ScrambleDB: Oblivious (Chameleon) Pseudonymization-as-a-Service

Anja Lehmann IBM Research – Zurich

Motivation | De-Sensitizing Data

- Outsourcing of data for remote storage or processing
- Shipping of sensitive/personal information is often not desired or allowed
 - Personal data cannot be moved across borders or used outside of original purpose (GDPR!)
 - Cloud environment / external service provider are not fully trusted

How to protect sensitive data & preserve utility?

Pseudonymization (aka Tokenization)

- Pseudonymization = replacing a primary identifier with random-looking substitute
 - Mandated e.g., by Payment Card Industry Data Security Standard (PCI DSS)

Name	Post Code	Date of Birth	Balance	IBAN
Alice Doe	64289	21.08.1978	52.650,77	CH56 0483 5084 1385 0100 0

- Requirements: pseudonymization must be
 - Consistent, i.e., referential integrity must be preserved
 - Dynamic, i.e., data can be pseudonymized on the fly
 - Secure, i.e., infeasible to determine uid from nym

UserID	Credit		Nym	Credit
Alice	€ 8.000		xH2ban6	€ 8.000
Bob	€ 23.500		P3b0Ws	€ 23.500
UserID	Credit		Nym	Credit
Alice	€ 599	·····>	xH2ban6	€ 599

Pseudonymization | Current Solution

■ Deterministic one-way functions, e.g. Hash function $H(uid) \rightarrow nym$

– Unkeyed functions vulnerable to offline attacks:

$$H(Bob) = nym?, H(Eve) = nym?, ...$$

- Pseudonymization must be based on strong secret key, e.g., $PRF(key, uid) \rightarrow nym$

In theory: "Let K be a key" In practice: Well, its not that easy

Challenge 1: <u>Distributed</u> Pseudonymization & Consistency

Pseudonymization from multiple sources while preserving consistency

How to ensure consistent and secure pseudonymization when data is pushed by many, diverse entities?

Distributed Pseudonymization | Existing Solutions

Secure pseudonymization requires strong cryptographic keys

Key is distributed to all entities

- Replication of keys is security issue
- HSMs everywhere too expensive

- + Simple deployment (no keys at data source)
- TTP knows the relation between UID & Nym
- TTP learns all metadata
- TTP must be fully trusted → privacy risk itself!

Distributed Pseudonymization | Existing Solutions

Secure pseudonymization requires strong cryptographic keys

- Replication of keys is security issue
- HSMs everywhere too expensive

- + Simple deployment (no keys at data source)
- TTP knows the relation between UID & Nym
- TTP learns all metadata
- TTP must be fully trusted > privacy risk itself!

Challenge 2: Privacy vs. Utility

- Consistency in pseudonymization needed to preserve data utility
 NO.
- Linkability is a privacy risk inference attacks allow re-identification

Nym	Work
xH2ban6	IBM Research

Nym	Education
xH2ban6	PhD Cryptography

Nym	Nationality
xH2ban6	Germany

- Using context-specific pseudonyms better for privacy but restricts usability
 - Decision which data is linkable upon pseudonymization
 - Unlinkable data cannot be linked afterwards \rightarrow risk of losing too much information

Nym	Work
xH2ban6	IBM Research

Chameleon Pseudonyms

- Our approach: Chameleon = flexible pseudonyms
 - Correlating data without enforcing linkability during pseudonymization
 - Setting: large data collections (data lake), small subsets used for analytics
 - Full unlinkability when data is stored

Selective linkability when data is used

Chameleon Pseudonyms | Unlinkable Data Storage

Data is stored in unlinkable data snippets

Chameleon Pseudonyms | Controlled Linkability

Only required sub-sets of the data are made linkable w.r.t. to join-specific pseudonym

NYM **Nationality NYM** Gender e9SsB Germany Yj6gF male 98BCA Italy female 3UBzp NYM Date of Birth ON5Ru 22.06.1981 8xHMg 08.11.1976

 Related pseudonyms will be converted into the same join-pseudonym ("join-id")

query: join gender & nationality

NYM	Gender	NYM	Nationality
kOLc6	male	4T3gq	Germany
4T3gq	female	kOLc6	Italy

NYM Gender Nationality

4T3gq female Germany

kOLc6 male Italy

Join conversion is done blindly

Chameleon Pseudonyms | Controlled Linkability

Only required sub-sets of the data are made linkable w.r.t. to join-specific pseudonym

Converter

 Joins are non-transitive, i.e., join-ids of different queries are unlinkable

query: age & EU nationality

NYM	Date of Birth	Nationality
GDA12	08.11.1976	Italy
0tU5r	22.06.1981	Germany

query: gender & nationality

NYM	Gender	Nationality
4T3gq	female	Germany
kOLc6	male	Italy

Chameleon Pseudonyms | Controlled Linkability

Only required sub-sets of the data are made linkable w.r.t. to join-specific pseudonym

 Data can be obfuscated before join (outside of this work, though)

query: age & EU nationality

NYM	Date of Birth	Nationality
GDA12	**.**.1976	EU
0tU5r	**.**.1981	EU

query: gender & nationality

NYM	Gender	Nationality
4T3gq	female	Germany
kOLc6	male	Italy

Chameleon Pseudonyms | High-Level Overview

Chameleon Pseudonyms | Cryptographic Scheme

- Core-building block: 3-Party Convertible & Oblivious Pseudorandom Function (coPRF)
 - Convertibility (& Multi-key setting):

$$y_i = \text{Eval}(k_i, x)$$
 $y_j = \text{Convert}(k_i, k_j, y_i)$ $s.t.$ $y_j = \text{Eval}(k_j, x)$ $y_i = H(x)^{k_i}$ $y_j = y_i^{k_j / k_i} = H(x)^{k_j}$

Oblivious 3-party evaluation & conversion

$$\bar{x} = \operatorname{Blind}(bpk, x)$$
 $\bar{y}_i = \operatorname{Eval}(k_i, \bar{x})$ $y_i = \operatorname{Unblind}(bsk, \bar{y}_i)$ $s.t.$ $y_i = \operatorname{Eval}(k_i, x)$ $\bar{y}_i' = \operatorname{Blind}(bpk', y_i)$ $\bar{y}_j = \operatorname{Convert}(k_i, k_j, \bar{y}_i')$ $y_j = \operatorname{Unblind}(bsk', \bar{y}_j)$ $s.t.$ $y_j = \operatorname{Eval}(k_j, x)$

Blind = ElGamal.Encrypt Unblind = ElGamal.Decrypt

Eval / Convert via homomorphic & rerandomization property of ElGamal

Chameleon Pseudonyms | Cryptographic Scheme

- Core-building block: 3-Party Convertible & Oblivious Pseudorandom Function (coPRF)
 - Convertibility (& Multi-key setting):

$$y_i = \operatorname{Eval}(k_i, x)$$
 $y_j = \operatorname{Convert}(k_i, k_j, y_i)$ $s.t.$ $y_j = \operatorname{Eval}(k_j, x)$ $y_i = H($ Pseudonym: PRF-value under attribute-specific key

Join: Pseudonym converted towards join-specific key Oblivious 3-party evaluation

$$\bar{x} = \text{Blind}(bpk, x)$$
 $\bar{y}_i = \text{Eval}(k_i, \bar{x})$ $y_i = \text{Unblind}(bsk, \bar{y}_i)$ $s.t.$ $y_i = \text{Eval}(k_i, x)$ $\bar{y}_i' = \text{Blind}(bpk', y_i)$ $\bar{y}_j = \text{Convert}(k_i, k_j, \bar{y}_i')$ $y_j = \text{Unblind}(bsk', \bar{y}_j)$ $s.t.$ $y_j = \text{Eval}(k_j, x)$

Blind = ElGamal.Encrypt **Unblind** = ElGamal.Decrypt

> Eval / Convert via homomorphic & rerandomization property of ElGamal

Summary

Data pseudonymization – crucial part for de-sensitization of data

- Schemes must use strong cryptographic keys → challenges for key management
 - Oblivious pseudonymization-as-a-service
- Linkability crucial for utility, but also weakens privacy
 - Chameleon pseudonyms: unlinkability as default, selective linkability when needed
- Strong security: our scheme is provably secure in Universal Composability Model

- BUT: Pseudonymization alone is not sufficient!
 - Needs to be complemented with proper attribute protection/obfuscation

Thanks! Questions?

anj@zurich.ibm.com