
Model-Driven Engineering of
Self-Adaptive Software
UCT CS Colloquium
University of Cape Town, South Africa, 19th August 2015

Thomas Vogel
@tomvog

System Analysis and Modeling Group
Hasso Plattner Institute

University of Potsdam, Germany

Continuous Change

Software aging [Parnas, 1994]

When not being adapted to changing user needs (lack of movement)
Adapting the software often violates the design (ignorant surgery)

Lehman’s laws of software evolution (real-world applications)
[Lehman and Belady, 1985, Lehman and Ramil, 2001]

I. A “system must be continually adapted else it becomes progressively
less satisfactory in use”

VI. “The functional capability of [...] systems must be continually increased
to maintain user satisfaction over the system lifetime”

⇒ Software Evolution and Maintenance
[Mens and Demeyer, 2008, Mens et al., 2010, Mens et al., 2014]

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 2

Software Evolution Process [Sommerville, 2010]

Change
requests

Impact
analysis

Release
planning

Fault
repair

Platform
adaptation

System
enhancement

Change implementation

Proposed
changes

Requirements
analysis

Requirements
updating

Software
development

System
release

Performed by different groups of people (support staff, developers,...)
[Kitchenham et al., 1999]

Follows a higher-level management process [Kitchenham et al., 1999]

Enacting a release during scheduled system downtimes
(stop-and-go maintenance) [Pezzè, 2012]

⇒ Process is costly, introduces delays, and affects availability

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 3

Software systems that are...

context-aware (pervasive computing [Weiser, 1991, Satyanarayanan, 2001],
internet of things [Perera et al., 2014])

timely changes
individual changes

mission-critical/dependable [Shaw, 2002]

high or permanent availability
complex (ultra-large-scale [Northrop et al., 2006],
system of systems [Valerdi et al., 2008])

costs
dynamic integration
shutdown not feasible

...

⇒ Efforts and feasibility of traditional software evolution process?
⇒ Built-in evolution/adaptation process?

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 4

[acatech, 2011, p.24]
distributed traffic management

Self-Adaptive Software [Cheng et al., 2009, de Lemos et al., 2013]

“systems that are able to modify their behavior and/or
structure in response to their perception of the environment
and the system itself, and their goals” [de Lemos et al., 2013, p. 1]

Observations:
Self-*: configuring / optimizing / healing / protecting / managing / ...
Shift responsibility for adaptation from developers to the system
Shift software engineering activities from dev. time to runtime
Blurring boundary between development time and runtime

Goal:
Automated and dynamic adaptation
Mitigating the growing costs, complexity, and diversity of adaptation

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 5

Feedback Loop [Kephart and Chess, 2003, Brun et al., 2009]

Monitor

Knowledge

Analyze Plan

Execute

Adaptable Software
Sensors Effectors

Adaptation Engine

Often inspired by control theory [Filieri et al., 2015]

Turns an open-loop into a closed-loop system [Salehie and Tahvildari, 2009]

Architectural blueprint: separating domain and adaptation concerns
Similar to computational reflection [Maes, 1987]

Knowledge: policies and a representation (reflection) of the adaptable
software [Huebscher and McCann, 2008]

e.g., event-condition-action rules and an architectural representation

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 6

MAPE-K

Engineering Self-Adaptive Software

State of the Art

Aims for reducing development efforts
Typically, frameworks for feedback loops

Customization such as injecting policies and a representation
Partial generation of feedback loops based on policies

Some Drawbacks

No explicit specification and design of the feedback loops
Closed approaches

Prescribe the structure and number of feedback loops
Restrict the techniques/types of knowledge (policies, representation,...)

Gap between the development and runtime environments

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 7

Engineering Self-Adaptive Software with EUREMA

Side note: Model-Driven Engineering (MDE)

“The term Model-Driven Engineering
(MDE) is typically used to describe
software development approaches in
which abstract models of software
systems are created and systematically
transformed to concrete implementations.”
[France and Rumpe, 2007]

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 8

Engineering Self-Adaptive Software with EUREMA

Side note: Model-Driven Engineering (MDE)

Goals [France and Rumpe, 2007]

Mitigating the gap between the problem and solution space
Avoiding accidental complexity of closing the gap manually

Raise the level of abstraction (domain-specific languages & models)
Automating development: transformation and generation
Early analysis and quality assurance

Promises
“Industrializing” software development [Greenfield and Short, 2003]

Improve developers’ productivity and software quality
Reduce costs and time to market

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 9

Engineering Self-Adaptive Software with EUREMA

Side note: Model-Driven Engineering (MDE)

“In our broad vision of MDE, models [...] are also the primary
means by which developers and other systems understand, interact
with, configure and modify the runtime behavior of software.”
[France and Rumpe, 2007]

Goals of “runtime models”
Abstractions of runtime phenomena
Automate runtime adaptation
Analyze running software systems

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 10

EUREMA (Executable Runtime Megamodels)

Domain-specific modeling language
Uses feedback loop concepts

MAPE activities, runtime models, ...

Explicit design of feedback loops
Allows freely modeling feedback loops

Structure and number of loops
Techniques and types of models

Runtime Interpreter
EUREMA models are kept alive at runtime
Directly executed by the interpreter
No generation/translation steps

No gap between dev. and runtime env.

Flexibility to adapt feedback loops

Monitor

Knowledge

Analyze Plan

Execute

Adaptable Software
Sensors Effectors

Adaptation Engine

Monitor

Reflection
Models

Analyze Plan

Execute

Evaluation Models Change Models

Monitoring Models Execution Models

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 11

Language Overview

Graphical modeling language
Two kinds of diagrams

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules
<<CausalConnectionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [C_SINCE(no
failures) > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Executed

r

r

[ELSE]

Monitor

r

Self-repair

Feedback Loop Diagram (FLD)

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
MAPE

:mRUBiS

RtException;
10s; Monitor;

r w

Layer Diagram (LD)

FLD: activities + control flow, runtime models + their usage (behavior)

LD: layers, white/black-box modules + their relationships (structure)
Trigger of modules: <events>;<period>;<initialState>;

FLDs and LD are kept alive at runtime and executed by an interpreter

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 12

instantiation

Language Overview

Graphical modeling language
Two kinds of diagrams

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules
<<CausalConnectionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [C_SINCE(no
failures) > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Executed

r

r

[ELSE]

Monitor

r

Self-repair

Feedback Loop Diagram (FLD)

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
MAPE

:mRUBiS

RtException;
10s; Monitor;

r w

Layer Diagram (LD)

FLD: activities + control flow, runtime models + their usage (behavior)
LD: layers, white/black-box modules + their relationships (structure)

Trigger of modules: <events>;<period>;<initialState>;

FLDs and LD are kept alive at runtime and executed by an interpreter

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 12

instantiation

Language Overview

Graphical modeling language
Two kinds of diagrams

up-
dated
model

Update
<<Monitor>>

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

TGG Rules
<<CausalConnectionModel>>r

w

r a
Analyzed

Failure analysis rules
<<EvaluationModel>>

r [C_SINCE(no
failures) > 5] Deep check

for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Repair
<<Plan>>

repaired

Repair
strategies

<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Executed

r

r

[ELSE]

Monitor

r

Self-repair

Feedback Loop Diagram (FLD)

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
MAPE

:mRUBiS

RtException;
10s; Monitor;

r w

Layer Diagram (LD)

FLD: activities + control flow, runtime models + their usage (behavior)
LD: layers, white/black-box modules + their relationships (structure)

Trigger of modules: <events>;<period>;<initialState>;
FLDs and LD are kept alive at runtime and executed by an interpreter

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 12

instantiation

Modularity

Multiple FLDs for one feedback loop

Complex model operation to invoke
an FLD (entries and exists)

Binding in the LD

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

r a OK

Failure analysis rules
<<EvaluationModel>>

r

[C_SINCE(no
failures) > 5]

Deep check
for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Failures

[ELSE]

Start

Self-repair-A

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

w

Analyzed

Analyze OK Repair
<<Plan>>

repaired

Repair strategies
<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Executed

r

r

Monitor

Failures

r
a

r
r

Self-repair

Start
<<Analyze>>

Complex model operation

<<CausalConnectionModel>>

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:mRUBiS

RtException;
10s; Monitor;

:Self-repair-A
AAnalyze

r w

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 13

Binding

Modularity

Multiple FLDs for one feedback loop

Complex model operation to invoke
an FLD (entries and exists)

Binding in the LD

failures
Check for
failures

<<Analyze>>

no
failures

Architectural Model
<<ReflectionModel>>

r a OK

Failure analysis rules
<<EvaluationModel>>

r

[C_SINCE(no
failures) > 5]

Deep check
for failures

<<Analyze>>
detailed
results

r
a

Deep analysis rules
<<EvaluationModel>>

r

Failures

[ELSE]

Start

Self-repair-A

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

w

Analyzed

Analyze OK Repair
<<Plan>>

repaired

Repair strategies
<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Executed

r

r

Monitor

Failures

r
a

r
r

Self-repair

Start
<<Analyze>>

Complex model operation

<<CausalConnectionModel>>

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:mRUBiS

RtException;
10s; Monitor;

:Self-repair-A
AAnalyze

r w

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 13

Binding

Variability

Alternative modules as variants

Rebinding to switch between alternatives

Design-time and runtime

Example: different analysis techniques

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:mRUBiS

RtException;
10s; Monitor;

:Self-repair-A
A

Analyze

:Self-repair-A2
A

r w

The same applies to implementations
(black-box modules) of basic model
operations

Example: different monitoring
techniques

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:mRUBiS

RtException;
10s; Monitor;

:selfRepair.MonitorImplUpdate

:selfRepair.
LightWeightMonitorImpl

r w

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 14

Multiple Feedback Loops

Multiple concerns to be managed
Competing concerns and interferences ⇒ coordination

up-
dated
model

Update
<<Monitor>>

bottleneck

Bottleneck
identification

<<Analyze>> no bottle-
necks

Architectural Model
<<ReflectionModel>>

r

w

r

Analyzed

Queueing Model
<<EvaluationModel>>

r

Adjust
params

<<Plan>>
adjusted

Parameter variability
<<ChangeModel>>

r

wr

Effect
<<Execute>>

done

Executed

r

r
Monitor

w

Analyze

r

w

r

Self-optimization

TGG Rules
<<CausalConnectionModel>>

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules

w

Analyzed

Analyze OK Repair
<<Plan>>

repaired

Repair strategies
<<ChangeModel>>

r

w

r

Effect
<<Execute>>

done

Executed

r

r

Monitor

Failures

r
a

r
r

Self-repair

Start
<<Analyze>>

<<CausalConnectionModel>>

EUREMA
Modeling the synchronized execution of feedback loops
Model operation implementation realizes the coordination mechanism
(e.g., utility functions or voting)

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 15

Multiple Feedback Loops II

Independent execution

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:mRUBiS

RtException;
10s; Monitor;

:Self-repair-A
A

Analyze

:Self-optimization
MAPE

LoadIncrease
60s; Monitor;

r r ww

Individual trigger for each feedback loop
Potentially, concurrent execution of different feedback loops
Possibility to implicitly synchronize the execution by triggers
(e.g., appropriate frequencies of execution runs)

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 16

Multiple Feedback Loops III

Sequencing Complete Feedback Loops

Analyzed
Repair

Self-
managed

Self-
manage

Executed

Architectural Model
<<ReflectionModel>>

w
r

w
r

TGG Rules

<<CausalConnection-
Model>>

r

r

Optimize
Analyzed

ExecutedMonitor

Analyze
Monitor

Self-management-1

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair
M..PE

:Adaptable Software

RtException, LoadIncrease;
35s; Self-manage;

:Self-repair-A
A

Analyze

:Self-optimization
MAPE

:Self-management-1

RepairOptimize

r w

Explicitly modeling the synchronized execution
MAPE for self-repair → MAPE for self-optimization

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 17

Multiple Feedback Loops IV

Sequencing Adaptation Activities of Feedback Loops

up-
dated
model

Update
<<Monitor>> Architectural Model

<<ReflectionModel>>

TGG Rules
<<CausalConnectionModel>>

r

w

Effect
<<Execute>>

done

Self-
managed

r

r

Self-manage

RepairAP Planned

OptimizeAP

Analyzed

Planned

Analyzed[ELSE]

[C_SINCE(
RepairAP::Planned) = 0]

r w

r
w

Self-management-2

r

<<Analyze>>

<<Analyze>>
<<Plan>>

<<Plan>>

Analyzed

L
a
y
e
r-
0

L
a
y
e
r-
1

:Self-repair-AP
AP

:mRUBiS

RtException, LoadIncrease;
35s; Self-manage;

:Self-optimization-AP
AP

RepairAPOptimizeAP

:Self-management-2
M..E

r w

More fine-grained synchronization (activities vs. whole feedback loop)
Interleaved execution of different feedback loops
M → A+P for self-repair → A+P for self-optimization → E

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 18

A+P for self-optimization
A+P for self-repair

Evaluation

mRUBiS as a playground
Two cases

Self-healing
Self-optimization

Compare alternative solutions
Models vs. code
State- vs. event-based loops

with respect to
Development costs
Runtime efficiency

Applied EUREMA to other
approaches

Rainbow, DiVA, PLASMA

mRUBiS Architecture

Item
Management

Service
ItemRegistration

Service

BrowseCategories
Service Authentication

Service

QueryServiceBasicQueryService

BusinessObjects
PersistenceService

Persistence
Service

BusinessObjects
PersistenceService

Query
Service

QueryServiceBasicQuery
Service

Authentication
Service

Authentication
Service

BasicQueryService

Reputation
ServiceReputation

Service

Authentication
Service

QueryServiceBasicQueryService

BusinessObjects
PersistenceService

Last Second
Sales Item Filter

Item
Filter

Item
Filter

selection-rate-threshold:double
computation-time-threshold:double

last-seconds:int

Future Sales
Item Filter

Item
Filter

selection-rate-threshold:double
computation-time-threshold:double

days-to-run:int

Item
Filter

Item
Filter

Inventory
ServiceInventory

Service

QueryService

BusinessObjects
PersistenceService

BidAndBuy
Service

BuyNow
Service

BidService

Authentication
Service

QueryServiceBasicQueryService

BusinessObjects
PersistenceService

Inventory
Service

User
Management

Service

AboutMeService
AuthenticationService

BrowseRegionsService
UserRegistrationService

ViewUserInfoService

QueryServiceBasicQueryService

BusinessObjects
PersistenceService

privacy-level:String =
"LOW"/"HIGH"

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 19

Conclusion

Summary and contributions of EUREMA
1 Integrated MDE approach

2 Open approach

3 Seamless Integration of Development and Runtime Environment

4 Adaptation and Evolution of Feedback Loops

5 State- and Event-Based Feedback Loops

Future Work
Distributed feedback loops and decentralized adaptation
Concurrent execution of interdependent feedback loops
Model-based techniques to analyze and test EUREMA models

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 20

References I
[acatech, 2011] acatech (2011).

Cyber-physical systems: Driving force for innovation in mobility, health, energy and production.
acatech (National Academy of Science and Engineering) Position Paper,
http://www.acatech.de/de/publikationen/stellungnahmen/acatech/detail/artikel/cyber-physical-systems.html.

[Brun et al., 2009] Brun, Y., Serugendo, G. D. M., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Müller, H., Pezzè, M., and Shaw, M. (2009).
Engineering Self-Adaptive Systems through Feedback Loops.
In Cheng, B. H., de Lemos, R., Giese, H., Inverardi, P., and Magee, J., editors, Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer Science (LNCS),
pages 48–70. Springer.

[Cheng et al., 2009] Cheng, B. H., de Lemos, R., Giese, H., Inverardi, P., Magee, J., Andersson, J., Becker, B., Bencomo, N., Brun, Y., Cukic, B., Serugendo, G. D. M., Dustdar, S., Finkelstein, A.,
Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H. M., Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Müller, H., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., and Whittle, J. (2009).
Software Engineering for Self-Adaptive Systems: A Research Roadmap.
In Cheng, B. H., de Lemos, R., Giese, H., Inverardi, P., and Magee, J., editors, Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer Science (LNCS),
pages 1–26. Springer.

[de Lemos et al., 2013] de Lemos, R., Giese, H., Müller, H., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B., Tamura, G., Villegas, N. M., Vogel, T., Weyns, D., Baresi, L., Becker, B., Bencomo,
N., Brun, Y., Cukic, B., Desmarais, R., Dustdar, S., Engels, G., Geihs, K., Goeschka, K., Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer, J., Lopes, A., Magee, J., Malek, S., Mankovskii,
S., Mirandola, R., Mylopoulos, J., Nierstrasz, O., Pezzè, M., Prehofer, C., Schäfer, W., Schlichting, R., Smith, D. B., Sousa, J. P., Tahvildari, L., Wong, K., and Wuttke, J. (2013).
Software Engineering for Self-Adaptive Systems: A second Research Roadmap.
In de Lemos, R., Giese, H., Müller, H., and Shaw, M., editors, Software Engineering for Self-Adaptive Systems II, volume 7475 of Lecture Notes in Computer Science (LNCS), pages 1–32.
Springer.

[Filieri et al., 2015] Filieri, A., Maggio, M., Angelopoulos, K., D?Ippolito, N., Gerostathopoulos, I., Hempel, A. B., Hoffmann, H., Jamshidi, P., Kalyvianaki, E., Klein, C., Krikava, F., Misailovic, S.,
Papadopoulos, A. V., Ray, S., Sharifloo, A. M., Shevtsov, S., Ujma, M., and Vogel, T. (2015).
Software Engineering meets Control Theory.
In Proceedings of the 10th International Symposium on Software Engineering for Adaptive and Self-Managing Systems, SEAMS’15, page tbd. IEEE.
to appear.

[France and Rumpe, 2007] France, R. and Rumpe, B. (2007).
Model-driven development of complex software: A research roadmap.
In 2007 Future of Software Engineering, FOSE ’07, pages 37–54. IEEE.

[Garlan et al., 2004] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. (2004).
Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure.
Computer, 37(10):46–54.

[Greenfield and Short, 2003] Greenfield, J. and Short, K. (2003).
Software factories: Assembling applications with patterns, models, frameworks and tools.
In Companion of the 18th Annual ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications, OOPSLA ’03, pages 16–27. ACM.

[Huebscher and McCann, 2008] Huebscher, M. C. and McCann, J. A. (2008).
A survey of autonomic computing—degrees, models, and applications.
ACM Comput. Surv., 40(3):7:1–7:28.

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 21

http://www.acatech.de/de/publikationen/stellungnahmen/acatech/detail/artikel/cyber-physical-systems.html

References II
[Kephart and Chess, 2003] Kephart, J. O. and Chess, D. (2003).

The Vision of Autonomic Computing.
Computer, 36(1):41–50.

[Kitchenham et al., 1999] Kitchenham, B. A., Travassos, G. H., von Mayrhauser, A., Niessink, F., Schneidewind, N. F., Singer, J., Takada, S., Vehvilainen, R., and Yang, H. (1999).
Towards an ontology of software maintenance.
Journal of Software Maintenance: Research and Practice, 11(6):365–389.

[Lehman and Belady, 1985] Lehman, M. M. and Belady, L. A., editors (1985).
Program evolution: processes of software change.
Academic Press Professional, Inc., San Diego, CA, USA.

[Lehman and Ramil, 2001] Lehman, M. M. and Ramil, J. F. (2001).
Rules and tools for software evolution planning and management.
Ann. Softw. Eng., 11(1):15–44.

[Maes, 1987] Maes, P. (1987).
Concepts and experiments in computational reflection.
In Conference Proceedings on Object-oriented Programming Systems, Languages and Applications, OOPSLA ’87, pages 147–155. ACM.

[Mens and Demeyer, 2008] Mens, T. and Demeyer, S., editors (2008).
Software Evolution.
Springer.

[Mens et al., 2010] Mens, T., Gueheneuc, Y.-G., Fernandez-Ramil, J., and D’Hondt, M. (2010).
Guest editors’ introduction: Software evolution.
IEEE Software, 27(4):22–25.

[Mens et al., 2014] Mens, T., Serebrenik, A., and Cleve, A., editors (2014).
Evolving Software Systems.
Springer.

[Morin et al., 2009] Morin, B., Barais, O., Jézéquel, J.-M., Fleurey, F., and Solberg, A. (2009).
Models@ Run.time to Support Dynamic Adaptation.
Computer, 42(10):44–51.

[Northrop et al., 2006] Northrop, L., Feiler, P., Gabriel, R. P., Goodenough, J., Linger, R., Longstaff, T., Kazman, R., Klein, M., Schmidt, D., Sullivan, K., and Wallnau, K. (2006).
Ultra-Large-Scale Systems: The Software Challenge of the Future.
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

[Parnas, 1994] Parnas, D. L. (1994).
Software aging.
In Proceedings of the 16th International Conference on Software Engineering, ICSE ’94, pages 279–287. IEEE.

[Perera et al., 2014] Perera, C., Zaslavsky, A., Christen, P., and Georgakopoulos, D. (2014).
Context aware computing for the internet of things: A survey.
IEEE Communications Surveys & Tutorials, 16(1):414–454.

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 22

References III

[Pezzè, 2012] Pezzè, M. (2012).
From off-Line to continuous on-line maintenance.
In 28th IEEE International Conference on Software Maintenance, ICSM ’12, pages 2–3. IEEE.

[Salehie and Tahvildari, 2009] Salehie, M. and Tahvildari, L. (2009).
Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst., 4(2):1–42.

[Satyanarayanan, 2001] Satyanarayanan, M. (2001).
Pervasive Computing: Vision and Challenges.
IEEE Personal Communications, 8(4):10–17.

[Shaw, 2002] Shaw, M. (2002).
Everyday dependability for everyday needs.
In Supplemental Proceedings of the 13th International Symposium on Software Reliability Engineering, ISSRE ’02, pages 7–11. IEEE.
(keynote).

[Sommerville, 2010] Sommerville, I. (2010).
Software Engineering.
Addison-Wesley, 9 edition.

[Tajalli et al., 2010] Tajalli, H., Garcia, J., Edwards, G., and Medvidovic, N. (2010).
Plasma: A plan-based layered architecture for software model-driven adaptation.
In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, ASE ’10, pages 467–476. ACM.

[Valerdi et al., 2008] Valerdi, R., Axelband, E., Baehren, T., Boehm, B., Dorenbos, D., Jackson, S., Madni, A., Nadler, G., Robitaille, P., and Settles, S. (2008).
A research agenda for systems of systems architecting.
International Journal of System of Systems Engineering, 1(1–2):171–188.

[Vogel and Giese, 2012] Vogel, T. and Giese, H. (2012).
A Language for Feedback Loops in Self-Adaptive Systems: Executable Runtime Megamodels.
In Proceedings of the 7th International Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2012), pages 129–138. IEEE.

[Vogel and Giese, 2014] Vogel, T. and Giese, H. (2014).
Model-Driven Engineering of Self-Adaptive Software with EUREMA.
ACM Trans. Auton. Adapt. Syst., 8(4):18:1–18:33.

[Weiser, 1991] Weiser, M. (1991).
The Computer for the 21st Century.
Scientific American, 265(3):94–104.

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 23

	Motivation
	Self-Adaptive Software
	State of the Art
	EUREMA
	Evaluation
	Conclusion

