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Continuous Change

o Software aging [Parnas, 1994]
o When not being adapted to changing user needs (lack of movement)
o Adapting the software often violates the design (ignorant surgery)

e Lehman’s laws of software evolution (real-world applications)
[Lehman and Belady, 1985, Lehman and Ramil, 2001]

[. A “system must be continually adapted else it becomes progressively
less satisfactory in use”
VI. “The functional capability of [...] systems must be continually increased
to maintain user satisfaction over the system lifetime”

= Software Evolution and Maintenance
[Mens and Demeyer, 2008, Mens et al., 2010, Mens et al., 2014]
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Software Evolution Process [sommervilie, 2010]

Change implementation

Change Impact Release - "
requests analysis plannmg Proposed Requirements Requirements Software
changes analysis updating development

Fault Platform System
repair adaptation | |enhancement

System
release

e Performed by different groups of people (support staff, developers,...)
[Kitchenham et al., 1999]

e Follows a higher-level management process [Kiichenham et al., 1999]

e Enacting a release during scheduled system downtimes
(stop-and-go maintenance) [pezze, 2012

= Process is costly, introduces delays, and affects availability
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Software systems that are...

e context-aware (pervasive computing [Weiser, 1991, Satyanarayanan, 2001],
internet of things [Perera et al., 2014])
o timely changes
o individual changes
e mission-critical/dependable [Shaw, 2002]
o high or permanent availability
e complex (ultra-large-scale [Northrop et al., 2006
system of systems [Valerdi et al., 2008])
o costs
o dynamic integration
o shutdown not feasible

[acatech 2011, p.24]
d|str|buted traffic management

= Efforts and feasibility of traditional software evolution process?
= Built-in evolution/adaptation process?
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Self-Adaptive Software [Cheng et al., 2009, de Lemos et al., 2013]

“systems that are able to modify their behavior and/or
structure in response to their perception of the environment
and the system itself, and their goals” [de Lemos et al., 2013, p. 1]

Observations:

Self-*: configuring / optimizing / healing / protecting / managing / ...
Shift responsibility for adaptation from developers to the system
Shift software engineering activities from dev. time to runtime
Blurring boundary between development time and runtime

Goal:
e Automated and dynamic adaptation
* Mitigating the growing costs, complexity, and diversity of adaptation
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Feedback LOOp [Kephart and Chess, 2003, Brun et al., 2009]

Adaptation Engine @4,0

DRI

Sensors Effectors
Adaptable Software

Often inspired by control theory [Filieri et al., 2015]

Turns an open-loop into a closed-loop system [salehie and Tahvildari, 2009]

Architectural blueprint: separating domain and adaptation concerns
o Similar to computational reflection [Maes, 1987]

Knowledge: policies and a representation (reflection) of the adaptable
software [Huebscher and McCann, 2008]
o e.g., event-condition-action rules and an architectural representation
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Engineering Self-Adaptive Software

State of the Art

* Aims for reducing development efforts
* Typically, frameworks for feedback loops

o Customization such as injecting policies and a representation
o Partial generation of feedback loops based on policies

Some Drawbacks

* No explicit specification and design of the feedback loops
» Closed approaches

o Prescribe the structure and number of feedback loops
o Restrict the techniques/types of knowledge (policies, representation,...)

* Gap between the development and runtime environments
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Engineering Self-Adaptive Software with EUREMA

Side note: Model-Driven Engineering (MDE)

~18
/

“The term Model-Driven Engineering %ﬁ
(MDE) is typically used to describe I =y
software development approaches in 10 O !

which abstract models of software el ™
systems are created and systematically g

transformed to concrete implementations.” %%
[France and Rumpe, 2007] i

Software System
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Engineering Self-Adaptive Software with EUREMA

Side note: Model-Driven Engineering (MDE)

Goals [France and Rumpe, 2007]
* Mitigating the gap between the problem and solution space
o Avoiding accidental complexity of closing the gap manually

e Raise the level of abstraction (domain-specific languages & models)
e Automating development: transformation and generation

e Early analysis and quality assurance

Promises

e “Industrializing” software development |Greenfield and Short, 2003]

* Improve developers’ productivity and software quality

* Reduce costs and time to market
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Engineering Self-Adaptive Software with EUREMA

Side note: Model-Driven Engineering (MDE)

“In our broad vision of MDE, models [...] are also the primary
means by which developers and other systems understand, interact
with, configure and modify the runtime behavior of software.”
[France and Rumpe, 2007]

Goals of “runtime models”
» Abstractions of runtime phenomena
e Automate runtime adaptation

e Analyze running software systems
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EUREMA (Executable Runtime Megamodels)

Domain-specific modeling language
» Uses feedback loop concepts Adaptation Engine

o MAPE activities, runtime models, ...

e Explicit design of feedback loops

* Allows freely modeling feedback loops

o Structure and number of loops Sensors Effectors
o Techniques and types of models Adaptable Software |

Runtime Interpreter

e EUREMA models are kept alive at runtime

e Directly executed by the interpreter

» No generation/translation steps ]
o No gap between dev. and runtime env. rv

° Flex|b|l|ty to adapt feedback Ioops lManiforing Moo/e/s‘ 'Exeoufiow Moo/e/s|

Evaluation Models Change Maolelﬂ
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Language Overview

e Graphical modeling language
e Two kinds of diagrams
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Feedback Loop Diagram (FLD)
e FLD: activities + control flow, runtime models + their usage (behavior)
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Language Overview

e Graphical modeling language
e Two kinds of diagrams
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e FLD: activities + control flow, runtime models + their usage (behavior)
e LD: layers, white/black-box modules + their relationships (structure)
o Trigger of modules: <events>; <period>;<initialState>;
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Language Overview

e Graphical modeling language
e Two kinds of diagrams
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e FLD: activities + control flow, runtime models + their usage (behavior)
e LD: layers, white/black-box modules + their relationships (structure)
o Trigger of modules: <events>; <period>;<initialState>;
e FLDs and LD are kept alive at runtime and executed by an interpreter
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Modularity

e Multiple FLDs for one feedback loop

e Complex model operation to invoke

an FLD (entries and exists)

e Binding in the LD
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Variability

e Alternative modules as variants :‘:,
o Analyze :Self-repair-A
* Rebinding to switch between alternatives  |$ Selfrepair ‘
A
* Design-time and runtime 105 wontor :l:lzse”'repa"“
e Example: different analysis techniques 3 “MRUBIS
¢ The same applies to implementations
(black-box modules) of basic model H
operations 3| |_Sewrepar pre—
| N
e Example: different monitoring S ST
techniques H mRUBIS
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Multiple Feedback Loops

e Multiple concerns to be managed

e Competing concerns and interferences = coordination

Self-optimization

Analyzed ri
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Effect | done

Executed

Self-repair

<<ChangeModel>>
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EUREMA

e Modeling the synchronized execution of feedback loops
e Model operation implementation realizes the coordination mechanism

(e.g., utility functions or voting)
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Multiple Feedback Loops i

Independent execution

A
— — AV :Self-repair-A
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 Individual trigger for each feedback loop
e Potentially, concurrent execution of different feedback loops

e Possibility to implicitly synchronize the execution by triggers
(e.g., appropriate frequencies of execution runs)
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Multiple Feedback Loops Il

Sequencing Complete Feedback Loops
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e Explicitly modeling the synchronized execution
e MAPE for self-repair — MAPE for self-optimization
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Multiple Feedback Loops IV
Sequencing Adaptation Activities of Feedback Loops

A+P for self-repair
A+P for self-optimization .

Self-management-2

—1

—1
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M.E
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e More fine-grained synchronization (activities vs. whole feedback loop)
e Interleaved execution of different feedback loops

e M — A+P for self-repair — A+P for self-optimization — E
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Evaluation

e mRUBIS as a playground
e Two cases

o Self-healing
o Self-optimization

e Compare alternative solutions
o Models vs. code
o State- vs. event-based loops
with respect to
o Development costs
o Runtime efficiency
e Applied EUREMA to other
approaches
o Rainbow, DiVA, PLASMA
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Conclusion

Summary and contributions of EUREMA
© Integrated MDE approach

@® Open approach

@ Seamless Integration of Development and Runtime Environment
(4]

(5

Future Work

e Distributed feedback loops and decentralized adaptation
e Concurrent execution of interdependent feedback loops
e Model-based techniques to analyze and test EUREMA models
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