



# Multi-Agent Reinforcement Learning for Coordination of Device-to-Device Communication

Sabrina Pochaba, Peter Dorfinger, Matthias Herlich, Roland Kwitt, Simon Hirländer

## Content

- Cellular and Device-to-Device (D2D) communication
- Reinforcement Learning (RL)
- Multi-Agent Reinforcement Learning (MARL)
- MARL for D2D
- Conclusion & Outlook

## Cellular and D2D communication



#### **Problem:**

Reliable Communication without regulation of BS

#### **Solution:**

Multi-Agent Reinforcement Learning

BS = Base Station
CU = Cellular User
DU = D2D User

## Cellular and D2D communication

#### **Problem:**

Reliable Communication without regulation of BS



#### Resource Usage in Resource Blocks (RBs):



# **Reinforcement Learning**



# **Multi-Agent Reinforcement Learning**



# MARL in D2D: Setting





- Action: Choose RB
- State:
  - Own RB selection
  - Satisfaction (QoS)
  - Neighbors
  - RB selection of neighbors
- Reward: Satisfaction (QoS) of all devices

## MARL in D2D: First Results

2 Agents

3 Agents



$$Q(s,a) \leftarrow Q(s,a) + \alpha(R + \gamma \max_{a} Q(s',a) - Q(s,a))$$

## MARL in D2D: First Results

2 Agents



Q-Values for Device 1:



## MARL in D2D: First Results

3 Agents



4 Agents



## **Conclusion & Outlook**

#### **Outlook**

Tabular Q-Learning for many Agents

Nash-Q Algorithm

Discrete to continuous setting

Deep Q-Learning

Policy-based approaches



#### **Problem:**

Reliable Communication without regulation of BS

#### Aim:

Optimization of Communication with Multi-Agent Reinforcement Learning





# **Thank You!**

#### Sabrina Pochaba



Salzburg Research Forschungsgesellschaft m.b.H. Jakob-Haringer-Straße 5/3 | Salzburg, Austria



+43/662/2288-459



sabrina.pochaba@salzburgresearch.at



#### References

- Arash Asadi, Qing Wang, and Vincenzo Mancuso. A survey on device-to-device communication in cellular networks.
   IEEE Communications Surveys Tutorials, 16(4):1801–1
- Khaled B. Letaief, Wei Chen, Yuanming Shi, Jun Zhang, and Ying-Jun Angela Zhang. The roadmap to 6g: Ai em-powered wireless networks. IEEE Communications Magazine, 57(8):84–90, 2019.
- Andreas F. Molisch. Wireless Communications. Wiley Publishing, 2nd edition, 2011.
- Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. The MIT Press, second edition, 2018
- Huaqing Zhang and Shanghang Zhang. Multi-Agent Reinforcement Learning, pages 335–346. Springer Singapore, Singapore, 2020.
- Yuan Zhi, Jie Tian, Xiaofang Deng, Jingping Qiao, and Dianjie Lu. Deep reinforcement learning-based resource allocation for d2d communications in heterogeneous cellular networks. Digital Communications and Networks, 2021.