Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Software Engineering for Self-
Adaptive Systems & Self-
Aware Computing

Dagstuhl Seminar 15041 on Model-driven algorithms and
architectures for self-aware computing systems. January 18 - 23,
2015.

il -i-.
l'l'l[ﬁ]ﬂ“n" SCHLOSS DAGSTUHL
Nl =

n Leibniz-Zentrum fiir Informatik

Holger Giese

Head of the System Analysis & Modeling Group

Hasso Plattner Institute for Software Systems Engineering
University of Potsdam, Germany
holger.giese@hpi.uni-potsdam.de

: ﬂ Hasso
OUtllne Institut

1. MECHATRONICUML

2. ExecUtable RuntimE MegA models (EUREMA)
3. Challenges Ahead

4. Outlook

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

ﬂ Hasso
1. MECHATRONICUML natiter

At the level of code it seems
impossible to build
trustworthy advanced system
of systems:

Modeling separately

m the integration of
intelligent behavior, | Micro

m the integration with Architecture
control theory,

m the real-time

|

coordination, and | Macro
m the reconfiguration at Architecture
the level of agents. J

m Synthesize the code

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

Application Example: e
Railcab System (1/2) ﬂ."éiﬁ?&%

A system of autonomous shuttles that operate on demand
and in a decentralized manner using a wireless network.

System of systems
m Hard real-time pp—
m Safety-critical
m Self-Optimization

~ railcab

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

Application Example: .
Railcab System (2/2) ﬂ Inetitut

Domains: Software
Engineering

m Logistic

m Real-time coordination

m Local control

m Electronics Classical
Engineering
m Mechanics (Mechatronics)
Control
Engineering

= Integration of the different worlds
= Self-optimization at multiple levels

= Self-adaptation/self-coordination via
software

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

Micro and Macro
Architecture

= Autonomous subsystems (shuttles)

Hasso
Plattner
Institut

m Within: strict hierarchies — \
" OUtSide: CompleX shuttle:OCM M shuttle:OCM
coordination *« - — - - = >

energy
subsystem
OCM

ey

L Dy

v

)

\i%"

suspension filt OCM linear drive OCM track control OCM

o= J— — <V >\

— W

g

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

i} _ Hasso
Micro Architecture ﬂ Institat

= Autonomous subsystems (shuttles)

m Within: strict hierarchies r \
)
- shuttle:OCM M shuttle:OCM
* - — - - = >

b
energy r .‘ ﬁ
subsystem I
L T

OCM
AN
.- B N ‘\Q
suspension filt OCM linear drive OCM track control OCM

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

Hasso

Micro Architecture ﬂ natiter

i Homaion s
E | | E
= Operator-Controller | revsarepimisior BRI & R
Module [ICINCOO04] 0 =R
m Cog n itive o pe ra to r refective nformation processing| _l:_l .
(Intelllgence) ﬁ co cfogntrol Lo E
decoupled from the hard I\ o 1
real-time processing
s Reflective operator In
Real-time coordination and
reconfiguration N
= Controller | mmoo== st\»,

Control via sensors and
actuators in hard real-time

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

OCM & Reference
Architecture

Hasso
Plattner
Institut

Operator-Controller-Module (OCM)
cognitive operator cognitive information processing
E | behavior-based self-optimization |

7Yy
v

model-based self-optimization

(Il _oce!-based seif-optimization [
[T

Goal ’ @ : cognitive loop i ﬁ =
1 | = =

M anageme nt | © G” 0z) reflective information processing

planning level

* Chang|e Plans E %3 configuration [
| + {cg™, control . B
Plan Request
Change o1 J = J
Management

* Change Actions
|

action level

Status v ——L optrol 8 |-\ |
Component “— control C \60
Control C1 Cc2 [cohtrolA —— 1

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

MECHATRONIC UML: o
Components H Inatitut

Operator-Controller-Module (OCM)
[. .
A_ Software with _thl‘ld UML
components wit

m Hybrid behavior

mModel the structure of the

[——-
iN
planning level

[= Regular ports (discrete)
[O .
l m Continuous ports
e m Hybrid ports
\/ m Reconfiguration
Bt i m Permanent ports

m potential ports

—

Shuttle1:

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

11

Integration Reflective
Operator & Controller

reflective operator

Hasso
Plattner
Institut

Hybrid Statechart
(internal behavior)

ke

mHybrid components A /\Ti

[|

s UML components (Fujaba) (_g@ @ =
m Block diagrams (CAMel) ﬂ
aH y bride Statecharts can A -------------- , | £

embed subordinated hybrid controller ?"3 | M
components j §
= Controller or — i o B
m The reflective operator of
subordinated OCMs

mInterface statecharts
enable modular
reconfiguration across the
boundaries of hybrid
components

mAutomatic check for
correct embedding

>

Al

LT ¢

\E\

\@K*

action level

[FSE04]

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

12

Integration Cognitive .
& Reflective Operator ﬂ Inetitut

The cognitive operator is decoupled from the rest:

mWe check that the reflective operator realizes a “Filter" which
excludes unsafe reactions.

mThe cognitive operator can “guide” the reflective operator as long as
the commands given are considered to be safe and occur in time.

Operator-Controller-Module (OCM)

cognitive operator

[H]

]

planning level

reflective operator

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

i} _ . ﬂ Hasso
Strict Hierarchies Inetitut

m Concepts [FSEO04]:

energy

m Hybrid components: shute OCM o
UML components or e shutte
block diagrams RO+C ,! é\ |
m Hybride Statecharts - - p
embed hybrid e ;
Components motion control OCM | E 4____;;_gngrgy_sgbyggm_o_cy_} = e

(controller or the

- % Em?c:} energy [i Sutb_
reflective operator QS| oo | ||| subsysiem j"‘i e
of subordinated = o G
OCMs —

) I] —
m Interface statecharts -
enable _modul_ar b{_ N V)
reconfl uratlon susp;zﬁsiontiltOCM linear drive OCM track control OCM

across the boundaries
of hybrid components

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

14

Strict Hierarchies &

Hasso
Reference Architecture et
distributed over the cognitive operators
cou j ” | H (may build a hierarchy)

Change Plans
]

*

| . . .

change Plan Request v a distributed over the reflective operators

Management o . (strict hierarchical coordination)
* angeIActlons

Component Sttus v distributed over the controllers and
Control [ct H c2] ﬁ reflective operators (may build a hierarchy)

shuttle OCM 1 S| S| EUEIS (z(iM ___________
u D iffe re n Ce : shuttle \ Shggle shuttle ! \ shéj(t)tle
. . RO+C // RO+C 7/
m Hierarchy of parts which NQA . M
include change e e E L
m a n a e m e n t fu n Ctl 0 n a I Ity motion control OCM | = ol | _ | _ energy subsystem OCM_ = Pl .
Y - energy

=~ self-adaptation at

motion

. control energy r’ ‘ ss:tz-m
multiple levels || | | sesen CRE |75
= Reflective operator —
includes functionality as : ' _] ,
well as change < N e pateto o comon e)

: e -
m m . «-> to- dinati ft real-time
a n a g e e n t suspension tilt OCM linear drive OCM track control OCM peer-to-peer coordination (soft real-time)

E> Se pa rati O n iS |€SS Stri Ct! «-------safe decoupled guidance (soft real-time)

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

15

Macro Architecture

= Autonomous subsystems (shuttles)

m Within: strict hierarchies

m Outside: complex
coordination

shuttle:OCM

Hasso
Plattner
Institut

shuttle:OCM

OCM

energy i ?
subsystem ¢ ¥5.

\

v

—

-
v =]

\i{" =

suspension tilt OCM

linear drive OCM

Qv e

track control OCM

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

Macro Architecture:
Coordination

Hasso
Plattner
Institut

16
= Real-time coordination via pattern [ESEC/FSEQ03]
m Real-time protocol state machines for each role
m Real-time state machines for each connector
= Rule-based reconfiguration (self-coordination) [ICSEO06]
m Rules for instantiation and deletion of patterns

Rule-based
— % :Reqistry reconfiguration
." ’Reference\v” RN
Data Pattern R
____________________ ,/' Reference ™
.] Dlstance ” Data Pattern
. .._ Coordination ,," [
mt - M
ShuttIeZ q] Shuttle1 H‘]

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

17

Reference Architecture ﬂ Inatitat

Institut

Only implicit in the degrees of freedom
for the rule-based configuration

Rule-based configuration

Goal
Management [] [o |
|
Plan Request +
Change Actions

Change Plans
|
Manage
Management
4 |

Component sttus v distributed over the patterns and the
Control | o H c2 } ﬁ components realizing the pattern roles

Rule-based
reconfiguration

m Difference:

m Pattern capture
component interaction as
well as its instantiation
= self-coordination

m No new change plans but . .
only choices which can be >
made by the local e
cognitive operators

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

Real-Time Coordination Has<o
via Patterns ﬂ natitat

Institut
18 . - - -

frontRole rearRole frontRole rearRole

, , , :Shuttle
N
N
’StateCha”B -~ Distance ™ l

Coordination

:Shuttle

statechart

e Elemé&tésnen
Pattern (Distance Coordination): ° Comtaoraptzne
® Model: Statecharts for roles and connector * PortsPo
W Specification: required OCL RT properties * COW@OWHSCU
Components (Shuttles): * PaliePatter
W Model: Statecharts for ports (refined roles) and synchronization * Roles

W Specification: local OCL constraints

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

Complex Coordination:
Role Protocols

Hasso
Plattner
Institut

19 _
Role: FrontRole Role: RearRole

(\ K | \
/\ noConvoy / rearRole.convoyProposalRejected \ \ noConvoy frontRole.convoyProposalRejected /

v v
rearRole.convoyProposal /_after ([1, 1000] msec / frontRol p | -
\ default rW—aID answer \ default TR aonees wait
L aulty \wait) \answer) | L — y
/ rearRole.startConvoy] frontRole.breakConvoy / frontRole.startConvoy /
(h (convo)
convoy rearRole.breakConvoyProposal y — / frontRole.breakC P | -
| rearRole.breakConvoy f@ault wait rontrole.breaxt,oNvVoyrToposa default
rearRole.breakConvoyProposal frontRole.breakConvoyProposalRejected / A
. / rearRole.breakConvoyRejected J \ ~
after (9 msec) T after ([1,0] msec)

‘—>t wait] | sendData i (incoming) [wait) {emergency)
| rearRole.frontRoleData \ frontRole.frontRoleData 7 after (15 msec) /

Connector:
* buffer with maximal delay of 5 msec
» modeled faults: only full communication break down

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

20

Rule-Based .
Reconfiguration (1/2) ﬂ Inatitut

Problem:

m Shuttles move and create
resp. delete Distance
Coordination patterns

m Arbitrary large topologies
with moving shuttles

Solution:
m State = Graph

m Reconfiguration rules =
graph transformation rules

m Safety properties =
forbidden graphs

= Formal Verification possible

21

Rule-Based

Reconfiguration (2/2)

Apply Graph
Transformation
Systems

OMap the tracks

COMap the
shuttles

COMap the
movement of
shuttles to rules

OMap the re-
configuration to
rules

Track1

eoo t1:Track

Track2

Hasso

H Plattner
Institut

...m..

A

t2:Track ooe

Rule:

t1:Track t2:Track

|

s1:Shuttle

t1:Track

A

t1:Track

>

W

s1:Shuttle

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

Application Example: e
Self-Coordination ﬂ Inetitut

22

m Cognitive Operators: do self-optimization
o Maneuver planning
o Convoy planning
o Shuttle planning
m Reflective Operator: switch to guarantee safety
o Realize maneuvers planned by the cognitive operator(s)
o Recognize timeouts and enforced related safety maneuvers

o Detect problems of controllers and enforced related safety
maneuvers

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

Models at Development Has<o
Time (2/2) ﬂ Inetitut

Institut
Development time:

23
Adapt|on Adaption’
‘ — Goals'
K Context D Function' >
S
o ‘ O ¢ ‘
¢ Ky ' N o ¢
Run-time: * nd ¢ 0’
’ 0 0 S .
Y ® & (el ® ¢

- Adaption " .M R .: Adaption’ :
(2 ® () ‘

= 1 << _Architektn,® - :
. j' s - 1‘ Observation: Very

.] e _ difficult formal analysis
o Function e Context o Function’ .
o o | o technlques can guarantee

some safety goals
(validity of the models is
guaranteed to some
extent by synthesis)

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

Application Example: y
_ . . dSSO
Self-Optimization ﬂ Inatitut
24 z reference trajectory € comfort measurement ISTTT2000
///\/\\ X, ” TT [IT X,

section-
control

(n-1) Section (n) (n+1) ~ (n+2) T (n+3)

Y
A

m Cognitive Operators: do distributed self-optimization
o Distributed learning of a model of the track (environment)
o Local learning of a model of the shuttle (system hardware)
o Planning an adaptation in form of an optimal trajectory

m Reflective Operator: switch to robust local control if necessary

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems

Models at Run-Time

(2/2)

Development time:

25

Run-time:

Hasso
Plattner
Institut

(oo

~~~~~~~~~~~~~~

——————————

~o -

Adaption:

=

[ Function }{ Context !

Observation: o

Mathematical algorithms

A 4

Function e

Possible benefits: Up-to-date context models are
when multiple subsystems exchange data about

Context

guarantee optimal
trajectories (in case of
invalid models a related

diagnosis and fallback to
a robust control is used
as backup)

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems




26

2. ExecUtable RuntimE
MegA models (EUREMA)

m Executable EMF megamodels
kept alive at runtime with

m Multiple runtime models

m Activities are model
operations (e.g., monitor +
execute for EIBs with TGG)

m Multiple loops
m Multiple layers

m Runtime interpreter for
adaptation engines permits
high degree of flexibility

m Leverages the co-existence of
self-adaptation and evolution

m Modules and runtime models
can to some extent be reused

1
- MAPE
i :Self-repair
©
- RtException;A
10s; Monitor;
ir w

Layer-0

:Adaptable Software

Self-repair

Hasso
Plattner
Institut

<<EvaluationModel>>
Failure analysis rules
Hg

<<Analyze>>
Check for

A o
(((((( Self-repair-

strategies.

Adapt

failures

Analyzed

<<ChangeModel>>

strategies

Repair

< <Monitor>>] up-

=
Architectural Model

<<ReflectionModel

Update |date
m;

Start

xecu el>>
TGG Rules

—p Adaption Engine
4
u \ 4
p
Function u
—p

_____________

Thomas Vogel and Holger Giese. A Language for Feedback Loops in Self-Adaptive
Systems: Executable Runtime Megamodels. In Proceedings of the 7th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems (SEAMS
2012), pages 129-138, 6 2012. IEEE Computer Society.

homas Vogel and Holger Giese. 2014. Model-Driven Engineering of Self-Adaptive
Software with EUREMA. ACM Trans. Auton. Adapt. Syst. 8, 4, Article 18 (January 2014),
33 pages. DOI=10.1145/2555612 http://doi.acm.org/10.1145/2555612

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems




27

EUREMA: Knowledge &

Runtime Models

Evaluation Models

\ Change Models
o

Monitoring Models|

Reflection Moo/e/si

Hasso
Plattner
Institut

Adaptation Models

ZAAN

Evaluation Models| | Change Models

Causal Connection Models

7N

Execution Models

Monitoring Models| |Execution Models

mMega Model = ,Model of Models and Operations on Models"

Idea:

O Runtime models are maintained at runtime

O Runtime mega models describe adaptation activities (MAPE)

O Runtime interpreter for runtime mega models

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems




28

EUREMA: Use MDE for .
Model Operations ﬂ Inetitut

MAPE-K

changes
>Ana|yze analyze<>—> Plan p|anned>

3 Vi
\‘i ' ;
Knowledge

. moni- i :*~

Monitor | tored IRSRRRRES Execute | done
‘*».::Z"::::::::""

Start Executed

m Options for using MDE for model operations:

m Monitor/Execute: techniques for model synchronization can be employed
(e.g., Triple Graph Grammar (TGG))

m Analysis: techniques that can operate on models with meta models such
as OCL, model transformations, etc. can be employed.

m Plan: techniques that can operate on models with meta models such as
OCL, model transformations, etc. can be employed.

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



EUREMA: Use MDE for
Model Operations (1/2)

29

MDE for Monitor/Execute:

m Employ Triple Graph Grammar (TGG)
for the model operations monitor and

execute (at once)

m Synchronize runtime models
incrementally between the modules and

the managed element (faster as manual
implementations)

o Extract abstract runtime models for
different modules as required from

unchanged EJB applications

o Adapt managed subsystem
incrementally via model (parameter

and structural adaptation)

Hasso
Plattner
Institut

]
D mode]
— -

arc hitectural element

architzctural
monitoring

=" parmameter adaptation

= = defined by

Target Model :i:— # Meta Model
k | .Ill
Model Transformation Engine TGG Rules
[ ; ]
-! ;
Source Model -—-= Meta Model
‘ |
Sensors Effectors
Managed Element

Vogel, T., Neumann, S., Hildebrandt, S., Giese, H., Becker, B.: Model-Driven
Architectural Monitoring and Adaptation for Autonomic Systems. In: Proc. of the 6th
International Conference on Autonomic Computing and Communications (ICAC'09),
Barcelona, Spain, ACM (15-19 June 2009).
Thomas Vogel and Stefan Neumann and Stephan Hildebrandt and Holger Giese and
Basil Becker. Incremental Model Synchronization for Efficient Run-Time Monitoring.
In Sudipto Ghosh, ed., Models in Software Engineering, Workshops and Symposia at
MODELS 2009, Denver, CO, USA, October 4-9, 2009, Reports and Revised Selected
Papers, vol. 6002 of Lecture Notes in Computer Science (LNCS), pages 124-139.
Springer-Verlag, 4 2010.

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems




30

EUREMA: Use MDE for

Hasso
Model O ti 2/2 et ner
odae perations Institut
H P-4 Model-Driven Approach|{NIA
=Benefits: Target Model Rules|Nodes/Rules| LOC |LOC
i i Simpl. Architectural Model| 9 7,44 15259 | 357
m The _supported incremental Pros:essmg D . o o
provides low overhead monitoring and Failure Model 7 7.14 12133 | 292
executing solution | Sum [ 20 | [ 33371 | 902 |

m Permits sensors and effectors at a higher

i . NIA Model-Driven Approach
level of abstraction Sizel ¢ n im0l sl B

m Model transformation technique can be 5 | 8037 | 20967 | 0 | 163361 523749891 10733

used to map this high level information to 10 19663 1450541 O | 152} 272 ] 4571 585 ] 790 125270

0 map 9 15 [10811] 72984 0 | 157|308 | 472|643 | 848 36488

analysis models used by the EUREMA 20 [12257[105671] 0 [170[325]481]623]820[55491

modules 25 [15311[142778] 0 | 178339 (523708850 [72531
mLimitations:

m One generic adapter to the model world is
initially required that requires usually more
effort than an ad hoc monitoring effort

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



Layer Diagrams:
Example

Hasso
Plattner
Institut

“ MAPE
S :Planning
. A
"y : :
5 :MAPE-K TRNST
= |
3 A Iy MAPE
<trigger> : > :Adaptation
— 3 —
?) ' o ir *W
>| |:Adaptable Software £ :
- o | . _
© :Application

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



32

Layer Diagrams:

Notation

Layers

Modules

Layer | Layer | Layer

[ 1

Megamodel
Module

Software
Module

Relationships

Hasso
Plattner
Institut

mMain concepts:
OLayers:
O Layer O: core software
O Layer 1: adaptation engine

O Layer 2: higher-order adaptation
behavior (e.g., planning)

CModules:

O megamodel modules: FDLs

O software modules: legacy software
ORelationships:

O Sense: trigger modules

O Effects: effects of the modules

O Use: use of megamodel elements of
a module

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



33

Feedback Loop Diagrams
(FLDs): Example

Hasso
Plattner
Institut

)

A

Q

3
4
’
1

ﬂ‘—
---------

MAPE-K

changes

>Ana|yze analyze<>—> Plan p,anr?ed
3 A
"4 y
Knowledge
_ moni- 4 ¥ ..
Monitor | tored ST TN

T .>Execute done

Executed

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



Feedback Loop

i} Hasso
Diagrams (FLDs) ﬂ Inetitut

34

Operations

@ Initial state
@® Final state
X Destruction state

Model |t1
Operation 2

Ol
Complex Model
Operation t2

Models

o
Model [ [ F| p Model

mConcepts:

Helper states:
O Initial state: start of the execution
O Final state: end of the execution

O Destruction state: end of the execution and
termination of the module

OModel operations:

O Simple model operations: mapped to software or
other modeling techniques (e.g., TGGs)

O Complex model operations: mapped to modules
COModels:

O Runtime models

O EUREMA models

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



Feedback Loop

i} Hasso
Diagrams (FLDs) ﬂ Institut

35

Control flow

—

[conditionl]

[condition2]

Model usage

mConcepts:
COControl flow:

O Arrow: ordering

O Rhombus: alternative flows of control
COModel usage:

O r: read

O w: write

O a: append

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



36

EUREMA:

Self-Repair Example

Self-repair

Hasso
Plattner
Institut

<<EvaluationModel>>

Failure analysis rules

of

A 4

[c since
‘no failures' > 5]

<<Analyze>>

Check for

failures

(an]
Self-repair-
strategies.

Adapt

Adapted

<<ChangeModel>>

Repair

[else]

failures

)

<Monitor>> up-

Update

no
failures

Analyzed

\ strategies
L
IR

repaired

<<ReflectionModel>>
Architectural Model

<<Plan>>
Repair
L. &

<<MonitoringModel>>
<<ExecutionModel>>

TGG Rules

- B saesesesdd <<Execute>>
Effect done
Effectedg)

1

- MAPE
i :Self-repair
(]
= RtException;A

10s; Monitor; :

ir P w

S .V
o
| |:Adaptable Software
-

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems




37

EUREMA: Modular Self-

Repair Example

Self-repair

Self-repair-A

Hasso
Plattner
Institut

<<Analyze>>O
Start
ar Analyze

Analyzed

<<ChangeModel>>
Repair strategies

<<Plan>>

Repair

<<Monitor>>[u

<<Reﬂect|onModeI>>

Architectural Model

<<MonitoringModel>>
<<ExecutionModel>>

repaired

done

<<EvaluationModel>>
Failure analysis rules

[ELSE]

H

<<EvaluationModel>>
Deep analysis rules

LT

A J [C_SINCE(no Y
<<Analyze>> failures) > 5] <<Analyze>> .
Check for Deep check detalltled
. . results
failures for failures |
N oK A \5
rea /M a
<<ReflectionModel>> Failures

Start

Architectural Model

TGG Rules  |...... .- Executed
1 1

= ~ M-PEL Analyze )
q;; :Self-repair » :Self-repair-A
©
- RtException; A

10s; Monitor; :
=) r LW
L r - A 4
o
> .
5 :mRUBIS

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems




EUREMA: Alternatives &
Variability Modeling

38

1

1

Layer-1

M..
:Self-repair

AW :Self-repair-A
PE

A

1

RtException; A
10s; Monitor;

:Self-repair-A2

A

r *w

Layer-0

‘ :Adaptable Software

1

UW
M..PE

Layer-1

:Self-repair

:selfRepair.Monitorimpl

RtException; A
10s; Monitor; :

:selfRepair.

LightWeightMonitorimpl

o *w

Layer-0

‘ :Adaptable Software

Hasso
Plattner
Institut

sEUREMA models can
already include
alternatives (variability)
that can be activated by
adjusting the EUREMA
model at runtime.

0 Module-level

0 Software-level

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



39

EUREMA: Independent

MAP

Self-optimization |

E Loops

Self-repair

vi"

<<EvaluationModel>>
Queueing Model  }-----

el Parameter variability

w <<ChangeModel>> |

Analyzed s r

necks

<<Analyze>>
Bottleneck

no bottle-

bottleneck

<<Plan>>

Adjust

identification

r.

params

re s
S

Analyze

<<Analyze>>0O
Start

¥

Analyzed

<<ChangeModel>>
Repair strategies

re

<<Plan>>
Repair

repaired

Solution:

O Use independent triggers for both loops

Analyze , <<Execute>> <<Reﬂect|onModeI>>
<<R.eﬂectionModeI>> done < <Monitor>>|u Architectural Model
< <Monitor>>yp- Architectural Model done
et N |t/ Imodel/ w .V TmmmmT
<<MonitoringModel>> <<MonitoringModel>>
<<ExecutionModel>> r Executed <<ExecutionModel>>
Monitor TGGRules [~ R T TGG Rules  |..._.. Moo Executed
1
A
Analyze . ;
- ] ] / :Self-repair-A
ql MAPE M..PE
& :Self-optimization :Self-repair
Loadlncreasek RtException; 4 S
60s; Monitor; % % 10s; Monitor;”
VoW .'r W

° MR | o 4
g
2 :Adaptable Software
-

O Sequential execution will ensure that loops do not overlap

Hasso
Plattner
Institut

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



40

EUREMA: Sequencing
MAPE Loops Completely

Self-management-1

Hasso
Plattner
Institut

Optimize \ / Repair
1

Layer-1

:Self-management-1

RtException, LoadIncrease; A
35s; Self-manage;

i’

*W

% ‘ :Adaptable Software
mSolution:

. © | Analyzed Analyze O | Analyzed
Monitor|  Repair : Optimize
Self- Executed Monitor Executed Self-managed
manage 4 ‘ A T A
r'." ro N w riiw :
Ty Y 'y ;
<<MonitoringModel>> <<ReflectionModel>> h
<<ExecutionModel>> Architectural Model i
TGG Rules
1] 1] |
o .IVIAPE . M..PE Analyze . A
:Self-optimization :Self-repair :Self-repair-A

OExtra module enforces the sequential execution such that the loops

do not overlap

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems




41

EUREMA: Sequencing
AP of MAPE

Self-management-2 |

Analyze| OptimizeAP

2 Analyzed

A

e Analyzed L

Analyze| RepairAP i
Planned i

\<<Monitor>>

A ]
<<ReflectionModel>>

<<Execute>>

Architectural Model

Effect

<<MonitoringModel>>
<<ExecutionModel>>

TGG Rules

[ELSE] Analyzed

[C_SINCE(
RepairAP::
Planned) = 0]

done

Self-managed

Self-optimization-AP

Hasso
Plattner
Institut

1

AP
:Self-optimization-AP

AP
:Self-repair-AP

Layer-1

OptimizeAP \ / RepairAP
1
M.E

:Self-management-2

RtException, LoadIncrease; A
35s; Self-manage; H

ir

Layer-0

LW

:Adaptable Software

mSolution:

Join monitor and execute activities

<<EvaluationModel==> | w <<ChangeMode|==
Cueueing Model  |-----~ P, B Parameter wvariability
r’v§+w Analyzed \"\:‘\ i
i “a

no bottle-

<<Analyzesm=
Bottleneck |necks
Analyze identification|bottleneck

¥

s
S,

=<=Plan==>
Adjust  |adjusted
params Planned

r‘ w
<=ReflectionModel==
Architectural Model

Self-repair-AP

<=EvaluationModel= =
Failure analysis rules

[ELSE]

<«<EvaluationModel==
Deep analysis rules

r

[C_SINCE(no
failures) = 5]

<<Analyzes:=

Check for

-
<<:Angy2e:-> <= ChangeModel==
Deep check detal“e Repair

. results s
for failures strategies

failures

- s
a Analyzed t,' !
¢

A a

NY ¥

v
<=ReflectionModel==

Architectural Model

Analyze

3 << Planz:
e Repair |repaired

Planned

OExtra module enforces the sequential execution

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems




EUREMA: o
Multiple Layers ﬂ Inatitut

42 Layer, -

Evaluation Models Change Models

Reflection Models

Layer,

Monitoring Models

\\,

Evaluation Model N Evaluation Models \ ange lels

uation els
Layer ot > =
¢

L
——

—

e Q
>

By
X

9

Q.

Coreante)
Layer, Adaptable Software

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



43

EUREMA: Reflection
via the Megamodaels

Self-repair-strategies

<<EvaluationModel>> <<
Repair strategies
analysis rules

sy

ChangeModel>>

Repair strategies

nthesis rules

After[Deep check A
for failures]; Adapt; :

>feedbackLoopModel

\ Al \ Al
<<Monitor>> <<Plan>>
<<Analyze>> <<Execute>> synthe-
Check checked Synthesize new | .4
success rate repair strategies
\ IR 4 -
NN r. W
NS\ R 4
<<ReflectionModel>> ©
Adapt feedbackLoopModel Adapted
1
~ MAPE
p :Self-repair-strategies
Y
-

v" /
M..PE

i r
| : |
~ A
1 . .
9 :Self-repair | Analyze o} :Self-repair-A
. - |
RtException; &
10s; Monitor; |
r L w
° :
: Y
E :Adaptable Software

Hasso
Plattner
Institut

mBenefits:

ONo extra model has to be
developed

OCausal connection is
guaranteed by construction

mDisadvantages:

CONo abstraction of the underling
layer

ONo temporal decoupling as no
copy is maintained

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



Complex Behavior of Self-
Adaptation Activities

Hasso
Plattner
Institut

| Layero | Layer-1 Layer-2 |
44 :Adaptable :Self-repair :Update :Analyze :Repair :Effect :Self-repair-A :Check for :Deep check :Self-repair- :Check :Synthesize new
Software failures for failures strategies-2 success rate repair strategies

1 1 1 1
N :RtException; |

1
1
10s elapsed; | |
1

1 1 1 1 1 1 1
| | | | | | | | |
| | | | | | | | |
| | | | | | | | |
(a) ﬂb[:] | | | | | | | | |
(b) ! | | | | | | | |
| | | | | | | | |
- exec ! ! (C) | ! 1 | 1 | |
S — I invoke ! I I I I I I
! P | | | | |
| | exec | | | |
| | | | | |
| | (d) | | | |
| | - - - - exec ! ! ! !
| | | | | |
| | | | | |
| | | | |
| | (e) ! | |
: : :After[Deep : : :
check for
: : - - failires]; : : :
| | \ ] exec | |
| | 4’D |
1 1 (f) |
: : - exec :
| |
| | (9) '
! ! replaceStrategies(newStrategies)
| L
|
Rl B e | BT R
|
1 ¢ -----=-=-====
! D e H (h)
- ---------- =8 (h) ! :
niiniiaiaaleiali T exec i (h) : I
|
| ol
(i)
|
<- ------------- exec !
) .
effect
€ - - - - - - - - -
T T

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



45

EUREMA: User-

Defined Reflection

Self-repair-strategies |

Hasso
Plattner
Institut

<<EvaluationModel>>
Repair strategies
analysis rules

vr

<<ChangeModel>>
Repair strategies
synthesis rules

* r

<<Analyze>>
Check
success rat

checij

Synthesize new
repair strategies

<<Plan>>
synthe-
sized

wha

I"." 1
LW

< <Monitor>>|yp- ‘ ' <<Execute>> .
Observe datsdl <<ReflectionModel>> © | | r Rep'aFe placed
‘ mode Self-repair strategies
Adapt Adapted
]

~ MAPE
g;,. :Self-repair-strategies
©
- After[Deep check A

for failures]; Adapt; :

Er LW
1 A A 1
= M..PE A
1 . .
9 :Self-repair | Analyze o f  :Self-repair-A
. o A
RtException; &
10s; Monitor; :
ir W

o H
2
S\ ‘
s :Adaptable Software

mBenefits:

OAbstraction of the underling layer
OTemporal decoupling
mDisadvantages:

OExtra model has to be developed

OCausal connection has to be
maintained explicitly

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



Co-Existence of Self-

Adaptation & Maintenance

Development
and
Maintenance
Environment

Hasso
Plattner
Institut

Evaluation Models

Change Models

Reflection
Models

D

Execute

‘Monifaring Mao/e/s‘

| Execution Mao/e/s'

IEva/uaﬂan Maa’e/s’_\%wge Mac@

Reflection
Models

K Execute ﬁ

1 Monitoring Maa’els‘

I Execution Maa’e/s]

Evaluation Models Change Models
i f

D

(| Faresten
iﬁ!bﬁ

I Monitoring Mao/elsl

I Execution Mao/e/s]

Adaptable Software

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



47

EUREMA: Evolution via
Off-line Adaptation (1/2)

mCoordinated external ad hoc adaptation of
the EUREMA model by adding a module on a

higher level.

External Adaptation:

Hasso
Plattner
Institut

Self-repair-patch

<<ExecutionModel>>

New repair strategies

*I’

<<Execute>>
Beplace ) replaced X
Execute repair strategies Replaced

A
r:vw

<<ReflectionModel>=> o

feedbackLoopModel

Layer-0

:Adaptable Software

] ++
§ . .
d; :Self'repalr'pat(:h feedbackLoopModel
] A T ++
- i H
After[Monitor]; : ++ ++
Replace; : .
Er LW
% M..PE
2 :Self-repair
-
Q
1Y
o
>
©
-
\
\
\
] ] \\
N - MPEL Analyze . A \
i :Self-repair :Self-repair-A \
)
- RtException;A
10s; Monitor;
ir L w
I Y

Layer-2

:Self-repair-patch

weedbackLoopModel

After[Monitor]; A
Replace; :

Layer-1

- vw/ —1

M..PE A
:Self-repair Analyze ) :Self-repair-A

A

RtException;
10s; Monitor; i

1

Layer-0

Er ;W
:Adaptable Software

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems




EUREMA: Evolution via
Off-line Adaptation (2/2)

48

EUREMA model on the fly.

External Adaptation:

mAdd self-adaptation layer in an

Hasso
Plattner
Institut

Self-repair-strategies

] ++

MAPE

:Self-repair-strategies

Layer-2

After[Deep check %++
for failures]; Adapt; !

Pt

feedbackLoopModel
++

r

<<EvaluationModel>>
Repair strategies

analysis rules

<<ChangeModel>>
Repair strategies
synthesis rules

LW
i — v/
& M..PE
2 :Self-repair
-
Q
1Y
[]
>
]
-
\
\
AY
| ] \\
N - MPEL Analyze . A \
i :Self-repair :Self-repair-A \
]
- RtException;A
10s; Monitor;
° ir L w
DoV
>
&| |:Adaptable Software

r * r
<<Monitor>> <<Plan>>
<<Analyze>> <<Execute>> synthe-
Check checked Synthesize new |, .4
success rate repair strategies
| 4
AN r. W
4 a4
<<ReflectionModel>> o
Adapt feedbackLoopModel Adapted
1]
~ MAPE
“:’. :Self-repair-strategies feedbackLoopModel
3 A
After[Deep check "
for failures]; Adapt; !
Er LW
1] : Y 1
= M..PE A
S . .
g :Self-repair | Analyze o | :Self-repair-A
. -\
RtException; A
10s; Monitor; :
or L w
o :
2 r
o .
E‘ :mRUBIS

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems




EUREMA:

Legacy & Triggering ﬂ

49
~ MAPE
i :legacy.Self-repair
3 A
nat|ve
Q
|
S ‘
T :Adaptable Software
- MAPE
E; legacy.Self- repalr
3 RtException; 10s;
legacy.Self-repair. maln
Q
o
E ‘ :Adaptable Software

Hasso
Plattner
Institut

mOptions:

-Only model native triggering
with EUREMA (no evolution is
possible later)

-Model and realize triggering
with EUREMA (evolution is

possible later !)

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



EUREMA:
Modeling Rainbow

50

Hasso
Plattner
Institut
Rainbow
<<ChangeModel>> || <<ChangeModel>>
<<EvaluationModel>> Adaptation Utility
Rules/Constraints Strategies Preferences
r r r ¢ <<ExecutionModel>>
4 Yy e >
<<Analyze>> | jolations <<Plan>> strate Selected
Architecture Adaptation gy Strategy
selected,
Evaluator |violations, Manager Ad
A A o
Analyzed ir :

S
S
\!’
.

Layer-1

1

MAPE

:Rainbow

A

Layer-0

A

e

<<MonitoringModel>>| r ——Monitor=s
Gauge Events 47 Model model(>

Manager

<<Monitor>>
Gauges
Start

[ <<ReflectionModel>>

Architecture Model

e e w
system T [oeme”
changed Tl T Woa-e-

e ] [

\

Strategy

. .......... r _____ <<Execute>>
r ... Executor

done

<<ReflectionModel>>
Environment Model

Effectecé)

AV
:Adaptable Software

mThe general separation of the adaptation behavior into runtime
models and activities can be captured. Emulation would in addition
permit evolution due to the co-existence with offline maintenance.

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems




51

EUREMA: Discussion K8

Hasso
Plattner
Institut

Model-driven engineering approach for adaptation engines
Domain-specific modeling language for layers, modules, and control flow
Leverages advanced solutions, like layered feedback loops

Executable megamodels are kept alive at runtime

Runtime models are employed at runtime

Runtime interpreter for adaptation engines permits high degree of
flexibility

Leverages the co-existence of self-adaptation and off-line adaptation for
evolution

Modules and runtime models can to some extent be reused

mLimitations:

Concurrency and a distributed setting are not supported yet

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



Hasso
Plattner
Institut

3. Challenges Ahead

- enable self-aware computing

52

Change Models

param Evaluation Models

Execution Models

Monitoring Models

REUSE!

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



Hasso
Plattner
Institut

Challenges Ahead
aware?) ﬂ

- long term (meta self-

m Executable mega models kept
alive at runtime with

m Multiple runtime models

m Activities are model operations
(e.g., TGG)

= Multiple loops

m Multiple layers

m Runtime interpreter
for adaptation engines
permits high degree of
flexibility

m Leverages the co-existence of
self-adaptation and evolution

m  Modules and runtime models can
to some extent be reused

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



54

4. Outlook: Beyond
centralized MAPE-K ...

Hasso
Plattner
Institut

Internet of Things

Smart City

Ultra-Large-Scale Systems

(Networked)
Cyber-Pyhsical Systems
Smart Home

Smart Factory -

G Y E-Health
E.g. Industry 4.0 T ‘,@!ste"’m of Systems
Smart LOQIStIC http://oceanservice.noaa.gov/news/weeklynews/nov13/ioos-awards.html Amblent
Micro Grids Collabrarive self-aware computing Assisted Living

0O Exchange runtime models

Giese | Dagstuhl 15041 | Model-driven algorithms and architectures for self-aware computing systems



