

Kiel University Christian-Albrechts-Universität zu Kiel

Activation Sparsity and Dynamic Pruning for Split Computing in Edge Al

Janek Haberer ¹, Olaf Landsiedel ^{1, 2}

¹ Kiel University, Germany ² Chalmers University of Technology, Sweden

GPT3

- Networks are increasing in size
 - Highest accuracies usually need many parameters
- Sensor devices have limited resources
- Big models can exceed these constraints
 - Use cloud to help via offloading
- Using wireless is very expensive
 - Latency
 - Energy

Use Split Computing!

- Split network
 - Part of inference on sensor
 - Remaining part on a server
- Why?
 - Reduces load on server
 - Slightly more privacy aware
 - Reduces network communication

Let's look into intermediate outputs

- ResNet-50 on CIFAR10
 - Most values are near zero
 - Many feature maps are black
- Zeros have no impact

How can we use sparsity for split computing?

- We analyze sparsity in individual layers
 - Activation sparsity
 - Feature map sparsity
 - Guidance for choosing splitting points
- We apply and evaluate dynamic pruning
 - Dynamic activation pruning
 - Dynamic feature map pruning
 - Show potential for compressing data

Classical pruning versus activation pruning

- Many works use pruning
 - Show high sparsity especially in dense layers
 - Usually based on weights
- Problem: weights are static
 - We are transmitting activations, not weights
 - Activations change depending on the input

How does dynamic pruning work?

How does dynamic pruning work?

- Prune according to threshold
 - Individual values
 - Feature maps
- We are not removing statically

Activation pruning

 $\tau = 1.5$

Feature map pruning $\tau = 1.5$

9	9	7
0	5	3
5	4	1

9	9	7	
0	5	3	Μ
5	4	1	

Where can we place splitting points?

- Trend goes towards parallel branches
 - Adds additional data
 - Choose points where branches end
- CNNs contain more data in early layers
 - Choose point as late as possible

Let's look into activation sparsity

- 12% of values between 0 and 0.05
 - Amounts to 94 KB
 - 690 KB remain

- 48% of values between 0 and 0.05
 - Amounts to 1.5 MB
 - 1.6 MB remain

How does dynamic activation pruning affect inference?

9	9	7
0	5	3
5	4	1

- Without fine-tuning:
 - Up to 70% reduction with 1% loss of accuracy
 - Going below 700 KB hurts
- With fine-tuning:
 - Up to 93% reduction with 1% loss of accuracy
 - Going below 200 KB hurts

Why should we use dynamic pruning?

All classes average compared to specific classes

- Significant differences between classes
 - Images of sharks are very different than images of foxes

How does dynamic feature map pruning affect inference?

9	9	7
0	5	3
5	4	1

- Without fine-tuning:
 - Only up to 20% reduction with 1% loss of accuracy
 - Can reduce to 700 KB
- With fine-tuning:
 - Up to 60% reduction with 1% loss of accuracy
 - Can reduce to 550 KB

Conclusion

- Up to 48% near-zero values in activations
- Dynamic pruning allows for efficient splitting of DNNs
 - Compression of up to 93% with minimal loss of accuracy
 - Feature map pruning worse than activation pruning

Future Work

- Analyze sparsity inducing techniques
- Evaluate effect of quantization and encoding schemes

Activation Sparsity and Dynamic Pruning for Split Computing in Edge AI

