Stochastik WS 19/20

Aufgabenblatt 1

Lösungen bitte bis vor Beginn der nächsten Übung einreichen, entweder physisch oder in gut ausdruckbarer Form an matthias.kirchler@hpi.de

σ -Algebren

Exercise 1 (2+2+2) Punkte). Sei $\Omega \neq \emptyset$ ein beliebiger Ergebnisraum.

- (a) Sei \mathcal{F} eine σ -Algebra auf Ω und $A_1, A_2, \ldots \in \mathcal{F}$. Zeige, dass $\bigcap_{i>1} A_i \in \mathcal{F}$ gilt
- (b) Sei \mathcal{F} eine σ -Algebra auf Ω und $A \subset \Omega$. Zeige, dass $\mathcal{F}_A := \{A \cap B : B \in \mathcal{F}\}$ wieder eine σ -Algebra ist, diesmal auf A.
- (c) Seien $(\mathcal{F}_i)_{i\in I}$ σ -Algebra auf Ω mit beliebiger Indexmenge I. Zeige, dass $\mathcal{F} := \bigcap_{i\in I} \mathcal{F}_i$ wieder eine σ -Algebra ist. (Gilt das auch für $\bigcup_{i\in I} \mathcal{F}_i$? Keine Antwort nötig)

Exercise 2 (3 Punkte). Sei \mathcal{F}_n für beliebiges (festes) $n \in \mathbb{N}$ gegeben durch:

$$\mathcal{F}_n := \left\{ \bigcup_{i \in I} \left[\frac{i-1}{2^n}, \frac{i}{2^n} \right) : I \subset \mathbb{Z} \right\}.$$

Zeige, dass \mathcal{F}_n eine σ -Algebra auf \mathbb{R} ist.