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Continuous Change

Software aging [Parnas, 1994]

When not being adapted to changing user needs (lack of movement)
Adapting the software often violates the design (ignorant surgery)

Lehman’s laws of software evolution (real-world applications)
[Lehman and Belady, 1985, Lehman and Ramil, 2001]

I. A “system must be continually adapted else it becomes progressively
less satisfactory in use”

VI. “The functional capability of [...] systems must be continually increased
to maintain user satisfaction over the system lifetime”

⇒ Software Evolution and Maintenance
[Mens and Demeyer, 2008, Mens et al., 2010, Mens et al., 2014]
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Software Evolution Process [Sommerville, 2010]

Change
requests

Impact
analysis

Release
planning

Fault
repair

Platform
adaptation

System
enhancement

Change implementation

Proposed
changes

Requirements
analysis

Requirements
updating

Software
development

System
release

Performed by different groups of people (support staff, developers,...)
[Kitchenham et al., 1999]

Follows a higher-level management process [Kitchenham et al., 1999]

Enacting a release during scheduled system downtimes
(stop-and-go maintenance) [Pezzè, 2012]

⇒ Process is costly, introduces delays, and affects availability
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Software systems that are...

context-aware (pervasive computing [Weiser, 1991, Satyanarayanan, 2001],
internet of things [Perera et al., 2014])

timely changes
individual changes

mission-critical/dependable [Shaw, 2002]

high or permanent availability
complex (ultra-large-scale [Northrop et al., 2006],
system of systems [Valerdi et al., 2008])

costs
dynamic integration
shutdown not feasible

...

⇒ Efforts and feasibility of traditional software evolution process?
⇒ Built-in evolution/adaptation process?

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 4

[acatech, 2011, p.24]
distributed traffic management



Self-Adaptive Software [Cheng et al., 2009, de Lemos et al., 2013]

“systems that are able to modify their behavior and/or
structure in response to their perception of the environment
and the system itself, and their goals” [de Lemos et al., 2013, p. 1]

Observations:
Self-*: configuring / optimizing / healing / protecting / managing / ...
Shift responsibility for adaptation from developers to the system
Shift software engineering activities from dev. time to runtime
Blurring boundary between development time and runtime

Goal:
Automated and dynamic adaptation
Mitigating the growing costs, complexity, and diversity of adaptation
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Feedback Loop [Kephart and Chess, 2003, Brun et al., 2009]

Monitor

Knowledge

Analyze Plan

Execute

Adaptable Software
Sensors Effectors

Adaptation Engine

Often inspired by control theory [Filieri et al., 2015]

Turns an open-loop into a closed-loop system [Salehie and Tahvildari, 2009]

Architectural blueprint: separating domain and adaptation concerns
Similar to computational reflection [Maes, 1987]

Knowledge: policies and a representation (reflection) of the adaptable
software [Huebscher and McCann, 2008]

e.g., event-condition-action rules and an architectural representation
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Engineering Self-Adaptive Software

State of the Art

Aims for reducing development efforts
Typically, frameworks for feedback loops

Customization such as injecting policies and a representation
Partial generation of feedback loops based on policies

Some Drawbacks

No explicit specification and design of the feedback loops
Closed approaches

Prescribe the structure and number of feedback loops
Restrict the techniques/types of knowledge (policies, representation,...)

Gap between the development and runtime environments
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Engineering Self-Adaptive Software with EUREMA

Side note: Model-Driven Engineering (MDE)

“The term Model-Driven Engineering
(MDE) is typically used to describe
software development approaches in
which abstract models of software
systems are created and systematically
transformed to concrete implementations.”
[France and Rumpe, 2007]
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Engineering Self-Adaptive Software with EUREMA

Side note: Model-Driven Engineering (MDE)

Goals [France and Rumpe, 2007]

Mitigating the gap between the problem and solution space
Avoiding accidental complexity of closing the gap manually

Raise the level of abstraction (domain-specific languages & models)
Automating development: transformation and generation
Early analysis and quality assurance

Promises
“Industrializing” software development [Greenfield and Short, 2003]

Improve developers’ productivity and software quality
Reduce costs and time to market
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Engineering Self-Adaptive Software with EUREMA

Side note: Model-Driven Engineering (MDE)

“In our broad vision of MDE, models [...] are also the primary
means by which developers and other systems understand, interact
with, configure and modify the runtime behavior of software.”
[France and Rumpe, 2007]

Goals of “runtime models”
Abstractions of runtime phenomena
Automate runtime adaptation
Analyze running software systems
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EUREMA (Executable Runtime Megamodels)

Domain-specific modeling language
Uses feedback loop concepts

MAPE activities, runtime models, ...

Explicit design of feedback loops
Allows freely modeling feedback loops

Structure and number of loops
Techniques and types of models

Runtime Interpreter
EUREMA models are kept alive at runtime
Directly executed by the interpreter
No generation/translation steps

No gap between dev. and runtime env.

Flexibility to adapt feedback loops

Monitor

Knowledge

Analyze Plan

Execute

Adaptable Software
Sensors Effectors

Adaptation Engine

Monitor

Reflection
Models

Analyze Plan

Execute

Evaluation Models Change Models

Monitoring Models Execution Models
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Language Overview

Graphical modeling language
Two kinds of diagrams
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Layer Diagram (LD)

FLD: activities + control flow, runtime models + their usage (behavior)

LD: layers, white/black-box modules + their relationships (structure)
Trigger of modules: <events>;<period>;<initialState>;

FLDs and LD are kept alive at runtime and executed by an interpreter

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 12

instantiation



Language Overview

Graphical modeling language
Two kinds of diagrams

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules
<<CausalConnectionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [C_SINCE(no 
failures) > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Executed

r

r

[ELSE]

Monitor

r

Self-repair

Feedback Loop Diagram (FLD)

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
MAPE

:mRUBiS

RtException;
10s; Monitor;

r w

Layer Diagram (LD)

FLD: activities + control flow, runtime models + their usage (behavior)
LD: layers, white/black-box modules + their relationships (structure)

Trigger of modules: <events>;<period>;<initialState>;

FLDs and LD are kept alive at runtime and executed by an interpreter

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 12

instantiation



Language Overview

Graphical modeling language
Two kinds of diagrams

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules
<<CausalConnectionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [C_SINCE(no 
failures) > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Executed

r

r

[ELSE]

Monitor

r

Self-repair

Feedback Loop Diagram (FLD)

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
MAPE

:mRUBiS

RtException;
10s; Monitor;

r w

Layer Diagram (LD)

FLD: activities + control flow, runtime models + their usage (behavior)
LD: layers, white/black-box modules + their relationships (structure)

Trigger of modules: <events>;<period>;<initialState>;
FLDs and LD are kept alive at runtime and executed by an interpreter

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 12

instantiation



Modularity

Multiple FLDs for one feedback loop

Complex model operation to invoke
an FLD (entries and exists)

Binding in the LD
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Variability

Alternative modules as variants

Rebinding to switch between alternatives

Design-time and runtime

Example: different analysis techniques
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The same applies to implementations
(black-box modules) of basic model
operations

Example: different monitoring
techniques
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Multiple Feedback Loops

Multiple concerns to be managed
Competing concerns and interferences ⇒ coordination
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EUREMA
Modeling the synchronized execution of feedback loops
Model operation implementation realizes the coordination mechanism
(e.g., utility functions or voting)
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Multiple Feedback Loops II

Independent execution
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Individual trigger for each feedback loop
Potentially, concurrent execution of different feedback loops
Possibility to implicitly synchronize the execution by triggers
(e.g., appropriate frequencies of execution runs)
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Multiple Feedback Loops III

Sequencing Complete Feedback Loops
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Explicitly modeling the synchronized execution
MAPE for self-repair → MAPE for self-optimization
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Multiple Feedback Loops IV

Sequencing Adaptation Activities of Feedback Loops
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More fine-grained synchronization (activities vs. whole feedback loop)
Interleaved execution of different feedback loops
M → A+P for self-repair → A+P for self-optimization → E
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Evaluation

mRUBiS as a playground
Two cases

Self-healing
Self-optimization

Compare alternative solutions
Models vs. code
State- vs. event-based loops

with respect to
Development costs
Runtime efficiency

Applied EUREMA to other
approaches

Rainbow, DiVA, PLASMA
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Conclusion

Summary and contributions of EUREMA
1 Integrated MDE approach

2 Open approach

3 Seamless Integration of Development and Runtime Environment

4 Adaptation and Evolution of Feedback Loops

5 State- and Event-Based Feedback Loops

Future Work
Distributed feedback loops and decentralized adaptation
Concurrent execution of interdependent feedback loops
Model-based techniques to analyze and test EUREMA models
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