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Motivation

* Networks are increasing in size GPT3

* Highest accuracies usually need many parameters

* Sensor devices have limited resources

* Big models can exceed these constraints
* Use cloud to help via offloading

* Using wireless is very expensive
* Latency
* Energy
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Use Split Computing!

* Split network
* Part of inference on sensor
* Remaining part on a server

* Why?
* Reduces load on server
* Slightly more privacy aware
* Reduces network communication

Sensor
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Let’s look into intermediate outputs
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How can we use sparsity for split computing?

* We analyze sparsity in individual layers
* Activation sparsity
* Feature map sparsity
* Guidance for choosing splitting points

* We apply and evaluate dynamic pruning
* Dynamic activation pruning
* Dynamic feature map pruning
* Show potential for compressing data
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Classical pruning versus activation pruning

* Many works use pruning
* Show high sparsity especially in dense layers
e Usually based on weights

* Problem: weights are static
* We are transmitting activations, not weights
* Activations change depending on the input
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How does dynamic pruning work?
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How does dynamic pruning work?

Sample Activation pruning Feature map pruning
feature maps T=15 T=1.5
. 0|11 0|11
* Prune according to ol s e 2 13 1 0 | Mean < 233
threshold = | 2 | 1 s 1 5 | 1

* Individual values
* Feature maps

4 2
3 Mean =1.44
* We are not removing 1
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Where can we place splitting points?

* Trend goes towards parallel branches ... B S 52
o Adds additional data .......... | Maxpto“ng| .......... >§
* Choose points where branches end JPSRMLLIIIIE TEIIILLLLLENS >3

* CNNs contain more data in early layers h¢—\ !

| Conv2D |

H H Conv2D
« Choose point as late as possible Li%
Input Image T Normalization T Conv2D <—}—|>‘ Max-Pooling <—}—|>‘F¥e3|dual Bottler;eci}—|>
(224,224,3) (224,224,3) (64,112,112 (64,56,56) 256,56,56

int8 float32 float32 float32 float32

147 KB 588 KB 3. 316 MB 784 KB 3. 316 MB
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Let’s look into activation sparsity

Input Image T Normalization T Conv2D
(224,224,3) (224,224,3) (64,112,112

Max-Pooling Residual Bottleneck
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e 12% of values between 0 and 0.05 e 48% of values between 0 and 0.05
* Amounts to 94 KB * Amountsto 1.5 MB
* 690 KB remain * 1.6 MB remain
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How does dynamic activation pruning affect inference?
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* Without fine-tuning:
* Up to 70% reduction with 1% loss of accuracy
* Going below 700 KB hurts

* With fine-tuning:
* Up to 93% reduction with 1% loss of accuracy
* Going below 200 KB hurts
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Why should we use dynamic pruning?

All classes average compared to specific classes
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* Significant differences between classes

* Images of sharks are very different than
images of foxes
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How does dynamic feature map pruning affect inference? EE
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* Without fine-tuning:
* Only up to 20% reduction with 1% loss of accuracy
e Can reduce to 700 KB

* With fine-tuning:
* Up to 60% reduction with 1% loss of accuracy
* Can reduce to 550 KB
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Conclusion

* Up to 48% near-zero values in activations

* Dynamic pruning allows for efficient splitting of DNNs
* Compression of up to 93% with minimal loss of accuracy
* Feature map pruning worse than activation pruning

Future Work

* Analyze sparsity inducing techniques
* Evaluate effect of quantization and encoding schemes
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Activation Sparsity and Dynamic Pruning for Split Computing in Edge Al
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