■ constrained enrichment (refinement/approximation)

Point in time:

n During abstraction: can be employed to ease development when
there is only a unidirectional dependency between the upfront-
addressed details and the omitted ones

n During enrichment: the integration problem has to be addressed
late when the enrichment happens, as the initial abstraction step does
not provide any guarantee for the later enrichments.

n During enrichment by synthesis: used to automatically apply
enrichment (if possible)

Examples:

n Architecture layers with std. interface (operating system, hardware)

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

14

The explicit composition brings together subsystems which have been devel-
oped in parallel. In the ideal case all relevant system or subsystem characteristics
are captured during the decomposition and are guaranteed when doing the com-
position. However, often this is not the case. For example, when using separation
of concerns several aspects are often not covered during decomposition but be-
come relevant when doing the composition (potentially in a later development
stage) or when the composition not only exhibits the characteristics of its com-
ponents but also characteristics which are determined by the composition (some-
times call emergent) itself. It is particularly relevant for the integration that all
system requirements that have not been broken down into subsystems require-
ments are checked for the composition result. This includes that characteristics
such as deadlocks which can often not be predicted when doing the decompo-
sition have to be addressed when doing the composition. Therefore, depending
on the question of which characteristics are compositional or not resp. which
requirements have been broken down to local properties of the subsystems more
or fewer characteristics of the composition have to be checked at composition
time to ensure a proper integration.

The standard case for composition is that the individual constituent parts
are simply combined by some generic form of composition (e.g., scheduling in
the case of processes on an operating system). More advanced cases employ
declarative constraints contained in the specification of the components to ensure
that the composition behaves properly (e.g., scheduling with guaranteed deadline
in case of processes on a real-time operating system).

(a) composition (b) abstraction (c) consistency

Fig. 2. Fundamental techniques employed to approach integration

The resulting interplay of decomposition and composition is depicted in Fig-
ure 2 (a). At a rather high level of abstract the system is decomposed into two
or more subsystems that are developed in parallel. These subsystems, which
are then further elaborated in parallel, are composed later on according to the
decomposition done upfront.

7

[Giese+2011]

Integration via Consistency
& Synchronization

n approach the dependencies between the different
artifacts throughout the parallel development

■ check consistency & resolve issue immediately

■ synchronization � automatically keep consistent

Point in time:

n Frequently: do a horizontal integration of models that
evolve in parallel

Remarks:
n the in parallel developed models can more freely evolve

n consistency resp. synchronization covers usually not all
integration problems later on (example co-simulation
and scheduling)

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

15

The explicit composition brings together subsystems which have been devel-
oped in parallel. In the ideal case all relevant system or subsystem characteristics
are captured during the decomposition and are guaranteed when doing the com-
position. However, often this is not the case. For example, when using separation
of concerns several aspects are often not covered during decomposition but be-
come relevant when doing the composition (potentially in a later development
stage) or when the composition not only exhibits the characteristics of its com-
ponents but also characteristics which are determined by the composition (some-
times call emergent) itself. It is particularly relevant for the integration that all
system requirements that have not been broken down into subsystems require-
ments are checked for the composition result. This includes that characteristics
such as deadlocks which can often not be predicted when doing the decompo-
sition have to be addressed when doing the composition. Therefore, depending
on the question of which characteristics are compositional or not resp. which
requirements have been broken down to local properties of the subsystems more
or fewer characteristics of the composition have to be checked at composition
time to ensure a proper integration.

The standard case for composition is that the individual constituent parts
are simply combined by some generic form of composition (e.g., scheduling in
the case of processes on an operating system). More advanced cases employ
declarative constraints contained in the specification of the components to ensure
that the composition behaves properly (e.g., scheduling with guaranteed deadline
in case of processes on a real-time operating system).

(a) composition (b) abstraction (c) consistency

Fig. 2. Fundamental techniques employed to approach integration

The resulting interplay of decomposition and composition is depicted in Fig-
ure 2 (a). At a rather high level of abstract the system is decomposed into two
or more subsystems that are developed in parallel. These subsystems, which
are then further elaborated in parallel, are composed later on according to the
decomposition done upfront.

7

[Giese+2011]

Kind of Integration
(to Bridge Paradigms)

n Formalism-based: Having a single formalism in a paradigm
that includes multiple paradigms (e.g., hybrid automata
contain differential equations and automata)

n Composition-based: We compose formalism supporting
different paradigms into a single paradigm by a suitable
model of computation that composes the multiple formalisms
(e.g., Simulink/Stateflow)

n Tool-based: We consider formalisms supporting different
paradigms together via tools (e.g., co-simulation of a
Simulink model and a plant specific simulator)

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

16

Level of Integration

n Representation-level: integration efforts only guarantee that a
joint representation is reached

n Syntax-level: integration efforts lead to correct syntax

n Semantics-level: integration efforts lead to compatibility at the
level of the semantics

Examples from software engineering:

n Merge is usually only ad hoc achieving representation-level
integration and compilation is expected to ensure syntax-level
integration

n Continuous integration = fully automated regression testing
ensures some degree of semantic-level integration (changes do not
break the semantic needs encoded in the tests)

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

17

Outline

1. Foundations

2. Cyber-Physical Systems
3. HPI CPSLab & Integration

4. Future Needs for Integration

5. Conclusion & Outlook

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

18

3. Cyber-Physical Systems
& Integration

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

19
[Northrop+2006]

Ultra-Large-Scale Systems

[Broy+2012]

(Networked)
Cyber-Physical Systems

System of Systems

http://oceanservice.noaa.gov/news/weeklynews/nov13/ioos-awards.html

Micro Grids

Internet of Things

E-Health

Ambient
Assisted Living

Smart Home

Smart City

Smart Logistic

Smart Factory -
E.g. Industry 4.0

A Selection of Critical
Future Challenges

n Operational and managerial independence

■ operated independent from each other without
global coordination

■ no centralized management decisions (possibly
confliction decisions)

n Dynamic architecture and openness

■ must be able to dynamically adapt/absorb
structural deviations

■ subsystems may join or leave over time in a not
pre-planned manner

n Advanced adaptation
n Resilience

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

20

s1:system1

s3:system3

s2:system2

s4:system2’

s5:system4

collaboration

management

operation

A Selection of Critical
Future Challenges

n Operational and managerial independence

■ operated independent from each other without
global coordination

■ no centralized management decisions (possibly
confliction decisions)

n Dynamic architecture and openness

■ must be able to dynamically adapt/absorb
structural deviations

■ subsystems may join or leave over time in a not
pre-planned manner

n Advanced adaptation
n Resilience

n Cross-Domain Integration

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

21

s1:system1

s3:system3

s2:system2

s4:system2’

s5:system4

collaboration

management

operation

collaboration2

A Selection of Critical
Future Challenges

n Operational and managerial independence

■ operated independent from each other without
global coordination

■ no centralized management decisions (possibly
confliction decisions)

n Dynamic architecture and openness

■ must be able to dynamically adapt/absorb
structural deviations

■ subsystems may join or leave over time in a not
pre-planned manner

n Advanced adaptation
n Resilience

n Cross-Domain Integration
n Integrate Models of Computation

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

22

s1:system1

s3:system3

s2:system2

s4:system2’

s5:system4

collaboration

collaboration2

m1:
FSM

m2:
ODE

s5:system4

Challenge: Cross-
Domain Integration
Example: A convoy of

fully autonomous cars

abandons the premium track

in order to give way to an

ambulance (intersection of

CPS specific for traffic and
health care)

CPS of different domains
have to be connected:
¨ According to social and spatial network topologies, CPS operate across

different nested spheres of uncertainty

¨ CPS dedicated to different domains have to to interact and coordinate.

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

23

[Broy+2012]

Integration has to cover multiple domains and their paradigms

Challenge: Integrate
Models of Computation
n Problem to integrate models

within one layer as different
models of computation are
employed

n Leaky abstractions are
caused by lack of
composability across system
layers. Consequences:

■ intractable interactions

■ unpredictable system
level behavior

■ full-system verification
does not scale

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

24 [Sztipanovits2011]

Heterogeneity within Layers

Integration has to cover multiple layers and their paradigms

purpose2purpose1

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

[Broman+2012]
2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

25

How to Handle
Multiple Models?

Idea 1: Try for each purposes to find a model Mj that replace the original O,
does not contain any irrelevant information (reduced complexity!), and is
completely orthogonal to all other model.

Formalisms Languages and ToolsViewpoints

supported by implemented by

based on

Figure 1: Framework for Viewpoints, Formalisms,
Languages and Tools.

Methodologically, we envision a process where stakeholders
first identify a given viewpoint or set of viewpoints, then de-
termine one or more formalisms that are most appropriate
for these viewpoints, and finally choose one or more concrete
languages and tools supporting these formalisms. Our con-
tribution lies in introducing the framework. As part of the
framework, we survey various formalisms, languages, and
tools and explain how they are related. We also provide
examples of viewpoints and discuss how they are related to
formalisms.

2. VIEWPOINTS
We adopt the terminology of the ISO/IEEE standard 42010
[22] and apply and adapt it to CPS. We say that each stake-
holder has concerns which can be captured (or framed) into
viewpoints. For the advanced driver assistance system ex-
ample mentioned above, the control designers are interested
in control system performance and robustness, given con-
straints imposed by the plant, senors and actuators. A soft-
ware engineer is another stakeholder. While both control
and software stakeholders may have performance as a key
concern, the interpretation of performance would be differ-
ent, for example in terms of ‘throughput’ for the software
engineer vs. ‘bandwidth’ or ‘rise time’ for the control engi-
neer. Even when different stakeholders are interested in the
same system parts and have same concerns (e.g., a software
design engineer and a software tester are likely to both be
interested in the software performance), their different roles
will determine a slightly different emphasis of their work and
how they develop and use related models. We therefore say
that a viewpoint is characterized by one or more concerns,
parts (interests) and the role of the stakeholder.

To elicit viewpoints, we thus identify stakeholders, their
concerns and the parts they are interested in. This concept
is depicted in Figure 2, illustrating three example viewpoints
identified by a name, the involved concern(s) (such as e.g.
robustness or performance), and the system parts/subsystems
of interest (note that the parts dimension is not explicitly
identified in [22]).

As illustrated in Figure 2, we use the term concern to
refer to both functional and non-functional aspects of a sys-
tem (these can be seen as a requirements dimension) whereas
the parts refer to realization components/platforms (at some
level of abstraction). In the example of the figure, the con-
trol performance viewpoint encompasses the control algo-
rithm functionality and its performance (the concerns) and
components corresponding to the controller, sensors, actu-
ators and physical plant (the parts). The software view-
point, dealing with controller realization, encompasses per-
formance and control algorithm coding concerns as well as
software and computing platform parts. The determination
of appropriate viewpoints is up to each organization. For

Energy
Robustness

Performance

ADAS Algorithm

Concerns

Parts

Controller

Software

Sensors and
Actuators

Physical Plant

Computing
Platform

Control Robustness
Design Viewpoint

Software
Design

Viewpoint

Control Performance
Design Viewpoint

Figure 2: Example of a viewpoints matrix.

example, the control performance and control robustness
viewpoints could well be merged into one viewpoint. The
more stakeholders, the more complete the set of concerns
and parts will be.

According to [22], establishing a viewpoint means defining
guidelines and conventions such as recommended types of
models, languages, design rules, modeling methods and anal-
ysis techniques. The modeling choices will thus be driven by
the context of the design task at hand, including the stake-
holder concerns. Our framework follows the same spirit,
however, a major difference and contribution is that we iden-
tify a common ground in terms of formalisms.

3. FORMALISMS
In this section, we review some formalisms which are useful
in modeling CPS. Our goal is by no means to be exhaustive,
but merely to give examples of formalisms; in particular,
those listed in Figure 3. Notable omissions include stochas-
tic formalisms, as well as formalisms used in scheduling and
real-time scheduling theory. The links between the view-
points and formalisms shown in this figure are ‘support’ rela-
tions, loosely interpreted to mean formalisms which are suit-
able for modeling various aspects of the corresponding view-
point. For instance, the ‘Control Robustness Design’ view-
point is supported by the ‘Timed and Hybrid Automata’ and
‘Differential Equations’ formalisms. Again, we do not neces-
sarily mean to be exhaustive in our description of such links.
We also note that the formalisms presented below are not
necessarily disjoint with each other in terms of expressive-
ness, e.g., hybrid automata subsume finite state machines or
classes of differential equations.

3.1 State Machines
State machines and automata are basic formalisms to de-
scribe discrete dynamical systems. State machines and au-
tomata come in many variants, therefore forming a class
of formalisms rather than a single formalism. Finite-state
machines [24] consist of finite sets of inputs, outputs, and
states, an output function that describes how outputs are
computed, and a transition function that describes how the
system changes state. The model can be generalized so
that states, inputs, or outputs are modeled by variables

50

1

Check:Is integration unavoidable for
complex CPS?

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

26

How to Handle
Multiple Models?

Idea 1: Try for each purposes to find a model Mj that replace the original O,
does not contain any irrelevant information (reduced complexity!), and is
completely orthogonal to all other model.

M2O

a2
Original Model

omitted
properties

M1

a1
Model

2

CyberPhysics

Formalisms Languages and ToolsViewpoints

supported by implemented by

based on

Figure 1: Framework for Viewpoints, Formalisms,
Languages and Tools.

Methodologically, we envision a process where stakeholders
first identify a given viewpoint or set of viewpoints, then de-
termine one or more formalisms that are most appropriate
for these viewpoints, and finally choose one or more concrete
languages and tools supporting these formalisms. Our con-
tribution lies in introducing the framework. As part of the
framework, we survey various formalisms, languages, and
tools and explain how they are related. We also provide
examples of viewpoints and discuss how they are related to
formalisms.

2. VIEWPOINTS
We adopt the terminology of the ISO/IEEE standard 42010
[22] and apply and adapt it to CPS. We say that each stake-
holder has concerns which can be captured (or framed) into
viewpoints. For the advanced driver assistance system ex-
ample mentioned above, the control designers are interested
in control system performance and robustness, given con-
straints imposed by the plant, senors and actuators. A soft-
ware engineer is another stakeholder. While both control
and software stakeholders may have performance as a key
concern, the interpretation of performance would be differ-
ent, for example in terms of ‘throughput’ for the software
engineer vs. ‘bandwidth’ or ‘rise time’ for the control engi-
neer. Even when different stakeholders are interested in the
same system parts and have same concerns (e.g., a software
design engineer and a software tester are likely to both be
interested in the software performance), their different roles
will determine a slightly different emphasis of their work and
how they develop and use related models. We therefore say
that a viewpoint is characterized by one or more concerns,
parts (interests) and the role of the stakeholder.

To elicit viewpoints, we thus identify stakeholders, their
concerns and the parts they are interested in. This concept
is depicted in Figure 2, illustrating three example viewpoints
identified by a name, the involved concern(s) (such as e.g.
robustness or performance), and the system parts/subsystems
of interest (note that the parts dimension is not explicitly
identified in [22]).

As illustrated in Figure 2, we use the term concern to
refer to both functional and non-functional aspects of a sys-
tem (these can be seen as a requirements dimension) whereas
the parts refer to realization components/platforms (at some
level of abstraction). In the example of the figure, the con-
trol performance viewpoint encompasses the control algo-
rithm functionality and its performance (the concerns) and
components corresponding to the controller, sensors, actu-
ators and physical plant (the parts). The software view-
point, dealing with controller realization, encompasses per-
formance and control algorithm coding concerns as well as
software and computing platform parts. The determination
of appropriate viewpoints is up to each organization. For

Energy
Robustness

Performance

ADAS Algorithm

Concerns

Parts

Controller

Software

Sensors and
Actuators

Physical Plant

Computing
Platform

Control Robustness
Design Viewpoint

Software
Design

Viewpoint

Control Performance
Design Viewpoint

Figure 2: Example of a viewpoints matrix.

example, the control performance and control robustness
viewpoints could well be merged into one viewpoint. The
more stakeholders, the more complete the set of concerns
and parts will be.

According to [22], establishing a viewpoint means defining
guidelines and conventions such as recommended types of
models, languages, design rules, modeling methods and anal-
ysis techniques. The modeling choices will thus be driven by
the context of the design task at hand, including the stake-
holder concerns. Our framework follows the same spirit,
however, a major difference and contribution is that we iden-
tify a common ground in terms of formalisms.

3. FORMALISMS
In this section, we review some formalisms which are useful
in modeling CPS. Our goal is by no means to be exhaustive,
but merely to give examples of formalisms; in particular,
those listed in Figure 3. Notable omissions include stochas-
tic formalisms, as well as formalisms used in scheduling and
real-time scheduling theory. The links between the view-
points and formalisms shown in this figure are ‘support’ rela-
tions, loosely interpreted to mean formalisms which are suit-
able for modeling various aspects of the corresponding view-
point. For instance, the ‘Control Robustness Design’ view-
point is supported by the ‘Timed and Hybrid Automata’ and
‘Differential Equations’ formalisms. Again, we do not neces-
sarily mean to be exhaustive in our description of such links.
We also note that the formalisms presented below are not
necessarily disjoint with each other in terms of expressive-
ness, e.g., hybrid automata subsume finite state machines or
classes of differential equations.

3.1 State Machines
State machines and automata are basic formalisms to de-
scribe discrete dynamical systems. State machines and au-
tomata come in many variants, therefore forming a class
of formalisms rather than a single formalism. Finite-state
machines [24] consist of finite sets of inputs, outputs, and
states, an output function that describes how outputs are
computed, and a transition function that describes how the
system changes state. The model can be generalized so
that states, inputs, or outputs are modeled by variables

50

[Broman+2012]
2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

27

How to Handle
Multiple Models?

Idea 1: Try for each purposes to find a model Mj that replace the original O,
does not contain any irrelevant information (reduced complexity!), and is
completely orthogonal to all other model.

M2O

a2
Original Model

omitted
properties

superfluous
propertiesM1

a1
Model

superfluous
properties

purpose2purpose1

1

2
∃

Conclusion:Integration seems
unavoidable for

complex CPS!

Outline

1. Foundations

2. Cyber-Physical Systems
3. HPI CPSLab & Integration

4. Future Needs for Integration

5. Conclusion & Outlook

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

28

3. HPI CPSLab &
Integration:

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

29
Methodology Tool landscape

Hardware

Big Picture

NEW

HPI CPSLab:
Industry 4.0 Production

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

30
■ Robots in Production Setting

■ Transportation of Goods

■ represented by Pucks

■ Different Production Locations

■ Puck Dispenser

■ Conveyor Belt

■ “Rooms”

■ Obstacle Avoidance

■ Walls

■ Doors

■ Other Robots

HPI CPSLab:
Industry 4.0 Production

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

31

Basic Robotino Robot:
■ Omni directional drive permits

to move in all directions

■ Distance / obstacles sensors

■ Bumper to detect collisions

■ Coordination via W-LAN

Extensions:
■ GPS-like system: Northstar

■ Camera & Vision

■ Metal detector

■ Gripper

■ ...

HPI CPSLab:
Robotino Robot - Overview

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

32

Model Test (MT)

n Layer: Abstract Control Algorithm

n Domains: Control/Software (+ Physics)

n Multi-Paradigm: Yes, if control is discrete and input continuous

n Cyber-Physical system: Yes, as control is cyber and input is
(conceptually) from the physical world

n Integration: Decomposition and composition-based

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

33

input

Output

control

Legend:

model
operation

model(s)

Model in the Loop
(MiL)

n Layer: Abstract Control Algorithm + Idealized Plant

n Domain: Control/Software + Physics

n Multi-Paradigm: Yes, if control is discrete

n Cyber-Physical system: Yes, as control is cyber world and plant is
from the physical world

n Integration: Decomposition & Composition compostion-based

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

Output

control

plant

Legend:

model
operation

model(s)

34

Rapid Prototyping (RP)
vs. Robot Simulator

n Layer: Abstract Control Algorithm + Realistic Plant

n Domain: Control/Software + Physics

n Multi-Paradigm: Yes, if control is discrete

n Cyber-Physical system: Yes, as control is cyber world and plant is
from the physical world

n Integration: Consistency via co-simulation (tool-based)

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

35

plant

Output

control

RoboSimplant

Legend:

model
operation

model(s)

Rapid Prototyping
(RP) vs. Robot

n Layer: Abstract Control Algorithm + Real Plant

n Domain: Control/Software + Real Physics

n Multi-Paradigm: Yes, if control is discrete

n Cyber-Physical system: Yes, as control is cyber world and plant is
from the physical world

n Integration: Consistency via rapid protoyping (tool-based)

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

36

Output

control

Legend:

model
operation

model(s)

Software in the Loop
(SiL) vs. Desktop + Sim

n Layer: Control Software + Architecture + Realistic Plant
n Domain: Control/Software + Scheduling + Realistic Physics

n Multi-Paradigm: 1) Yes, if control is discrete 2) Combine architecture and
control

n Cyber-Physical system: Yes, as control is cyber world and plant is from the
physical world (control and architecture are both cyber)

n Integration for 1): Consistency via co-simulation (tool-based)

n Integration for 2): Decomposition and synthesis composition-based

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

37

control

RoboSimplant

Legend:

model
operation

model(s)

architecture

control
control

Software in the Loop
(SiL) vs. Desktop + Robot

n Layer: Control Software + Architecture + idealized
Hardware + Real Plant

n Domain: Control/Software +Architecture + Scheduling +
WLAN + Real Physics

n Multi-Paradigm: 1) Yes, if control is discrete 2) Combine
architecture and control

n Cyber-Physical system: Yes, as control is cyber world and
plant is from the physical world (control and architecture
are both cyber)

n Integration for 1): Consistency via rapid-protoyping (tool-
based) via WLAN

n Integration for 2): Decomposition and synthesis
composition-based

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

38

control

Legend:

model
operation

model(s)

architecture

control
control

Hardware in the Loop
(HiL)

n Layer: Control Software + Architecture + Real Hardware +
Real Plant

n Domain: Control/Software +Architecture + Scheduling +
Real Physics

n Multi-Paradigm: 1) Yes, if control is discrete 2) Combine
architecture and control

n Cyber-Physical system: Yes, as control is cyber world and
plant is from the physical world (control and architecture
are both cyber)

n Integration for 1): Consistency via execution (tool-based)

n Integration for 2): Decomposition and synthesis
composition-based

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

39

control

linking

Legend:

model
operation

model(s)

architecture

control
control

control
control

control
control

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

40

MT/MiL

RP
SiL

HiL

ST

Simulation
stage

Prototyping
stage

Pre-production
stage

input

Output

control

Output

control

plant

Outputcontrol

RoboSimplant

Output
control

control

RoboSimplant

control

control

limking

MT

MiL

RP

SiL

SiL

HiL

Legend:

tool

model

n Vertical refinement of functional
models (consistency manually)

n Horizontal integration of
functional and plant models

n Horizontal integration of
multiple functional models, an
architecture model, and a plant
model

n Vertical refinement of functional
models (to realize functions while
meeting resource constraints)

control
control

Vertical Enrichment &
Transformation

n Vertical enrichment of functional
models and architecture

n Floating-Point 2 Fix-Point to reduce
resource demands models
(consistency manually)

n Fix-Point data-flow model 2 C-code
models (consistency automatically)

n Autosar 2 C-code models (consistency
automatically)

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

41

input

Output

control

Output

control

plant

Outputcontrol

RoboSimplant

Outputcontrol

control

RoboSimplant

MT

MiL

RP

SiL

Legend:

tool
model Different paradigms

Outline

1. Foundations

2. Cyber-Physical Systems
3. HPI CPSLab & Integration

4. Future Needs for Integration

5. Conclusion & Outlook

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

42

4. Future Needs for
Integration

n Operational and managerial independence

■ operated independent from each other without
global coordination

■ no centralized management decisions (possibly
confliction decisions)

n Dynamic architecture and openness

■ must be able to dynamically adapt/absorb
structural deviations

■ subsystems may join or leave over time in a not
pre-planned manner

n Advanced adaptation
n Resilience

n Cross-Domain Integration
n Integrate Models of Computation

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

43

s1:system1

s3:system3

s2:system2

s4:system2’

s5:system4

collaboration

collaboration2

m1:
FSM

m2:
ODE

s5:system4

Bridging Paradigms &
Formalism as Backbone

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

44
Tool-based
integration of the
models

Requires an implicit
notion of composition
combining the
formalisms of the
models

Requires an implicit
notion of formalism
bridging the
formalisms of the
models

Composition-based
integration of the
models

Requires an implicit
notion of formalism
bridging the
formalisms of the
models

Formalism-based
integration of the
models (formalism
covers the
formalisms of the
models)

Model Characteristics:

n Compositionality

n Dynamic structures

n Abstraction

n Hybrid behavior
n Non-deterministic

n Reflection for models

n Incremental extensions

n Probabilistic

Overview over the
Needs for Formalisms

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

45

Needs:

n Operational and managerial
independence

n Dynamic architecture and
openness

n Scale for local systems or
networked resp. large-scale
systems of systems

n Integration of the physical,
cyber, (and social) dimension

n Incremental adaptation at
the system and system of
system level

n Independent evolution of the
systems and joint evolution
the system of system

n Resilience of the system of
system

Model Characteristics:

n Compositionality

n Dynamic structures

n Abstraction

n Hybrid behavior
n Non-deterministic

n Reflection for models

n Incremental extensions

n Probabilistic

Coverage of the
Needs for Formalisms

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

46

Needs:

n Operational and managerial
independence

n Dynamic architecture and
openness

n Scale for local systems or
networked resp. large-scale
systems of systems

n Integration of the physical,
cyber, (and social) dimension

n Incremental adaptation at
the system and system of
system level

n Independent evolution of the
systems and joint evolution
the system of system

n Resilience of the system of
system

Our Work:

n SMARTSOS (employing
Timed and Hybrid GTS
[Giese+2015])

n Timed GTS
([Becker&Giese2008])

n Hybrid GTS
([Becker&Giese2012])

n Probabilistic GTS
([Krause&Giese2012])BUT: We would need as foundation formalisms that

supports all required characteristics at once!

Probabilistic
timed GTS
([Maximova2018])

?

Outline

1. Foundations

2. Cyber-Physical Systems
3. HPI CPSLab & Integration

4. Future Needs for Integration

5. Conclusion & Outlook

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

47

5. Conclusion
& Outlook

n Multiple models and their integration is the heart of
the matter developing complex systems

n In case of cyber-physical systems it holds:
■ models employ different paradigms specific for

their layer and/or domain
■ Integration of the models is of paramount

importance during the development

n Current challenges:

■ Build cost-effectively the required formalisms /
compositions / tools to integrate the models

■ Support analysis also for emergent properties

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

48

Conclusion
& Outlook

n Future cyber-physical systems have many
additional needs (compositionality, dynamic
structures, reflection, ...) we have to address at
once (via formalism, composition, or tool).

n Future challenges:

■ Setup the foundation for the required formalisms
/ compositions / tools to integrate the models
covering the additional needs

■ Support analysis for emergent properties
covering also the additional needs

■ Support integration at runtime

2018 | Giese | The Challenge of Model-Based Integration for Cyber-Physical Systems

49

2018 | Giese | How Models lead from Software Evolution to Self-Adaptive Software and Runtime Models

50

Bibliography (1/3)
[Broman+2012] David Broman, Edward A. Lee, Stavros Tripakis and Martin Torngren.

Viewpoints, Formalisms, Languages, and Tools for Cyber-physical Systems. In
Proceedings of the 6th International Workshop on Multi-Paradigm Modeling,
Pages 49--54, ACM, New York, NY, USA, 2012.

[Brooks+2008] Christopher Brooks, Chihhong Cheng, Thomas Huining Feng, Edward A. Lee and
Reinhard von Hanxleden. Model Engineering using Multimodeling. In 1st
International Workshop on Model Co-Evolution and Consistency Management
(MCCM '08), September 2008.

[Broy+2012] Manfred Broy, MaríaVictoria Cengarle and Eva Geisberger. Cyber-Physical
Systems: Imminent Challenges. In Radu Calinescu and David Garlan editors,
Large-Scale Complex IT Systems. Development, Operation and Management,
Vol. 7539:1-28 of Lecture Notes in Computer Science, Springer Berlin
Heidelberg, 2012.

[Becker+2006] Basil Becker, Dirk Beyer, Holger Giese, Florian Klein and Daniela Schilling.
Symbolic Invariant Verification for Systems with Dynamic Structural Adaptation.
In Proc. of the 28th International Conference on Software Engineering (ICSE),
Shanghai, China, ACM Press, 2006.

[Becker&Giese2008] Basil Becker and Holger Giese. On Safe Service-Oriented Real-Time
Coordination for Autonomous Vehicles. In In Proc. of 11th International
Symposium on Object/component/service-oriented Real-time distributed
Computing (ISORC), Pages 203--210, IEEE Computer Society Press, 5-7 May
2008.

[Becker&Giese2012] Basil Becker and Holger Giese. Cyber-Physical Systems with Dynamic Structure:
Towards Modeling and Verification of Inductive Invariants. Technical report, 64,
Hasso Plattner Institute at the University of Potsdam, Germany, 2012.

[Burmester+2008] Sven Burmester, Holger Giese, Eckehard Münch, Oliver Oberschelp, Florian
Klein and Peter Scheideler. Tool Support for the Design of Self-Optimizing
Mechatronic Multi-Agent Systems. In International Journal on Software Tools for
Technology Transfer (STTT), Vol. 10(3):207-222, Springer Verlag, June 2008.

[Giese+2010] Holger Giese, Stefan Neumann and Stephan Hildebrandt. Model Synchronization
at Work: Keeping SysML and AUTOSAR Models Consistent. In Gregor Engels,
Claus Lewerentz, Wilhelm Schäfer, Andy Schürr and B. Westfechtel editors,
Graph Transformations and Model Driven Enginering - Essays Dedicated to
Manfred Nagl on the Occasion of his 65th Birthday, Vol. 5765:555-579 of
Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2010.

2018 | Giese | How Models lead from Software Evolution to Self-Adaptive Software and Runtime Models

51

Bibliography (2/3)
[Giese+2011] Holger Giese, Stefan Henkler and Martin Hirsch. A multi-paradigm approach

supporting the modular execution of reconfigurable hybrid systems. In
Transactions of the Society for Modeling and Simulation International,
SIMULATION, Vol. 87(9):775-808, 2011.

[Giese+2015] Holger Giese, Thomas Vogel and Sebastian Wätzoldt. Towards Smart Systems
of Systems. In Mehdi Dastani and Marjan Sirjani editors, Proceedings of the 6th
International Conference on Fundamentals of Software Engineering (FSEN '15),
Vol. 9392:1--29 of Lecture Notes in Computer Science (LNCS), Springer, 2015.

[Giese&Schäfer2013] Holger Giese and Wilhelm Schäfer. Model-Driven Development of Safe Self-
Optimizing Mechatronic Systems with MechatronicUML. In Javier Camara,
Rogério de Lemos, Carlo Ghezzi and AntÃ³nia Lopes editors, Assurances for
Self-Adaptive Systems, Vol. 7740:152-186 of Lecture Notes in Computer
Science (LNCS), Springer, January 2013.

[Ghezzi2012| Carlo Ghezzi. Evolution, Adaptation, and the Quest for Incrementality. In Radu
Calinescu and David Garlan editors, Large-Scale Complex IT Systems.
Development, Operation and Management, Vol. 7539:369-379 of Lecture Notes
in Computer Science, Springer Berlin Heidelberg, 2012.

[Krause&Giese2012] Christian Krause and Holger Giese. Probabilistic Graph Transformation Systems.
In Proceedings of Intern. Conf. on Graph Transformation (ICGT' 12), Vol.
7562:311-325 of Lecture Notes in Computer Science, Springer-Verlag, 2012.

[Maier1998] Mark W. Maier. Architecting principles for systems-of-systems. In Systems
Engineering, Vol. 1(4):267--284, John Wiley & Sons, Inc., 1998.

[Maximova2018] Maria Maximova, Holger Giese and Christian Krause. Probabilistic Timed Graph
Transformation Systems. In Journal of Logical and Algebraic Methods in
Programming, Vol. 101:110 - 131, 2018.

[Northrop+2006] Northrop, Linda, et al. Ultra-Large-Scale Systems: The Software Challenge of
the Future. Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2006.

2018 | Giese | How Models lead from Software Evolution to Self-Adaptive Software and Runtime Models

52

Bibliography (3/3)
[Pereira+2013] Eloi Pereira, Christoph M. Kirsch, Raja Sengupta and Jo~ao Borges de Sousa.

Bigactors - A Model for Structure-aware Computation. In ACM/IEEE 4th
International Conference on Cyber-Physical Systems, Pages 199--208,
ACM/IEEE, Philadelphia, PA, USA, 2013.

[Sztipanovits2011] Janos Sztipanovits with Ted Bapty, Gabor Karsai and Sandeep Neema. MODEL-
INTEGRATION AND CYBER PHYSICAL SYSTEMS: A SEMANTICS PERSPECTIVE.
FM 2011, Limerick, Ireland. 22 June 2011

[Sztipanovits+2012] Janos Sztipanovits, Xenofon Koutsoukos, Gabor Karsai, Nicholas Kottenstette,
Panos Antsaklis, Vineet Gupta, B. Goodwine, J. Baras and Shige Wang. Toward
a Science of Cyber-Physical System Integration. In Proceedings of the IEEE, Vol.
100(1):29-44, January 2012.

[Valerdi+2008] Ricardo Valerdi, Elliot Axelband, Thomas Baehren, Barry Boehm, Dave
Dorenbos, Scott Jackson, Azad Madni, Gerald Nadler, Paul Robitaille and Stan
Settles. A research agenda for systems of systems architecting. In International
Journal of System of Systems Engineering, Vol. 1(1-2):171--188, 2008.

[Vogel+2009] Thomas Vogel, Stefan Neumann, Stephan Hildebrandt, Holger Giese and Basil
Becker: Model-Driven Architectural Monitoring and Adaptation for Autonomic
Systems. In: Proc. of the 6th International Conference on Autonomic Computing
and Communications (ICAC’09), Barcelona, Spain, ACM (15-19 June 2009)

[Vogel+2010] Thomas Vogel and Stefan Neumann and Stephan Hildebrandt and Holger Giese
and Basil Becker. Incremental Model Synchronization for Efficient Run-Time
Monitoring. In Sudipto Ghosh, ed., Models in Software Engineering, Workshops
and Symposia at MODELS 2009, Denver, CO, USA, October 4-9, 2009, Reports
and Revised Selected Papers, vol. 6002 of Lecture Notes in Computer Science
(LNCS), pages 124-139. Springer-Verlag, 4 2010.

[Vogel&Giese2012] Thomas Vogel and Holger Giese. A Language for Feedback Loops in Self-
Adaptive Systems: Executable Runtime Megamodels. In Proceedings of the 7th
International Symposium on Software Engineering for Adaptive and Self-
Managing Systems (SEAMS 2012), pages 129-138, 6 2012. IEEE Computer
Society.

