

Rate of Convergence Analysis of Constant Step-Size Distributed Stochastic Gradient Descent 3rd KuVS Fachgespräch "Machine Learning & Networking" 6th October 2022

Adrian Redder, Paderborn University

Arunselvan Ramaswamy, Karlstad University Holger Karl, Hasso-Plattner-Institut Potsdam

۰

Part 1

Distributed asynchronous stochastic gradient descent (DASGD) for machine learning.

Part 2

A rate of convergence result for constant step-size DASGD.

Part 3

Discussion of open problems from a resource scheduling and computer networks perspective: training quality vs. network resources

Part 1

Distributed asynchronous stochastic gradient descent (DASGD) for machine learning.

Part 2

A rate of convergence result for constant step-size DASGD.

Part 3

Discussion of open problems from a resource scheduling and computer networks perspective: training quality vs. network resources

Empirical Risk Minimization (ERM)

Objective: Given a data memory/set R containing N data points,

$$
\min_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N f_i(x),
$$

where $f_i(x)$ is the loss associated with the *i*-th data point.

Empirical Risk Minimization (ERM)

Objective: Given a data memory/set R containing N data points,

$$
\min_{x \in \mathbb{R}^d} \frac{1}{N} \sum_{i=1}^N f_i(x),
$$

where $f_i(x)$ is the loss associated with the *i*-th data point.

Problem

- Large-scale data setting: N is typically very large (ImageNet etc.)
- Global optimization approaches and even plain gradient descent are impractical.

Batch SGD solution for ERM

Initialize $x \in \mathbb{R}^d$. Fix a regularizer $r(\cdot)$. Fix step-size $\alpha > 0$. repeat: 1: Sample $M \ll N$ data points i_m from \mathcal{R} . 2: $x \leftarrow x - \alpha \left(\frac{1}{M} \sum_{m=1}^{M} \nabla_x f_{i_m}(x) + \nabla_x r(x) \right)$ N_{orker} $\left| \right|$ \longrightarrow Memory \mathcal{R}

Batch SGD solution for ERM

Initialize $x \in \mathbb{R}^d$. Fix a regularizer $r(\cdot)$. Fix step-size $\alpha > 0$.

repeat:

1: Sample $M \ll N$ data points i_m from \mathcal{R} .

$$
2: x \longleftarrow x - \alpha \left(\frac{1}{M} \sum_{m=1}^{M} \nabla_{x} f_{i_{m}}(x) + \nabla_{x} r(x) \right)
$$

Advantage

 $\bullet\,$ For "small" M (depends on memory and $f_i(x))$ all $\nabla_x f_{i_m}(x)+\nabla_x r(x)$ can be computed efficiently on a single machine/node/worker/agent.

Underlying problem setup in ERM

Unconstrained Stochastic Optimization Problem

Objective:

$$
\min_{x\in\mathbb{R}^d}f(x),
$$

with objective $f : \mathbb{R}^d \to \mathbb{R}$ of the form

$$
f(x) := \mathbb{E}\left[F(x; \omega)\right] = \int\limits_{\omega \in \Omega} F(x; \omega) d\mathbb{P}(\omega)
$$

for some random function $F : \mathbb{R}^d \times \Omega \to \mathbb{R}$ and underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Underlying problem setup in ERM

Unconstrained Stochastic Optimization Problem

Objective:

$$
\min_{x\in\mathbb{R}^d}f(x),
$$

with objective $f : \mathbb{R}^d \to \mathbb{R}$ of the form

$$
f(x) := \mathbb{E}\left[F(x; \omega)\right] = \int\limits_{\omega \in \Omega} F(x; \omega) d\mathbb{P}(\omega)
$$

for some random function $F : \mathbb{R}^d \times \Omega \to \mathbb{R}$ and underlying probability space $(\Omega, \mathcal{F}, \mathbb{P})$.

Stochastic gradient descent (SGD) with constant step-size $\alpha > 0$

At every discrete time-step n do:

1. Observe sample $ω_n ∈ Ω$;

2.
$$
x_{n+1} = x_n - \alpha \nabla_x F(x_n; \omega_n);
$$

Asynchronous multi-processor SGD

SGD on processor $i \in V := \{1, \ldots, D\}$

repeat:

- 1: Read current iterate x from shared memory.
- 2: Sample data $\omega \in \mathcal{R}$ from shared memory.
- 3: Compute stochastic gradient $\nabla_x F(x; \omega)$
- 4: Overwrite current global iterate with $x - \alpha \nabla_x F(x; \omega)$ in shared memory.

Asynchronous multi-processor SGD

SGD on processor $i \in V := \{1, \ldots, D\}$

repeat:

- 1: Read current iterate x from shared memory.
- 2: Sample data $\omega \in \mathcal{R}$ from shared memory.
- 3: Compute stochastic gradient $\nabla_x F(x; \omega)$
- 4: Overwrite current global iterate with $x - \alpha \nabla_x F(x; \omega)$ in shared memory.

Advantage

Parallel computation of multiple stochastic gradients.

Asynchronous multi-processor SGD

SGD on processor $i \in V := \{1, \ldots, D\}$

repeat:

- 1: Read current iterate x from shared memory.
- 2: Sample data $\omega \in \mathcal{R}$ from shared memory.
- 3: Compute stochastic gradient $\nabla_x F(x; \omega)$
- 4: Overwrite current global iterate with $x - \alpha \nabla_x F(x; \omega)$ in shared memory.

Advantage

Parallel computation of multiple stochastic gradients.

Problem

- Step 3 is the computational bottleneck.
- Step 2 and 3 take different time for heterogeneous machines.

Asynchronous multi-processor SGD (continued)

Example

• While processor 1 runs step 2 & 3, the global variable may be updated K times. \implies When processor 1 applies SGD step (step 4), the stochastic gradient is K time steps old!

Asynchronous multi-processor SGD (continued)

Example

• While processor 1 runs step 2 & 3, the global variable may be updated K times. \implies When processor 1 applies SGD step (step 4), the stochastic gradient is K time steps old!

Hypothetical global clock n

- *n* runs faster than every local iterate counter at each worker.
- E.g. union over all local time-steps in $[0, \infty)$, where workers read and write on the memory. Then enumerate.

Example (continued)

The global iterate experiences the gradient error:

$$
\nabla_{\mathsf{x}} F(x_n; \omega) - \nabla_{\mathsf{x}} F(x_{n-K}; \omega)
$$

Asynchronous coordinate-wise SGD

SGD on processor $i \in V$ for coordinate $x^i \in \mathbb{R}^{d^i}$, $d = \sum_{i=1}^D d^i$

repeat:

- 1: Read current iterate x from shared memory.
- 2: Sample data $\omega \in \mathcal{R}$ from shared memory.
- 3: Compute stochastic gradient $\nabla_{x^i} F(x; \omega)$
- 4: Overwrite i-th coordinate of global iterate with $x^i - \alpha \nabla_{x^i} F(x; \omega)$ in shared memory.

Asynchronous coordinate-wise SGD

SGD on processor $i \in V$ for coordinate $x^i \in \mathbb{R}^{d^i}$, $d = \sum_{i=1}^D d^i$

repeat:

- 1: Read current iterate x from shared memory.
- 2: Sample data $\omega \in \mathcal{R}$ from shared memory.
- 3: Compute stochastic gradient $\nabla_{x^i} F(x; \omega)$
- 4: Overwrite i-th coordinate of global iterate with $x^i - \alpha \nabla_{x^i} F(x; \omega)$ in shared memory.

Problem

- Additional asynchronous updates of each x^i .
- Gradient errors:

$$
\nabla_{x^i} F(x_n; \omega) - \nabla_{x^i} F(x_{n-\Delta_{i1}(n)}^1, \ldots, x_{n-\Delta_{iD}(n)}^D; \omega)
$$

• $\Delta_{ii}(n)$ can be viewed as Age of Information (AoI) random variables (from the perspective of the hypothetical global clock)

Fully distributed heterogeneous workers

• As of now: AoI/Delay was due to heterogeneous computing resources.

Fully distributed heterogeneous workers

- As of now: AoI/Delay was due to heterogeneous computing resources.
- Shared memory (or samples from environment) may be distributed.
- Example:

Agents locally store a coordinate x^i and gets local samples $\omega^i \in \Omega$ from its local environment.

Fully distributed heterogeneous workers

- As of now: AoI/Delay was due to heterogeneous computing resources.
- Shared memory (or samples from environment) may be distributed.
- Example:

Agents locally store a coordinate x^i and gets local samples $\omega^i \in \Omega$ from its local environment.

Distributed Asynchronous Stochastic Gradient Descent

AoI from the perspective of the i -th coordinate

• Define

$$
x_{\Delta_i(n)} := (x_{n-\Delta_{i1}(n)}^1, \ldots, x_{n-\Delta_{iD}(n)}^D).
$$

- Approximation of the global variable x_n w.r.t hypothetical global clock n.
- At each tick of the global clock, at least one coordinate gets updated.

Distributed Asynchronous Stochastic Gradient Descent

AoI from the perspective of the i -th coordinate

• Define

$$
x_{\Delta_i(n)} := (x_{n-\Delta_{i1}(n)}^1, \ldots, x_{n-\Delta_{iD}(n)}^D).
$$

- Approximation of the global variable x_n w.r.t hypothetical global clock n.
- At each tick of the global clock, at least one coordinate gets updated.

DASGD iteration

$$
x_{n+1}^i = x_n^i + \alpha^i \mathbb{I}_{Y_n}(i) \nabla_{x_i} F(x_{\Delta_i(n)}; \omega_n^i),
$$

with $Y_n \subset V$ for all $n > 0$.

Distributed Asynchronous Stochastic Gradient Descent

AoI from the perspective of the i -th coordinate

• Define

$$
x_{\Delta_i(n)} := (x_{n-\Delta_{i1}(n)}^1, \ldots, x_{n-\Delta_{iD}(n)}^D).
$$

- Approximation of the global variable x_n w.r.t hypothetical global clock n.
- At each tick of the global clock, at least one coordinate gets updated.

DASGD iteration

$$
x_{n+1}^i = x_n^i + \alpha^i \mathbb{I}_{Y_n}(i) \nabla_{x_i} F(x_{\Delta_i(n)}; \omega_n^i),
$$

with $Y_n \subset V$ for all $n > 0$.

Remarks

- The AoI processes $\Delta_{ii}(n)$ contain information delay due to heterogeneous updates and/or communication.
- Main question: How do the AoI processes affect the rate of convergence?

Part 1

Distributed asynchronous stochastic gradient descent (DASGD) for machine learning.

Part 2

A rate of convergence result for constant step-size DASGD.

Part 3

Discussion of open problems from resource scheduling and computer networks perspective.

Recall problem formalization

Unconstrained Stochastic Optimization Problem

Let $x^i \in \mathbb{R}^{d_i}$ be a local variable with $x = (x^1, \dots, x^D)$. Objective:

 $\min_{x \in \mathbb{R}^d} f(x)$,

with objective $f : \mathbb{R}^d \to \mathbb{R}$ of the form

$$
f(x) \coloneqq \mathbb{E}\left[F(x; \omega)\right] = \int_{\omega \in \Omega} F(x; \omega) d\mathbb{P}(\omega)
$$

for some **random function** $F : \mathbb{R}^d \times \Omega \to \mathbb{R}$.

Recall problem formalization

Unconstrained Stochastic Optimization Problem

Let $x^i \in \mathbb{R}^{d_i}$ be a local variable with $x = (x^1, \dots, x^D)$. Objective:

 $\min_{x \in \mathbb{R}^d} f(x)$,

with objective $f : \mathbb{R}^d \to \mathbb{R}$ of the form

$$
f(x) \coloneqq \mathbb{E}\left[F(x; \omega)\right] = \int_{\omega \in \Omega} F(x; \omega) d\mathbb{P}(\omega)
$$

for some random function $F: \mathbb{R}^d \times \Omega \to \mathbb{R}$.

DASGD iteration

$$
x_{n+1}^i = x_n^i + \alpha^{i} \mathbb{I}_{Y_n}(i) \nabla_{x_i} F(x_{\Delta_i(n)}; \omega_n^i),
$$

with $Y_n \subset V$ for all $n > 0$.

Recall problem formalization

Unconstrained Stochastic Optimization Problem

Let $x^i \in \mathbb{R}^{d_i}$ be a local variable with $x = (x^1, \dots, x^D)$. Objective:

 $\min_{x \in \mathbb{R}^d} f(x)$,

with objective $f : \mathbb{R}^d \to \mathbb{R}$ of the form

$$
f(x) \coloneqq \mathbb{E}\left[F(x; \omega)\right] = \int_{\omega \in \Omega} F(x; \omega) d\mathbb{P}(\omega)
$$

for some random function $F: \mathbb{R}^d \times \Omega \to \mathbb{R}$.

DASGD iteration

$$
x_{n+1}^i = x_n^i + \alpha^{i} \mathbb{1}_{Y_n}(i) \nabla_{x_i} F(x_{\Delta_i(n)}; \omega_n^i),
$$

with $Y_n \subset V$ for all $n > 0$.

Number of times the i-th coordinate gets updated

For every $n \geq 0$, define

$$
\nu(n,i)=\sum_{k=0}^n \mathbb{1}_{Y_n}(i).
$$

Assumptions

- (A1) $F(x; \omega)$ is differentiable in x for P-almost all $\omega \in \Omega$.
- (A2) inf_{x∈ℝd} $f(x) > -\infty$.
- (A3) The random processes w_n^i are *i.i.d.*
- (A4) $\nabla_x F(x; \omega)$ has finite second moment: $\sup_{x \in \mathbb{R}^d} \mathbb{E} \left[\|\nabla_x F(x; \omega)\|_2^2 \right] < \infty$.
- $(A5)$ $\mathbb{E} [\nabla_x F(x; \omega)]$ is Lipschitz continuous.

$$
\text{(A6) } \liminf_{n \to \infty} \frac{\nu(n,i)}{n} > 0 \text{ for all } i \in V.
$$

Assumptions

- (A1) $F(x; \omega)$ is differentiable in x for P-almost all $\omega \in \Omega$.
- $(A2)$ inf_{x∈ℝd} $f(x) > -\infty$.
- (A3) The random processes w_n^i are *i.i.d.*
- (A4) $\nabla_x F(x; \omega)$ has finite second moment: $\sup_{x \in \mathbb{R}^d} \mathbb{E} \left[\|\nabla_x F(x; \omega)\|_2^2 \right] < \infty$.
- $(A5)$ $\mathbb{E} [\nabla_x F(x; \omega)]$ is Lipschitz continuous.

$$
\text{(A6) } \liminf_{n \to \infty} \frac{\nu(n,i)}{n} > 0 \text{ for all } i \in V.
$$

Remarks

- (A3) can be weakened to dependent or Martingale noise.
- (A1) and (A4) $\implies \nabla_x f(x) = \nabla_x \mathbb{E} [F(x; \omega)] = \mathbb{E} [\nabla_x F(x; \omega)].$

$$
\bullet \; \text{(A5)} \; \Longrightarrow \;
$$

$$
\|\nabla_{x^i} f(x^1,\ldots,x^j,\ldots,x^D) - \nabla_{x^i} f(x^1,\ldots,y^j,\ldots,x^D)\| \le L^{ij} \|x^j - y^j\|
$$

for all $x\in\mathbb{R}^d$ and $y^j\in\mathbb{R}^{d_j}$, with Lipschitz constant L^{ij} for all $(i,j)\in V\times V.$

Rate of convergence analysis

Theorem

Define
$$
\kappa^i := \{\liminf_{n \to \infty} \frac{\nu(n,i)}{n}\} \in (0,1]
$$
 for any $i \in V$, then

$$
\frac{1}{n} \sum_{k=0}^{n-1} \mathbb{E} \left[\|\nabla f(x_k)\|_2^2 \right] \leq \\ \mathcal{O}\left(\frac{1}{n}\right) + \mathcal{O}\left(\frac{\max\limits_{i} \alpha^i}{\min\limits_{i} \kappa^i}\right) + \mathcal{O}\left(\sum_{i \in V} \underbrace{\frac{\alpha^i}{\kappa^i} \left[\sum_{j \neq i} L^{ij} \left(\frac{1}{n} \sum_{k=0}^{n-1} \Delta_{ij}(k)\right)\right]}_{\text{local quantity}}\right).
$$

Rate of convergence analysis

Theorem

Define
$$
\kappa^i := \{\liminf_{n \to \infty} \frac{\nu(n,i)}{n}\} \in (0,1]
$$
 for any $i \in V$, then

$$
\frac{1}{n}\sum_{k=0}^{n-1}\mathbb{E}\left[\|\nabla f(x_k)\|_2^2\right] \leq \\ \mathcal{O}\left(\frac{1}{n}\right) + \mathcal{O}\left(\frac{\max\alpha^i}{\min\limits_{j\in\mathcal{N}}\kappa^j}\right) + \mathcal{O}\left(\sum_{i\in\mathcal{V}}\frac{\alpha^i}{\kappa^i}\left[\sum_{j\neq i}L^{ij}\left(\frac{1}{n}\sum_{k=0}^{n-1}\Delta_{ij}(k)\right)\right]\right).
$$
\n
$$
\frac{\log\left(\frac{\max\alpha^i}{\min\limits_{j\in\mathcal{N}}\kappa^j}\right)}{\log\left(\frac{\log\alpha^i}{\max\limits_{j\in\mathcal{N}}\kappa^j}\right)}.
$$

Remarks

- No separate bounds for individual $\nabla f(x_k)|_i$ as a function of Δ_{ij} for $j \neq i$.
- The slowest update rate is a bottleneck for the limiting neighborhood radius

$$
\varepsilon\coloneqq\lim_{n\to\infty}\varepsilon^n.
$$

Rate of convergence analysis (continued)

Corollary

There exists a subsequence ${n_k}_{k>0}$, such that

 $\nabla f(x_{n_k}) \rightarrow \mathcal{B}_{\varepsilon}(0)$ with high probability.

Rate of convergence analysis (continued)

Corollary

There exists a subsequence ${n_k}_{k>0}$, such that

 $\nabla f(x_{n_k}) \rightarrow \mathcal{B}_{\varepsilon}(0)$ with high probability.

Another pespective

At every time step *n* sample \tilde{x}_n from $\{x_0, \ldots, x_{n-1}\}$ uniformly at random, then

 $\mathbb{E} \left[\|\nabla f(\tilde{x}_n)\|_2^2 \right] \to \mathcal{B}_{\varepsilon}(0).$

Part 1

Distributed asynchronous stochastic gradient descent (DASGD) for machine learning.

Part 2

A rate of convergence result for constant step-size DASGD.

Part 3

Discussion of open problems from a resource scheduling and computer networks perspective: training quality vs. network resources

Training quality vs. network and computing resources

$$
\sum_{i\in V}\frac{\alpha^i}{\kappa^i}\left[\sum_{j\neq i}L^{ij}\left(\frac{1}{n}\sum_{k=0}^{n-1}\Delta_{ij}(k)\right)\right]
$$

local quantity

Training quality vs. network and computing resources

$$
\sum_{i \in V} \underbrace{\frac{\alpha^i}{\kappa^i} \left[\sum_{j \neq i} L^{ij} \left(\frac{1}{n} \sum_{k=0}^{n-1} \Delta_{ij}(k) \right) \right]}_{\text{local quantity}}
$$

(+) Effect of peak AoI gets averaged.

Training quality vs. network and computing resources

$$
\sum_{i \in V} \underbrace{\frac{\alpha^i}{\kappa^i} \left[\sum_{j \neq i} L^{ij} \left(\frac{1}{n} \sum_{k=0}^{n-1} \Delta_{ij}(k) \right) \right]}_{\text{local quantity}}
$$

(+) Effect of peak AoI gets averaged.

How close we come to a stationary point (ε) is affected by:

- level of asynchronicity $\frac{1}{\kappa^i}$.
- problem/algorithm dynamics L^{ij} .
- average AoI $\frac{1}{n}\sum_{k=0}^{n-1}\Delta_{ij}(k)$.

Training quality vs. network and computing resources

$$
\sum_{i \in V} \underbrace{\frac{\alpha^i}{\kappa^i} \left[\sum_{j \neq i} L^{ij} \left(\frac{1}{n} \sum_{k=0}^{n-1} \Delta_{ij}(k) \right) \right]}_{\text{local quantity}}
$$

(+) Effect of peak AoI gets averaged.

How close we come to a stationary point (ε) is affected by:

- level of asynchronicity $\frac{1}{\kappa^i}$.
- problem/algorithm dynamics L^{ij} .
- average AoI $\frac{1}{n}\sum_{k=0}^{n-1}\Delta_{ij}(k)$.

Example

We can assign multiple "bad" workers to one coordinate *i*:

•
$$
\frac{1}{\kappa^i}
$$
 small, but $\frac{1}{n}\sum_{k=0}^{n-1} \Delta_{ij}(k)$ large.

Problem 1: Online Edge Computational Task Offloading

Problem 1: Online Edge Computational Task Offloading

D synchronous workers 1 for each coordinate

Theorem shows that we should minimize

$$
\sum_{i\in V}\left[\sum_{j\neq i}L^{ij}\left(\frac{1}{n}\sum_{k=0}^{n-1}\Delta_{ij}(k)\right)\right]
$$

 $(-)$ Non-trivial problem since L^{ij} are unknown and most likely different. \implies

- 1. Joint estimation and scheduling problem.
- 2. Model free scheduling problem.

Problem 2: D asynchronous workers on whole $x \in \mathbb{R}^d$

$$
\sum_{i\in V}\left[\sum_{j\neq i}L^{ij}\left(\frac{1}{n}\sum_{k=0}^{n-1}\Delta(k)\right)\right]
$$

• $\Delta(n)$ is now a function of the level of asynchronicity of the workers.

Problem 2: D asynchronous workers on whole $x \in \mathbb{R}^d$

$$
\sum_{i\in V}\left[\sum_{j\neq i}L^{ij}\left(\frac{1}{n}\sum_{k=0}^{n-1}\Delta(k)\right)\right]
$$

• $\Delta(n)$ is now a function of the level of asynchronicity of the workers.

Problem 3: Multiple parallel training runs

- Try to minimize multiple $f(x), g(x), h(x)$ in parallel on a set of workers.
- Objective, e.g., same make span.

Final remarks

- When do $\lim_{n\to\infty}\frac{1}{n}\sum_{k=0}^{n-1}\Delta_{ij}(k)$ exist? [1]
- Non-stationary data and constant step-size.
- Distributed Multi-Agent Reinforcement Learning [2]

Thank you for your attention!

^[1] Redder, A., Ramaswamy, A., Karl, H. "Age of Information Process under Strongly Mixing Communication – Moment Bound, Mixing Rate and Strong Law", Proc. 58th Allerton Conference on Communication, Control, and Computing (2022)

^[2] Redder, A., Ramaswamy, A., Karl, H. "Asymptotic Convergence of Deep Multi-Agent Actor-Critic Algorithms." https://arxiv.org/abs/2201.00570 (2022)