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Survey: Data-parallel Architectures for Distributed Machine
Learning
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Challenges of ML:
=  Number of parameters
=  Number of data
s Distributed data

——

— Increased training time

How to train such models?

Parallelize and distribute model

training
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From perspective of communication relationship:
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Data-parallel training architectures

1. Parameter Server

m Client-Server architecture: Workers synchronize
via centralized server (parameter server)

m Parameter server: maintains and distributes
model and data, and aggregates updates

m Worker: processes assigned data, computes
updates and sends updates to the parameter
server
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1. Parameter Server
2. In-Network Aggregation
m Client-Server architecture

s Network infrastructure act as centralized server
and synchronizes workers
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Data-parallel training architectures

1. Parameter Server
2. In-Network Aggregation
3. Federated Learning
s Client-Server architecture

s Data is stored locally and not exchanged

s Designed for edge-servers and smartphones
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Data-parallel training architectures ,o%m@f@ “
EE 1. Parameter Server
S . A S 2. In-Network Aggregation
Eﬂ>h 3. Federated Learning
EE 4. All-Reduce
o m Peer-to-Peer architecture: Workers synchronize
%% % S with peers through direct communication
‘ ‘ = Several communication topologies possible: E.g.,
%656 58 5o All-to-All, Butterfly or Ring.
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Impact of data-parallel architecture on training

%m

Differences of architectures:
s Data distribution

s Straggler handling

»  Communication effort

s Computational effort
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Differences of architectures: Impacts on training:
s Data distribution s Order of updates _
_ _ _ Model quality
s Straggler handling s Age of information
»  Communication effort s Time to convergence
s Computational effort s Energy consumption
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Differences of architectures: Impacts on training:
s Data distribution s Order of updates _
_ _ _ Model quality
s Straggler handling s Age of information
»  Communication effort s Time to convergence
s Computational effort s Energy consumption

How to select an architecture for a learning task?
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Impact of data-parallel architecture on training A ity ﬂ
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Differences of architectures: Impacts on training:
s Data distribution s Order of updates _
_ _ _ Model quality
s Straggler handling s Age of information
»  Communication effort s Time to convergence
s Computational effort s Energy consumption

How to select an architecture for a learning task?

Common metrics:
m Model quality m Energy consumption

L : m Green house emission Leonard Paeleke,
m [raining time PhD Student

ion
m Resource consumptio Slide 9
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Survey - Approach ‘% @@E
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s Studies evaluate training of ML models for several learning tasks and
data-parallel architectures
s Metrics: Model quality or training time
TABLE I: Model quality of distributed ML architectures on typical ML applications
Parameter Server I k Aggregati Fed d Learning All-reduce approach
img trans
img class o [27) + [6] o [23] - [24) o [36) + (19) + (13 o [6) + 5] o [13) o [27) o [23] + [24)
obj det - + (10
lang mod +|@+@|o + +|E] -@+@|o
:‘::t::: pred L d < TABLE II: Training time of distributed ML architectures on typical ML applications
click-through pred / Recommendation  + + @ Parameter Server In-1 k Aggregati Fed d Learning  All-reduce approach
m Nz ) _mew 19 3] 259 [1
channel decision +@(Beam—seleclion) img class '@"'O'E]'@ °+m +@°@+@ °®°@+@|+@+@
signature class obj det ° °
anomaly class lang mod '+°@ + +E] '@“’@"*@
code gen quest answ + (M) +36) - 36]
lang class (SQL intrusion) + time-series pred
click-through pred/ Recommendation ~ + [44] + [36) - 36
RL - + 0
channel decision
anatue s Lt 0 Leonard Paeleke,

anomaly class

code gen PhD Student

lang class (SQL intrusion)
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Survey - Results

Model quality:
= In many studies Client-Server architectures outperform Peer-to-Peer

s Federated Learning rarely compared to other architectures

Training time:
s Different measures used, e.g., wall-clock time and CPU time
= Improvements by reducing:

o Communication overhead

o Waiting time for stragglers

o Time for parameter aggregation
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PhD Student

Slide 11



OOW ersy, fé}c

Survey - Results ! @@E
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Challenges:
s Comparability between studies
s Lack of definitions, e.g., completion of training

Suggestion:

s Reference learning task with predefined model, hyperparameters, data
set, fixed train-test split, and measurement for model quality

s Definition of training time
= Normalizing testbed by speed of CPUs/ GPUs
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PhD Student
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Architecture impact training in

Order of updates
Age of information
Time to convergence
Energy consumption
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Open question:

Which data-parallel architecture
to choose for a learning task?
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Open question:

Which data-parallel architecture
to choose for a learning task?

Identified problem:

Comparability of studies
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Open question:

= Which data-parallel architecture
to choose for a learning task?

Identified problem:

s  Comparability of studies
Suggestion:

s Reference testbed

= Normalization of training
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Open question:

Architecture impact training in s Which data-parallel architecture

= Order of updates to choose for a learning task?

= Age of information Identified problem:

= Time to convergence s Comparability of studies

= Energy consumption Suggestion:
s Reference testbed

= Normalization of training
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