Model-Driven Engineering of
Self-Adaptive Software

UCT CS Colloquium
University of Cape Town, South Africa, 19th August 2015

Thomas Vogel
@tomvog

System Analysis and Modeling Group
Hasso Plattner Institute H

University of Potsdam, Germany

Continuous Change

o Software aging [Parnas, 1994]
o When not being adapted to changing user needs (lack of movement)
o Adapting the software often violates the design (ignorant surgery)

e Lehman’s laws of software evolution (real-world applications)
[Lehman and Belady, 1985, Lehman and Ramil, 2001]

[. A “system must be continually adapted else it becomes progressively
less satisfactory in use”
VI. “The functional capability of [...] systems must be continually increased
to maintain user satisfaction over the system lifetime”

= Software Evolution and Maintenance
[Mens and Demeyer, 2008, Mens et al., 2010, Mens et al., 2014]

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

Software Evolution Process [sommervilie, 2010]

Change implementation

Change Impact Release - "
requests analysis plannmg Proposed Requirements Requirements Software
changes analysis updating development

Fault Platform System
repair adaptation | |enhancement

System
release

e Performed by different groups of people (support staff, developers,...)
[Kitchenham et al., 1999]

e Follows a higher-level management process [Kiichenham et al., 1999]

e Enacting a release during scheduled system downtimes
(stop-and-go maintenance) [pezze, 2012

= Process is costly, introduces delays, and affects availability

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 3

Software systems that are...

e context-aware (pervasive computing [Weiser, 1991, Satyanarayanan, 2001],
internet of things [Perera et al., 2014])
o timely changes
o individual changes
e mission-critical/dependable [Shaw, 2002]
o high or permanent availability
e complex (ultra-large-scale [Northrop et al., 2006
system of systems [Valerdi et al., 2008])
o costs
o dynamic integration
o shutdown not feasible

[acatech 2011, p.24]
d|str|buted traffic management

= Efforts and feasibility of traditional software evolution process?
= Built-in evolution/adaptation process?

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 4

Self-Adaptive Software [Cheng et al., 2009, de Lemos et al., 2013]

“systems that are able to modify their behavior and/or
structure in response to their perception of the environment
and the system itself, and their goals” [de Lemos et al., 2013, p. 1]

Observations:

Self-*: configuring / optimizing / healing / protecting / managing / ...
Shift responsibility for adaptation from developers to the system
Shift software engineering activities from dev. time to runtime
Blurring boundary between development time and runtime

Goal:
e Automated and dynamic adaptation
* Mitigating the growing costs, complexity, and diversity of adaptation

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

Feedback LOOp [Kephart and Chess, 2003, Brun et al., 2009]

Adaptation Engine @4,0

DRI

Sensors Effectors
Adaptable Software

Often inspired by control theory [Filieri et al., 2015]

Turns an open-loop into a closed-loop system [salehie and Tahvildari, 2009]

Architectural blueprint: separating domain and adaptation concerns
o Similar to computational reflection [Maes, 1987]

Knowledge: policies and a representation (reflection) of the adaptable
software [Huebscher and McCann, 2008]
o e.g., event-condition-action rules and an architectural representation

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

Engineering Self-Adaptive Software

State of the Art

* Aims for reducing development efforts
* Typically, frameworks for feedback loops

o Customization such as injecting policies and a representation
o Partial generation of feedback loops based on policies

Some Drawbacks

* No explicit specification and design of the feedback loops
» Closed approaches

o Prescribe the structure and number of feedback loops
o Restrict the techniques/types of knowledge (policies, representation,...)

* Gap between the development and runtime environments

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

Engineering Self-Adaptive Software with EUREMA

Side note: Model-Driven Engineering (MDE)

~18
/

“The term Model-Driven Engineering %ﬁ
(MDE) is typically used to describe I =y
software development approaches in 10 O !

which abstract models of software el ™
systems are created and systematically g

transformed to concrete implementations.” %%
[France and Rumpe, 2007] i

Software System

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 8

Engineering Self-Adaptive Software with EUREMA

Side note: Model-Driven Engineering (MDE)

Goals [France and Rumpe, 2007]
* Mitigating the gap between the problem and solution space
o Avoiding accidental complexity of closing the gap manually

e Raise the level of abstraction (domain-specific languages & models)
e Automating development: transformation and generation

e Early analysis and quality assurance

Promises

e “Industrializing” software development |Greenfield and Short, 2003]

* Improve developers’ productivity and software quality

* Reduce costs and time to market

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 9

Engineering Self-Adaptive Software with EUREMA

Side note: Model-Driven Engineering (MDE)

“In our broad vision of MDE, models [...] are also the primary
means by which developers and other systems understand, interact
with, configure and modify the runtime behavior of software.”
[France and Rumpe, 2007]

Goals of “runtime models”
» Abstractions of runtime phenomena
e Automate runtime adaptation

e Analyze running software systems

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 10

EUREMA (Executable Runtime Megamodels)

Domain-specific modeling language
» Uses feedback loop concepts Adaptation Engine

o MAPE activities, runtime models, ...

e Explicit design of feedback loops

* Allows freely modeling feedback loops

o Structure and number of loops Sensors Effectors
o Techniques and types of models Adaptable Software |

Runtime Interpreter

e EUREMA models are kept alive at runtime

e Directly executed by the interpreter

» No generation/translation steps]
o No gap between dev. and runtime env. rv

° Flex|b|l|ty to adapt feedback Ioops lManiforing Moo/e/s‘ 'Exeoufiow Moo/e/s|

Evaluation Models Change Maolelﬂ

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 11

Language Overview

e Graphical modeling language
e Two kinds of diagrams

Self-repair
<<EvaluationModel>>
Failure analysis rules

Hi

<<Analyze>>|failures
Check for

Analyzed

[ELSE] <<EvaluationModel>>
Deep analysis rules
Tl
<<Analyze>> N
Deep check |detailed
for failures |**"*

<=<C
Repair
strategies
o

[C_SINCE(no
failures) > 5]

repaired

Repair

<<Execute>>
Effect

Executed @

<Monitor>>]up-
Update [dated

odel
: »

Monitor

Feedback Loop Diagram (FLD)
e FLD: activities + control flow, runtime models + their usage (behavior)

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

Language Overview

e Graphical modeling language
e Two kinds of diagrams

Self-repair
<<EvaluationModel>>
Failure analysis rules

[ELSE] <<EvaluationModel>>
Deep analysis rules

i

[C_SINCE(no

<<ci

.
Syt faiures) > 51 NEEISEREy | detaled Repair APE
failures’ . results i It
heck fc for fail strategies & .
nen ™ e s] :Self-repair
8l
31 -
. . R RtException;
o 10s; Monitor;
0’ r w
S
o e
. L
o g . .
o g :mRUBIS
Monitor Executed @ "’
Feedback Loop Diagram (FLD) Layer Diagram (LD)

e FLD: activities + control flow, runtime models + their usage (behavior)
e LD: layers, white/black-box modules + their relationships (structure)
o Trigger of modules: <events>; <period>;<initialState>;

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 12

Language Overview

e Graphical modeling language
e Two kinds of diagrams

Self-repair
<<EvaluationModel>>
Failure analysis rules

ir
<<Analyze>>] i,
Check for

failures

[ELSE]

—<Evanatoode S
i r
—<Aralyzes
Deep check| detailed
for failures | ™"

[C_SINCE(no
failures) > 5

<=<C
Repair
strategies

i

MAPE
:Self-repair

*, Layer-1

Analyzed > - "RtException: A
r repa 1| 10s; Monitor;
- R4 ir w
o e H 4
. K4 1] .
<CausalConnectionModel>>| - o E :mRUBIS
TGGRules |l .- - o
Monitor o*
Feedback Loop Diagram (FLD) Layer Diagram (LD)

e FLD: activities + control flow, runtime models + their usage (behavior)
e LD: layers, white/black-box modules + their relationships (structure)
o Trigger of modules: <events>; <period>;<initialState>;
e FLDs and LD are kept alive at runtime and executed by an interpreter

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 12

Modularity

e Multiple FLDs for one feedback loop

e Complex model operation to invoke

an FLD (entries and exists)

e Binding in the LD

Self-repair

Complex model operation

-
Update |dated
model

Monitor

[<<CausalConnectionModel>>]
TGG Rules R

®
Executed

Self-repair-A

<<EvaluationModel>>
Failure analysis rules
T

failures)

[ELSE) <<EvaluationModel>>
Deep analysis rules
b
[C_SINCE(no

<<Analyze> failures) > 5]

Check fo
failures

<<Analyze>>
Deep checl
r failures

Failures

<<ReflectionModel>>
Architectural Model

Start.
g
..
.
",
e
.
.
. .
e v, ‘e .,
e, a3
— — -
o - MPE Analyze A
i :Self-repair :Self-repair-A
®
o
~ |*RtException;
* | 10s; Monitor;
of
oo
oL
0]
* >
o ®
o 3

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

Modularity

e Multiple FLDs for one feedback loop

e Complex model operation to invoke
an FLD (entries and exists)

e Binding in the LD

Self-repair
Complex model operation Repalr airategres

S
Nenatef o/

-
Update |dated
model

[<<CausalConnectionModel>>]
TGG Rules R

Monitor

®
Executed |,

Self-repair-A

<<EvaluationModel>>
Failure analysis rules
T

<<Analyze>-
Check fo
failures

[ELSE) <<EvaluationModel>>
Deep analysis rules
o
[C_SINCE(no
failures) > 5]\ <<Analyze>>
Deep check |detailed!
. resuits
r failures
©
<<ReflectionModel>> Failures
start Architectural Model

.
.
",
e
.
.
.,... .,...
", .
._| v _| H
- M_Pf A
5 Analyze
H :Self-repair Y :Self-repair-A
g : P : P
®
Bl
[*RtException; B d
4
+{ Toer pramion inding
of
oo
oL
0]
* >
o ®
o 3

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software

| UCT CS Colloguium | 19th Aug 2015

Variability

e Alternative modules as variants :‘:,
o Analyze :Self-repair-A
* Rebinding to switch between alternatives |$ Selfrepair ‘
A
* Design-time and runtime 105 wontor :l:lzse”'repa"“
e Example: different analysis techniques 3 “MRUBIS
¢ The same applies to implementations
(black-box modules) of basic model H
operations 3| |_Sewrepar pre—
| N
e Example: different monitoring S ST
techniques H mRUBIS

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

Multiple Feedback Loops

e Multiple concerns to be managed

e Competing concerns and interferences = coordination

Self-optimization

Analyzed ri

T

Y
<<Analyze>> 0 bottle- <<Plan>>
Bottleneck |[necks Adjust [agjusted

Analyze /identification [bottleneck params
A 3 7
r

Effect | done

Executed

Self-repair

<<ChangeModel>>
Repair strategies
<<An: a\yze>>D "y

Analyze

Causa 8
TGG Rules Executed

EUREMA

e Modeling the synchronized execution of feedback loops
e Model operation implementation realizes the coordination mechanism

(e.g., utility functions or voting)

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

Multiple Feedback Loops i

Independent execution

A
— — AV :Self-repair-A
MAPE M.PE

Layer-1

:Self-optimization :Self-repair
Loadincrease® RtException;
60s; Monitor; % 10s; Monitor,””

[T W

:mRUBIS

Layer-0

 Individual trigger for each feedback loop
e Potentially, concurrent execution of different feedback loops

e Possibility to implicitly synchronize the execution by triggers
(e.g., appropriate frequencies of execution runs)

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

Multiple Feedback Loops Il

Sequencing Complete Feedback Loops

Self-management-1

 [Analyzed
Repair
Executed

Monitor |
Self-

Analyze

Monitor

manage

© | Analyzed
Optimize
Executed Self.
Al

A managed

Layer-1

A
:Self-repair-A
Analyze,
—1
MAPE M..PE
:Self-optimization :Self-repair
Optimize Repair

:Self-management-1

RtException, LoadIncrease;
35s; Self-manage;

Layer-0

3

w

:Adaptable Software

e Explicitly modeling the synchronized execution
e MAPE for self-repair — MAPE for self-optimization

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

Multiple Feedback Loops IV
Sequencing Adaptation Activities of Feedback Loops

A+P for self-repair
A+P for self-optimization .

Self-management-2

—1

—1

AP
:Self-optimization-AP

. AP
:Self-repair-AP

OptimizeAP RepairAP
M.E
:Self-management-2

RtException, LoadIncrease;
35s; Self-manage;

Layer-1

Sel-manage

Layer-0
|:Ié

:mRUBIS

e More fine-grained synchronization (activities vs. whole feedback loop)
e Interleaved execution of different feedback loops

e M — A+P for self-repair — A+P for self-optimization — E

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

Evaluation

e mRUBIS as a playground
e Two cases

o Self-healing
o Self-optimization

e Compare alternative solutions
o Models vs. code
o State- vs. event-based loops
with respect to
o Development costs
o Runtime efficiency
e Applied EUREMA to other
approaches
o Rainbow, DiVA, PLASMA

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

Conclusion

Summary and contributions of EUREMA
© Integrated MDE approach

@® Open approach

@ Seamless Integration of Development and Runtime Environment
(4]

(5

Future Work

e Distributed feedback loops and decentralized adaptation
e Concurrent execution of interdependent feedback loops
e Model-based techniques to analyze and test EUREMA models

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 20

References |

[acatech, 2011] acatech (2011)
Cyber-physical systems: Driving force for innovation in mobility, health, energy and production.
acatech (National Academy of Science and Engineering) Position Paper,
http://waw.acatech.de/de/publikationen/stellungnahmen/acatech/detail/artikel/cyber-physical-systems.html

[Brun et al., 2009] Brun, Y., Serugendo, G. D. M., Gacek, C., Giese, H., Kienle, H., Litoiu, M., Miiller, H., Pezzé, M., and Shaw, M. (2009)
Engineering Self-Adaptive Systems through Feedback Loops.
In Cheng, B. H., de Lemos, R., Giese, H., Inverardi, P, and Magee, J., editors, Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer Science (LNCS),
pages 48-70. Springer.

[Cheng et al., 2009] Cheng, B. H., de Lemos, R., Giese, H., Inverardi, P, Magee, J., Andersson, J., Becker, B., Bencomo, N., Brun, Y., Cukic, B., Serugendo, G. D. M., Dustdar, S., Finkelstein, A.,
Gacek, C., Geihs, K., Grassi, V., Karsai, G., Kienle, H. M., Kramer, J., Litoiu, M., Malek, S., Mirandola, R., Mdller, H., Park, S., Shaw, M., Tichy, M., Tivoli, M., Weyns, D., and Whittle, J. (2009).
Software Engineering for Self-Adaptive Systems: A Research Roadmap.

In Cheng, B. H., de Lemos, R., Giese, H., Inverardi, P, and Magee, J., editors, Software Engineering for Self-Adaptive Systems, volume 5525 of Lecture Notes in Computer Science (LNCS),
pages 1-26. Springer.

[de Lemos et al., 2013] de Lemos, R., Giese, H., Miller, H., Shaw, M., Andersson, J., Litoiu, M., Schmerl, B., Tamura, G., Villegas, N. M., Vogel, T., Weyns, D., Baresi, L., Becker, B., Bencomo,
N., Brun, Y., Cukic, B., Desmarais, R., Dustdar, S., Engels, G., Geihs, K., Goeschka, K., Gorla, A., Grassi, V., Inverard, P., Karsai, G., Kramer, J., Lopes, A., Magee, J., Malek, S., Mankovskii,
S., Mirandola, R., Mylopoulos, J., Nierstrasz, O., Pezzé, M., Prehofer, C., Schifer, W., Schiichting, R., Smith, D. B., Sousa, J. P, Tahvildari, L., Wong, K., and Wuttke, J. (2013)

Software Engineering for Self-Adaptive Systems: A second Research Roadmap.
In de Lemos, R., Giese, H., Maller, H., and Shaw, M., editors, Software Engineering for Self-Adaptive Systems II, volume 7475 of Lecture Notes in Computer Science (LNCS), pages 1-32.
Springer.

[Filieri et al., 2015] Filieri, A., Maggio, M., Angelopoulos, K., DIppolito, N., Gerostathopoulos, L., Hempel, A. B., Hoffmann, H., Jamshidi, P, Kalyvianaki, E., Klein, C., Krikava, F,, Misailovic, S.,
Papadopoulos, A. V., Ray. S., Sharifloo, A. M., Shevtsov, S., Ujma, M., and Vogel, T. (2015).
Software Engineering meets Control Theory.
in of the 10th on Software for Adaptive and Self-1 Systems, SEAMS'15, page tbd. IEEE.
to appear.

[France and Rumpe, 2007] France, R. and Rumpe, B. (2007).
Model-driven development of complex software: A research roadmap.
In 2007 Future of Software Engineering, FOSE '07, pages 37-54. IEEE.

[Garlan et al., 2004] Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B., and Steenkiste, P. (2004).

Rainbow: Architecture-Based Self-Adaptation with Reusable Infrastructure.

Computer, 37(10):46-54
[Greenfield and Short, 2003] Greenfield, J. and Short, K. (2003).

Software factories: Assembling applications with patterns, models, frameworks and tools.

In Companion of the 18th Annual ACM SIGPLAN Conference on Object-oriented Systems, Langu and OOPSLA '03, pages 16-27. ACM
[Huebscher and McCann, 2008] Huebscher, M. C. and McCann, J. A. (2008)

A survey of models, and licati

ACM Comput. Surv., 40(3):7:1-7:28.

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015 21

http://www.acatech.de/de/publikationen/stellungnahmen/acatech/detail/artikel/cyber-physical-systems.html

References Il

[Kephart and Chess, 2003] Kephart, J. O. and Chess, D. (2008).
The Vision of Autonomic Computing.
Computer, 36(1):41-50.

[Kitchenham et al., 1999] Kitchenham, B. A, Travassos, G. H., von A., Niessink, F., N. F, Singer, J., Takada, S., Vehvilainen, R., and Yang, H. (1999).
Towards an ontology of software maintenance.
Journal of Software Maintenance: Research and Practice, 11(6):365-389.

[Lehman and Belady, 1985] Lehman, M. M. and Belady, L. A., editors (1985)
Program evolution: processes of software change.
Academic Press Professional, Inc., San Diego, CA, USA
[Lehman and Ramil, 2001] Lehman, M. M. and Ramil, J. F. (2001).
Rules and tools for software evolution planning and management.
Ann. Softw. Eng., 11(1):15-44.
[Maes, 1987] Maes, P. (1987)
Concepts and experiments in computational reflection.

In Conference on O % g Systems, Languages and Applications, OOPSLA '87, pages 147-155. ACM.
[Mens and Demeyer, 2008] Mens, T. and Demeyer, S., editors (2008)

Software Evolution.

Springer.

[Mens et al., 2010] Mens, T, Gueheneuc, Y.-G., Fernandez-Ramil, J., and D’Hondt, M. (2010).
Guest editors’ introduction: Software evolution.
IEEE Software, 27(4):22-25.

[Mens et al., 2014] Mens, T., Serebrenik, A., and Cleve, A., editors (2014).
Evolving Software Systems.
Springer.

[Morin et al., 2009] Morin, B., Barais, O., Jézéquel, J.-M., Fleurey, F., and Solberg, A. (2009).
Models@ Run.time to Support Dynamic Adaptation.
Computer, 42(10):44-51

[Northrop et al., 2006] Northrop, L., Feiler, P, Gabriel, R. P, Goodenough, J., Linger, R., Longstaff, T., Kazman, R., Klein, M., Schmidt, D., Sullivan, K., and Wallnau, K. (2006)
Ultra-Large-Scale Systems: The Software Challenge of the Future.
Software Engineering Institute, Carnegie Mellon University, Pittsburgh, PA.

[Parnas, 1994] Parnas, D. L. (1994).
Software aging.
In Proceedings of the 16th International Conference on Software Engineering, ICSE '94, pages 279-287. IEEE.

[Perera et al., 2014] Perera, C., Zaslavsky, A., Christen, P, and Georgakopoulos, D. (2014)
Context aware computing for the internet of things: A survey.
IEEE Communications Surveys & Tutorials, 16(1):414-454.

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

22

References lll

[Pezzé, 2012] Pezzé, M. (2012).
From off-Line to continuous on-line maintenance.
In 28th IEEE C on Software ICSM "12, pages 2-3. IEEE.

[Salehie and Tahvildari, 2009] Salehie, M. and Tahvildari, L. (2009).
Self-adaptive software: Landscape and research challenges.
ACM Trans. Auton. Adapt. Syst., 4(2):1-42

2001] M. (2001).
Pervasive Computing: Vision and Challenges.
IEEE Personal Communications, 8(4):10-17.

[Shaw, 2002] Shaw, M. (2002)
Everyday dependability for everyday needs.
in of the 13th on Software Reliabilty Engineering, ISSRE '02, pages 7-11. IEEE.
(keynote)
[Sommerville, 2010] Sommerville, I (2010).
Software Engineering.
Addison-Wesley, 9 edition.
[Tajall et al., 2010] Tajall, H., Garcia, J., Edwards, G., and Medvidovic, N. (2010).
Plasma: A plan-based layered archi for software model-di
In Proceedings of the IEEE/ACM International Conference on Automated Software Engineering, ASE 10, pages 467-476. ACM.
[Valerdi et al., 2008] Valerdi, R., Axelband, E., Baehren, ., Boehm, B., Dorenbos, D., Jackson, S., Madni, A., Nadler, G., Robitaille, P., and Setles, S. (2008).
A research agenda for systems of systems architecting.

International Journal of System of Systems Engineering, 1(1-2):171-188.
[Vogel and Giese, 2012] Vogel, T. and Giese, H. (2012)
A Language for Feedback Loops in Self-Adaptive Systems: Runhme
of the 7th sium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS 2012), pages 129138, IEEE

[Vogel and Giese, 2014] Vogel, T. and Giese, H. (2014).
Model-Driven Engineering of Self-Adaptive Software with EUREMA.
ACM Trans. Auton. Adapt. Syst., 8(4):18:1-18:33,

[Weiser, 1991] Weiser, M. (1991).
The Computer for the 21st Century.
Scientific American, 265(3):94-104.

Thomas Vogel | Model-Driven Engineering of Self-Adaptive Software | UCT CS Colloquium | 19th Aug 2015

23

	Motivation
	Self-Adaptive Software
	State of the Art
	EUREMA
	Evaluation
	Conclusion

