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Agenda

Distributed asynchronous stochastic gradient descent (DASGD) for machine learning.

A rate of convergence result for constant step-size DASGD.

Discussion of open problems from a resource scheduling and computer networks
perspective: training quality vs. network resources
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Distributed asynchronous stochastic gradient descent (DASGD) for machine learning.
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Introduction

Empirical Risk Minimization (ERM)

Objective: Given a data memory/set R containing N data points ,

N
min % > fi(x),

x€RI i1

where f;(x) is the loss associated with the i-th data point.
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Introduction

ion (ERM)

Objective: Given a data memory/set R containing N data points ,

N
.1
min & fi(x),
w2 W 2 0

where f;(x) is the loss associated with the i-th data point.
v

® Large-scale data setting: N is typically very large (ImageNet etc.)

® Global optimization approaches and even plain gradient descent are impractical.
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Introduction

Batch SGD solution for ERM

Initialize x € RY.

Fix a regularizer r(-). 291"

Fix Ste.p—SIZe a > 0. ~ Ly

ESpEats o | Worker| @ <=======| Memory R
1: Sample M < N data points i, from R. ! Ly

2 x+—x—« (,\1/, g: fo,-m(x)—f—vxr(x)) s 4 d
m=1
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Introduction

Batch SGD solution for ERM

Initialize x € RY.

Fix a regularizer r(-). 291"

Fix Ste.p—SIZe a > 0. ~ Ly

ESpEats o | Worker| @ <=======| Memory R
1: Sample M < N data points i, from R. ! Ly

2 x+—x—« (,\1/, g: fo,-m(x)—f—vxr(x)) s 4 d
m=1

Advantage

® For “small” M (depends on memory and fi(x)) all Vxf; (x)+ Vxr(x) can be
computed efficiently on a single machine/node/worker/agent.
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Underlying problem setup in ERM

Unconstrained Stochastic Optimization Problem

Objective:

min f(x),
xER

with objective f : RY — R of the form

f(x) =E[F(x;w)]l= [ F(xw)dP(w)
we

for some random function F : RY x Q — R and underlying probability space (2, F, P).
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Underlying problem setup in ERM

Unconstrained Stochastic Optimization Problem

Objective:

min f(x),
xER

with objective f : RY — R of the form

f(x) =E[F(x;w)]l= [ F(xw)dP(w)
we

for some random function F : RY x Q — R and underlying probability space (2, F, P).

Stochastic gradient descent (SGD) with constant step-size o > 0

At every discrete time-step n do:
1. Observe sample w, € Q;

2. Xpt1 = Xn — OIVXF(Xn;wn);

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Asynchronous multi-processor SGD

Tt
repeat: ~ Worker
1: Read current iterate x from shared memory. _|]| !
2: Sample data w € R from shared memory. 111 . S]W%d Mg“‘)ry
g C
3: Compute stochastic gradient VxF(x;w) 3 A { : a | Global variable
. . . o
4: Overwrite current global iterate with o [Worker||
x — aVxF(x;w) in shared memory. oAl P e

LI IR
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Asynchronous multi-processor SGD

Tt
repeat: —
1: Read current iterate x from shared memory. : 1

2: Sample data w € R from shared memory. IR

3: Compute stochastic gradient VxF(x;w) 3 A {
4: Overwrite current global iterate with o] [ Worker :
x — aVxF(x;w) in shared memory. oAl P e

I )

Shared Memory
RCQ
Global variable

Advantage

Parallel computation of multiple stochastic gradients.
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Asynchronous multi-processor SGD

Tt
repeat: ~ Worker
1: Read current iterate x from shared memory. _|]| !
2: Sample data w € R from shared memory. 111 . S]W%d Mg“‘)ry
g C
3: Compute stochastic gradient VxF(x;w) 3 A { : a | Global variable
. . . o
4: Overwrite current global iterate with o [Worker||
x — aVxF(x;w) in shared memory. oAl P e

LI IR

Advantage

Parallel computation of multiple stochastic gradients.

Problem

® Step 3 is the computational bottleneck.

® Step 2 and 3 take different time for heterogeneous machines.

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Asynchronous multi-processor SGD (continued)

® While processor 1 runs step 2 & 3, the global variable may be updated K times.
— When processor 1 applies SGD step (step 4), the stochastic gradient is K time
steps old!

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Asynchronous multi-processor SGD (continued)

® While processor 1 runs step 2 & 3, the global variable may be updated K times.
— When processor 1 applies SGD step (step 4), the stochastic gradient is K time
steps old!

v

Hypothetical global clock n
® n runs faster than every local iterate counter at each worker.

® E.g. union over all local time-steps in [0, c0), where workers read and write on the
memory. Then enumerate.

Example (continued)

The global iterate experiences the gradient error:

VxF(xniw) — VxF(Xp—k; w)

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Asynchronous coordinate-wise SGD

N processo
1 te
. .
repeat: oS Worker
1: Read current iterate x from shared memory. _|| !
2: Sample data w € R from shared memory. I ) Shaf%l M?;UDW
8 C
3: Compute stochastic gradient Vi F(x;w) 1t : . | Global variable »
4: Overwrite i-th coordinate of global iterate || Worker|| J
with x' — aV i F(x;w) in shared memory. ]| ° |l
s dd
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Asynchronous coordinate-wise SGD

i 3 4
. -
repeat: -~ Worker
1: Read current iterate x from shared memory. _|| !
2: Sample data w € R from shared memory. 11 . Shar%l M?;UDW
H C
3: Compute stochastic gradient Vi F(x;w) 1t : . | Global variable »
. . . . =
4: Overwrite i-th coordinate of global iterate || Worker|| J
with x' — aV i F(x;w) in shared memory. ]| ° |l
¢ éd

e Additional asynchronous updates of each x'.

® Gradient errors:
Vi F(xn; w) — VX,-F(X,LAH("), e 7XnD—A,»D(n); w)

® Ajj(n) can be viewed as Age of Information (Aol) random variables
(from the perspective of the hypothetical global clock)

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Fully distributed heterogeneous workers

® As of now: Aol/Delay was due to heterogeneous computing resources.
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Fully distributed heterogeneous workers

® As of now: Aol/Delay was due to heterogeneous computing resources.
® Shared memory (or samples from environment) may be distributed.

® Example:
Agents locally store a coordinate x' and gets local samples w' € Q from its local
environment.

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Fully distributed heterogeneous workers

® As of now: Aol/Delay was due to heterogeneous computing resources.
® Shared memory (or samples from environment) may be distributed.

® Example:
Agents locally store a coordinate x' and gets local samples w' € Q from its local
environment.

) A 4 ) A 4
- o o - Lo
o] [Worker| Lo - Communication e Worker| Le
- =) o / 4 e o
¢ & & Local Samples | === Local Samples 0 o
) i A 4 Local variable z* Sooc Local variable 2P L a2 4
- . . o =3
o [Worker| |- # X o |[Worker| |-o
- o - =3
'K K 'K
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Distributed Asynchronous Stochastic Gradient Descent

Aol from the perspective of the i-th coordinate

® Define
(] D
Xni(n) = (Xn—A,'l(n)7 AR Xn—A,-D(n))‘
® Approximation of the global variable x, w.r.t hypothetical global clock n.

® At each tick of the global clock, at least one coordinate gets updated.

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Distributed Asynchronous Stochastic Gradient Descent

Aol from the perspective of the i-th coordinate

® Define
(] D
Xni(n) = (Xn—A,'l(n)7 AR Xn—A,-D(n))‘
® Approximation of the global variable x, w.r.t hypothetical global clock n.

® At each tick of the global clock, at least one coordinate gets updated.

DASGD iteration

XII;+1 = Xri1 + ail Yn(i)VXi F(XA,-(n) ; w;):

with Y, C V for all n > 0.
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Distributed Asynchronous Stochastic Gradient Descent

Aol from the perspective of the i-th coordinate

® Define
(] D
Xni(n) = (Xn—A,'l(n)7 AR Xn—A,-D(n))‘
® Approximation of the global variable x, w.r.t hypothetical global clock n.

® At each tick of the global clock, at least one coordinate gets updated.

DASGD iteration

XII;+1 = Xri1 + ail Yn(i)VXi F(XA,-(n) ; w;):

with Y, C V for all n > 0.

® The Aol processes Aj(n) contain information delay due to heterogeneous updates
and/or communication.

® Main question: How do the Aol processes affect the rate of convergence?

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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A rate of convergence result for constant step-size DASGD.
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Unconstrained Stochastic Optimization Problem

Let x' € RY be a local variable with x = (x!,...,xP). Objective:

min f(x),
xER

with objective f : RY — R of the form

f(x) =E[F(x;w)] = [

weq F(xiw)dP(w)

for some random function F : R? x Q — R.

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Recall problem formalization

Unconstrained Stochastic Optimization Problem

Let x' € RY be a local variable with x = (x!,...,xP). Objective:

min f(x),
xER

with objective f : RY — R of the form

f(x) =E[F(x;w)] = [

weq F(xiw)dP(w)

for some random function F : R? x Q — R.

DASGD iteration

Xpi1 = X+ &' Ly, () Vi F(x,(n)i wh)»
with Y, C V for all n > 0.
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Recall problem formalization

Unconstrained Stochastic Optimization Problem

Let x' € RY be a local variable with x = (x!,...,xP). Objective:

min f(x),
xER

with objective f : RY — R of the form

f(x) =E[F(x;w)] = [

weq F(xiw)dP(w)

for some random function F : R? x Q — R.

DASGD iteration

Xpi1 = X+ &' Ly, () Vi F(x,(n)i wh)»
with Y, C V for all n > 0.

Number of times the i-th coordinate gets updated

For every n > 0, define

v(n,i) =Y ly,(i).
k=0

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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(A1
(A2) inf cpd f(x) > —oo.

F(x; w) is differentiable in x for P-almost all w € Q.

—

(A4) VxF(x;w) has finite second moment: sup, g E [[|VxF(x;w)||3] < oo.
(A5
(A6

[VxF(x;w)] is Lipschitz continuous.

u(n i)

>0 forall i € V.

)

) in

A3) The random processes w/, are i.i.d.
)

) E

) I|m |nf

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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(A1
(A2) inf cpd f(x) > —oo.

F(x; w) is differentiable in x for P-almost all w € Q.

—

(A4) VxF(x;w) has finite second moment: sup, g E [[|VxF(x;w)||3] < oo.
(A5
(A6

® (A3) can be weakened to dependent or Martingale noise.
® (Al) and (A4) = Vif(x) = ViE [F(x;w)] = E [VxF(x; w)].
®* (A5) =

E [VxF(x;w)] is Lipschitz continuous.

u(n i)

)
) in
A3) The random processes w/, are i.i.d.
)
)
)

I|m|nf >0 forall i € V.

IV FOet, o, xP) = WOyl P L —

for all x € R and y/ € RY, with Lipschitz constant L7 for all (i,j)e Vx V.

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Rate of convergence analysis

Define k' :== {Iirlinf @} € (0,1] for any i € V, then
n oo

n—1
7 L E[IVF(a)lE] <
k=0

maxai Oéi 1 n—1
1 f E = E ij ,E : .
oG +o min &/ o v j;éiL <nk_0AU(k)>

local quantity

Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Rate of convergence analysis

Define k' :== {Iirlinf @} € (0,1] for any i € V, then
n oo

n—1
7 L E[IVF(a)lE] <
k=0

maxai Oéi 1 n—1
1 f E = E ij ,E : .
oG +o min &/ o v j;éiL <nk_0AU(k)>

local quantity

—ehn

® No separate bounds for individual Vf(xk)|'. as a function of Aj; for j # i.

® The slowest update rate is a bottleneck for the limiting neighborhood radius

e:= lim &".
n—oo

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Rate of convergence analysis (continued)

There exists a subsequence {n,}¢>o, such that

V£ (xn,) — Be(0) with high probability.

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Rate of convergence analysis (continued)

There exists a subsequence {n,}¢>o, such that

V£ (xn,) — Be(0) with high probability.

Another pespective

At every time step n sample X, from {xo, ..., xn—1} uniformly at random, then

E [ VF(%n)II3] — B=(0).

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Agenda

Discussion of open problems from a resource scheduling and computer networks
perspective: training quality vs. network resources
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Discussion of problems

Training quality vs. network and computing resources

local quantity

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Discussion of problems

lity vs. network and computing resources

1 n—1
e |20 (A aw)
J#i k=0

local quantity

(+) Effect of peak Aol gets averaged.
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Discussion of problems

lity vs. network and computing resources

1 n—1
e |20 (A aw)
J#i k=0

local quantity

(+) Effect of peak Aol gets averaged.

How close we come to a stationary point (¢) is affected by:
® level of asynchronicity %
® problem/algorithm dynamics L.
® average Aol %Zz;& Aji(k).
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Discussion of problems

lity vs. network and computing resources

1 n—1
e |20 (A aw)
J#i k=0

local quantity

(+) Effect of peak Aol gets averaged.
How close we come to a stationary point (¢) is affected by:

® level of asynchronicity %

® problem/algorithm dynamics L,
® average Aol %ZZ;& Aji(k).

We can assign multiple “bad” workers to one coordinate i:
1 1 -1
e = small, but £ 37775 Aj(k) large.

i

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Discussion of problems

Problem 1: Online Edge Computational Task Offloading

7+ Adaptive
offloading
policy

Cloud Layer

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Discussion of problems

Problem 1: Online Edge Computational Task Offloading

7;: Adaptive
offloading
policy

Cloud Layer

Fog Laver

m
o

@
s

D synchronous workers 1 for each coordinate

Theorem shows that we should minimize

L (L=l AL
T[St (5505 2900
(=) Non-trivial problem since LV are unknown and most likely different. =

1. Joint estimation and scheduling problem.
2. Model free scheduling problem.

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Open problems

Problem 2: D asynchronous workers on whole x € R?
ij (1 n—1
T[St (FTis aw)]

® A(n) is now a function of the level of asynchronicity of the workers.

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Open problems

Problem 2: D asynchronous workers on whole x € R?

P2 (S 7 (3 255 A))

® A(n) is now a function of the level of asynchronicity of the workers.

Problem 3: Multiple parallel training runs

® Try to minimize multiple f(x), g(x), h(x) in parallel on a set of workers.

® Objective, e.g., same make span.

A. Redder - Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent
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Final remarks

q 1 —1 q
® When do nI—Iyn;o =Y ng Ajj(k) exist? [1]
® Non-stationary data and constant step-size.
® Distributed Multi-Agent Reinforcement Learning [2]

Thank you for your attention!

[1] Redder, A., Ramaswamy, A., Karl, H. “Age of Information Process under Strongly Mixing Communication —
Moment Bound, Mixing Rate and Strong Law”, Proc. 58th Allerton Conference on Communication, Control, and
Computing (2022)

[2] Redder, A., Ramaswamy, A., Karl, H. “Asymptotic Convergence of Deep Multi-Agent Actor-Critic
Algorithms.” https://arxiv.org/abs/2201.00570 (2022)
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