Stochastik WS 19/20

Aufgabenblatt 9

Abgabe bis 29.1., 11 Uhr

Exercise 1 (2 Punkte). Betrachte die Betaverteilung mit Parametern a = 5, b = 2. Simuliere n = 500 Zufallsvariablen von dieser Verteilung, gegeben eine Folge von unabhängigen $\mathcal{U}_{[0,1]}$ -verteilten Zufallsvariablen U_1, U_2, \ldots (d.h. es darf wieder die Funktion np.random.rand verwendet werden).

Exercise 2 (2+2 Punkte). Seien $X_k, k \ge 1$ Zufallsvariablen mit Werten in $[0, \infty[$. Prüfe bei den folgenden Mengen, ob sie in der asymptotischen σ -Algebra $\mathcal{A}(X_k : k \ge 1)$ liegen (finde jeweils einen allgemeinen Beweis oder ein Gegenbeispiel):

$$A := \left\{ \sum_{k \ge 1} X_k < \infty \right\}$$

$$B := \left\{ \sum_{k \ge 1} X_k < 1 \right\}$$

Exercise 3 (3+2+3) Punkte). a) Seien $E_1, E_2, \ldots \in \mathcal{F}$; zeige, dass $\limsup_{n\to\infty} \mathbb{P}(E_n) \leq \mathbb{P}(\limsup_{n\to\infty} E_n)$. Hinweis: Beachte, dass $\limsup_{n\to\infty} a_n := \lim_{n\to\infty} \sup_{m\geq n} a_n$, und verwende Eigenschaften von Maßen aus dem ersten Kapitel.

- b) Sei $X \sim \mathcal{U}_{[0,1]}$ und $A_n := \{X \in [0,\frac{1}{n}]\}$ für $n \geq 1$. Berechne $\sum_{n\geq 1} \mathbb{P}(A_n)$ und $\mathbb{P}(\limsup_{n\to\infty} A_n)$. Was bedeutet das für das Borel-Cantelli Lemma?
- c) Seien $(X_i)_{i\geq 1} \sim \mathcal{U}_{[0,1]}$ unabhängig und identisch verteilt, und $A_n := \{X_n \in [0, \frac{1}{n}]\}$. Berechne erneut $\sum_{n\geq 1} \mathbb{P}(A_n)$ und $\mathbb{P}(\limsup_{n\to\infty} A_n)$. Was ist eine intuitive Weise, das Ereignis $\limsup_{n\to\infty} A_n$ zu beschreiben? Was ist der Unterschied zu Aufgabenteil b)?