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Introduction

Empirical Risk Minimization (ERM)

Objective: Given a data memory/set R containing N data points ,

min
x∈Rd

1
N

N∑
i=1

fi (x),

where fi (x) is the loss associated with the i-th data point.

Problem

• Large-scale data setting: N is typically very large (ImageNet etc.)

• Global optimization approaches and even plain gradient descent are impractical.
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Introduction

Batch SGD solution for ERM

Initialize x ∈ Rd .
Fix a regularizer r(·).
Fix step-size α > 0.
repeat:

1: Sample M ≪ N data points im from R.

2: x ←− x − α

(
1
M

M∑
m=1
∇x fim (x) +∇x r(x)

) Worker Memory R

Advantage

• For “small” M (depends on memory and fi (x)) all ∇x fim (x) +∇x r(x) can be
computed efficiently on a single machine/node/worker/agent.
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Underlying problem setup in ERM

Unconstrained Stochastic Optimization Problem

Objective:

min
x∈Rd

f (x),

with objective f : Rd → R of the form

f (x) := E [F (x ;ω)] =
∫

ω∈Ω

F (x ;ω)dP(ω)

for some random function F : Rd × Ω→ R and underlying probability space (Ω,F ,P).

Stochastic gradient descent (SGD) with constant step-size α > 0

At every discrete time-step n do:

1. Observe sample ωn ∈ Ω;

2. xn+1 = xn − α∇xF (xn;ωn);
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Asynchronous multi-processor SGD

SGD on processor i ∈ V := {1, . . . ,D}

repeat:

1: Read current iterate x from shared memory.

2: Sample data ω ∈ R from shared memory.

3: Compute stochastic gradient ∇xF (x ;ω)

4: Overwrite current global iterate with
x − α∇xF (x ;ω) in shared memory.

Shared Memory

Worker
1

Worker
D

R ⊂ Ω
Global variable x

Advantage

Parallel computation of multiple stochastic gradients.

Problem
• Step 3 is the computational bottleneck.

• Step 2 and 3 take different time for heterogeneous machines.
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Asynchronous multi-processor SGD (continued)

Example

• While processor 1 runs step 2 & 3, the global variable may be updated K times.
=⇒ When processor 1 applies SGD step (step 4), the stochastic gradient is K time
steps old!

Hypothetical global clock n

• n runs faster than every local iterate counter at each worker.

• E.g. union over all local time-steps in [0,∞), where workers read and write on the
memory. Then enumerate.

Example (continued)

The global iterate experiences the gradient error:

∇xF (xn;ω)−∇xF (xn−K ;ω)
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Asynchronous coordinate-wise SGD

SGD on processor i ∈ V for coordinate x i ∈ Rd i

, d =
∑D

i=1 d
i

repeat:

1: Read current iterate x from shared memory.

2: Sample data ω ∈ R from shared memory.

3: Compute stochastic gradient ∇x i F (x ;ω)

4: Overwrite i-th coordinate of global iterate
with x i − α∇x i F (x ;ω) in shared memory.

Shared Memory

Worker
1

Worker
D

R ⊂ Ω
Global variable x

Problem

• Additional asynchronous updates of each x i .

• Gradient errors:

∇x i F (xn;ω)−∇x i F (x
1
n−∆i1(n)

, . . . , xDn−∆iD (n);ω)

• ∆ij (n) can be viewed as Age of Information (AoI) random variables
(from the perspective of the hypothetical global clock)
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Fully distributed heterogeneous workers

• As of now: AoI/Delay was due to heterogeneous computing resources.

• Shared memory (or samples from environment) may be distributed.

• Example:
Agents locally store a coordinate x i and gets local samples ωi ∈ Ω from its local
environment.

Local Samples

Worker

Local variable x1

Worker

Worker

Worker

Local Samples

Local variable xD

Communication
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Distributed Asynchronous Stochastic Gradient Descent

AoI from the perspective of the i-th coordinate

• Define
x∆i (n)

:= (x1n−∆i1(n)
, . . . , xDn−∆iD (n)).

• Approximation of the global variable xn w.r.t hypothetical global clock n.

• At each tick of the global clock, at least one coordinate gets updated.

DASGD iteration

x in+1 = x in + αi
1Yn (i)∇xi F (x∆i (n)

;ωi
n),

with Yn ⊂ V for all n ≥ 0.

Remarks

• The AoI processes ∆ij (n) contain information delay due to heterogeneous updates
and/or communication.

• Main question: How do the AoI processes affect the rate of convergence?
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Recall problem formalization

Unconstrained Stochastic Optimization Problem

Let x i ∈ Rdi be a local variable with x = (x1, . . . , xD). Objective:

min
x∈Rd

f (x),

with objective f : Rd → R of the form

f (x) := E [F (x ;ω)] =
∫
ω∈Ω F (x ;ω)dP(ω)

for some random function F : Rd × Ω→ R.

DASGD iteration

x in+1 = x in + αi
1Yn (i)∇xi F (x∆i (n)

;ωi
n),

with Yn ⊂ V for all n ≥ 0.

Number of times the i-th coordinate gets updated

For every n ≥ 0, define

ν(n, i) =
n∑

k=0

1Yn (i).
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Assumptions

(A1) F (x ;ω) is differentiable in x for P-almost all ω ∈ Ω.

(A2) infx∈Rd f (x) > −∞.

(A3) The random processes w i
n are i .i .d .

(A4) ∇xF (x ;ω) has finite second moment: supx∈Rd E
[
∥∇xF (x ;ω)∥22

]
<∞.

(A5) E [∇xF (x ;ω)] is Lipschitz continuous.

(A6) lim inf
n→∞

ν(n,i)
n

> 0 for all i ∈ V .

Remarks

• (A3) can be weakened to dependent or Martingale noise.

• (A1) and (A4) =⇒ ∇x f (x) = ∇xE [F (x ;ω)] = E [∇xF (x ;ω)].

• (A5) =⇒

∥∇x i f (x
1, . . . , x j , . . . xD)−∇x i f (x

1, . . . , y j , . . . xD)∥≤ Lij∥x j − y j∥

for all x ∈ Rd and y j ∈ Rdj , with Lipschitz constant Lij for all (i , j) ∈ V × V .
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Rate of convergence analysis

Theorem

Define κi := {lim inf
n→∞

ν(n,i)
n
} ∈ (0, 1] for any i ∈ V , then

1
n

n−1∑
k=0

E
[
∥∇f (xk )∥22

]
≤

O
(
1
n

)
+O

max
i

αi

min
i

κi

+O


∑
i∈V

αi

κi

∑
j ̸=i

Lij

(
1

n

n−1∑
k=0

∆ij (k)

)
︸ ︷︷ ︸

local quantity


︸ ︷︷ ︸

:=εn

.

Remarks

• No separate bounds for individual ∇f (xk )
∣∣
i
as a function of ∆ij for j ̸= i .

• The slowest update rate is a bottleneck for the limiting neighborhood radius

ε := lim
n→∞

εn.

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent 13 / 19



Rate of convergence analysis

Theorem

Define κi := {lim inf
n→∞

ν(n,i)
n
} ∈ (0, 1] for any i ∈ V , then

1
n

n−1∑
k=0

E
[
∥∇f (xk )∥22

]
≤

O
(
1
n

)
+O

max
i

αi

min
i

κi

+O


∑
i∈V

αi

κi

∑
j ̸=i

Lij

(
1

n

n−1∑
k=0

∆ij (k)

)
︸ ︷︷ ︸

local quantity


︸ ︷︷ ︸

:=εn

.

Remarks

• No separate bounds for individual ∇f (xk )
∣∣
i
as a function of ∆ij for j ̸= i .

• The slowest update rate is a bottleneck for the limiting neighborhood radius

ε := lim
n→∞

εn.

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent 13 / 19



Rate of convergence analysis (continued)

Corollary

There exists a subsequence {nk}k≥0, such that

∇f (xnk )→ Bε(0) with high probability.

Another pespective

At every time step n sample x̃n from {x0, . . . , xn−1} uniformly at random, then

E
[
∥∇f (x̃n)∥22

]
→ Bε(0).
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Discussion of problems

Training quality vs. network and computing resources

∑
i∈V

αi

κi

∑
j ̸=i

Lij

(
1

n

n−1∑
k=0

∆ij (k)

)
︸ ︷︷ ︸

local quantity

(+) Effect of peak AoI gets averaged.

How close we come to a stationary point (ε) is affected by:

• level of asynchronicity 1
κi .

• problem/algorithm dynamics Lij .

• average AoI 1
n

∑n−1
k=0 ∆ij (k).

Example

We can assign multiple “bad” workers to one coordinate i :

• 1
κi small, but 1

n

∑n−1
k=0 ∆ij (k) large.
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Discussion of problems

Problem 1: Online Edge Computational Task Offloading

D synchronous workers 1 for each coordinate

Theorem shows that we should minimize∑
i∈V

[∑
j ̸=i L

ij
(

1
n

∑n−1
k=0 ∆ij (k)

)]
(−) Non-trivial problem since Lij are unknown and most likely different. =⇒

1. Joint estimation and scheduling problem.
2. Model free scheduling problem.
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Open problems

Problem 2: D asynchronous workers on whole x ∈ Rd

∑
i∈V

[∑
j ̸=i L

ij
(

1
n

∑n−1
k=0 ∆(k)

)]
• ∆(n) is now a function of the level of asynchronicity of the workers.

Problem 3: Multiple parallel training runs

• Try to minimize multiple f (x), g(x), h(x) in parallel on a set of workers.

• Objective, e.g., same make span.
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Conclusions

Final remarks

• When do lim
n→∞

1
n

∑n−1
k=0 ∆ij (k) exist? [1]

• Non-stationary data and constant step-size.

• Distributed Multi-Agent Reinforcement Learning [2]

Thank you for your attention!
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