

Survey: Data-parallel Architectures for Distributed Machine Learning

Leonard Paeleke PhD Student Internet Technology and Softwarization

Vision 1012 Language Games 1010 Other Parameters 10⁸ 106 10^{4} 10² 10^{0} 1950 1960 1970 1980 1990 2000 2010 2020 Year [1]

Leonard Paeleke, PhD Student

Slide 2

HPI

Challenges of ML:

- Number of parameters
- Number of data
- Distributed data

Leonard Paeleke, PhD Student

[1] Sevilla et al. "Parameter, Compute and Data Trends in Machine Learning"

Slide 2

University.

rsdam

Challenges of ML:

- Number of parameters
- Number of data
- Distributed data

Increased training time

Universits.

^rsd_{am}

HP

Leonard Paeleke, PhD Student

Challenges of ML:

- Number of parameters
- Number of data
- Distributed data

- Increased training time

Universits.

HP

How to train such models?

Parallelize and distribute model training

[1]

Leonard Paeleke, PhD Student

[1] Sevilla et al. "Parameter, Compute and Data Trends in Machine Learning"

Distributed Machine Learning

HPI

Leonard Paeleke, PhD Student

Slide ${\boldsymbol{3}}$

Distributed Machine Learning

HPI

Data

Parallelism of training

3. Worker

2.

Model-Parallel

Leonard Paeleke, PhD Student

HP

Data-parallel training architectures

From perspective of communication relationship:

Data-parallel training architectures

- 1. Parameter Server
 - Client-Server architecture: Workers synchronize via centralized server (*parameter server*)
 - Parameter server: maintains and distributes model and data, and aggregates updates
 - *Worker*: processes assigned data, computes updates and sends updates to the *parameter* server

Leonard Paeleke, PhD Student

Data-parallel training architectures

- 1. Parameter Server
- 2. In-Network Aggregation
 - Client-Server architecture
 - Network infrastructure act as centralized server and synchronizes workers

Leonard Paeleke, PhD Student

Slide 6

Universitä

· Porsdam

- 1. Parameter Server
- 2. In-Network Aggregation
- 3. Federated Learning
 - Client-Server architecture
 - Data is stored locally and not exchanged
 - Designed for edge-servers and smartphones

Leonard Paeleke, PhD Student

Slide 7

.....

.....

HP

Data-parallel training architectures

- 1. Parameter Server
- 2. In-Network Aggregation
- 3. Federated Learning
- 4. All-Reduce
 - Peer-to-Peer architecture: *Workers* synchronize with peers through direct communication
 - Several communication topologies possible: E.g., All-to-All, Butterfly or Ring.

Leonard Paeleke, PhD Student

HPI

Differences of architectures:

- Data distribution
- Straggler handling
- Communication effort
- Computational effort

Leonard Paeleke, PhD Student

Slide $\boldsymbol{9}$

Impact of data-parallel architecture on training

Differences of architectures:

- Data distribution
- Straggler handling
- Communication effort
- Computational effort

Impacts on training:

- Order of updates
- Age of information
- Time to convergence
- Energy consumption

Model quality

Leonard Paeleke, PhD Student

Slide 9

Differences of architectures:

- Data distribution
- Straggler handling
- Communication effort
- Computational effort

Impacts on training:

- Order of updates
- Age of information
- Time to convergence
- Energy consumption

Model quality

How to select an architecture for a learning task?

Leonard Paeleke, PhD Student

Slide 9

miversits

Impact of data-parallel architecture on training

Differences of architectures:

- Data distribution
- Straggler handling
- Communication effort
- Computational effort

Impacts on training:

- Order of updates
- Age of information
- Time to convergence
- Energy consumption

How to select an architecture for a learning task?

Common metrics:

- Model quality
- Training time
- Resource consumption

- Energy consumption
- Green house emission

Leonard Paeleke, PhD Student

Slide 9

- Model quality

Survey - Approach

- Studies evaluate training of ML models for several learning tasks and data-parallel architectures
- Metrics: Model quality or training time

TABLE I: Model quality of distributed ML architectures on typical ML applications

	Parameter Server	In-network A	ggregation	Federated Learning	All-reduce approach	_		
img trans								
img class	o [27] + [6] o [23] - [24]	o [36] + [19]		+ [13] o [6] + [5]	o 13 o 27 o 23 + 24			
obj det		- 36		+ [10]				
lang mod	+ [27] + [39] o [23]	+ [36]		+ (5)	- [27] + [39] o [23]	_		
quest answ	+ [1]	+ [36]						
time-series pred			TABLE II: Training time of distributed ML architectures on typical ML applications					
click-through pred / Recommendation	+ [44]	+ [36]			Parameter Server	In-network Aggregation	Federated Learning	All-reduce approach
RL	o [22]	o [22]	img trans		- 16	o [36]		o [36] o [16]
channel decision	+ [10] (Beam-selection)		img class		- 27 + 6 o 16 - 23	o (36) + (19	+ [13] o [6] + [5]	o [36] o [13] + [27] + [16] + [23]
signature class			obj det			o [<mark>36</mark>]		o <mark>[36</mark>]
anomaly class			lang mod		- <mark>27) + 39</mark> o 16	+ 36	+ (5)	- [36] + [27] - [39] + [16]
code gen			quest answ	,	+ [11]	+ 36		- [36]
lang class (SQL intrusion)		+ 29	time-series	pred				
			click-throu	gh pred/ Recommendation	+ [44]	+ 36		- [36]
			RL		- [22]	+ 22		o <mark>[22</mark>]
			channel de	cision				
			signature c	lass			+ [13]	o [13]
			anomaly cl	ass				
			code gen					
			lang class	(SQL intrusion)				

Leonard Paeleke, PhD Student

HPI

Universitä

Survey - Results

Model quality:

- In many studies Client-Server architectures outperform Peer-to-Peer
- Federated Learning rarely compared to other architectures

Training time:

- Different measures used, e.g., wall-clock time and CPU time
- Improvements by reducing:
 - Communication overhead
 - Waiting time for stragglers
 - Time for parameter aggregation

Leonard Paeleke, PhD Student

Survey - Results

Challenges:

- Comparability between studies
- Lack of definitions, e.g., completion of training

Suggestion:

- Reference learning task with predefined model, hyperparameters, data set, fixed train-test split, and measurement for model quality
- Definition of training time
- Normalizing testbed by speed of CPUs/ GPUs

Leonard Paeleke, PhD Student

Leonard Paeleke PhD Student

Architecture impact training in

- Order of updates
- Age of information
- Time to convergence
- Energy consumption

Leonard Paeleke PhD Student

Un^{iversit}äx

Architecture impact training in

- Order of updates
- Age of information
- Time to convergence
- Energy consumption

Open question:

 Which data-parallel architecture to choose for a learning task?

Universiter orsedam

Architecture impact training in

- Order of updates
- Age of information
- Time to convergence
- Energy consumption

Open question:

Which data-parallel architecture to choose for a learning task?

Identified problem:

Comparability of studies

Leonard Paeleke PhD Student

Architecture impact training in

- Order of updates
- Age of information
- Time to convergence
- Energy consumption

Open question:

Which data-parallel architecture to choose for a learning task?

Identified problem:

Comparability of studies

Suggestion:

- Reference testbed
- Normalization of training

Leonard Paeleke PhD Student

Architecture impact training in

- Order of updates
- Age of information
- Time to convergence
- Energy consumption

Open question:

Which data-parallel architecture to choose for a learning task?

Identified problem:

Comparability of studies

Suggestion:

- Reference testbed
- Normalization of training

Leonard Paeleke PhD Student

Thank you for your attention!