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DL origins

e Semantic Networks ,
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e Problem: missing semantics (complex networks)
e Solution: use a logical formalism rather than a network
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DL definition

e Descendents of semantics networks, frame-based systems, and KL-ONE

e Family of logic-based knowledge representation (KR) formalisms well-
suited for the representation of and reasoning about

— terminological knowledge
— ontologies
— database schemata
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Concept descriptions

The conceptual knowledge of an application domain is represented by:

— Concepts : interpreted as a set of individuals
— Roles : interpreted as relations between individuals

Complex concept descriptions can be built from atomic ones using
concept constructors ([, [, v, 3,...) :

Person N Male M dhasChild.Person

concept nam Ssign a name to a set of individuals

role nameg assign a name to relations between individuals

concept constructors connect concept names and role names
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The basic description language AL

e Concept descriptions are formed according to the following syntax rules:

C,D— T top concept
4 bottom concept
A atomic concept
—A | atomic negation

CnD| conjunction
Vr.C| value restriction
dr. T limited existential gquantification

e Examples of AL-concept descriptions

Person M JhasChild. T persons that have at least one child

Person M VYhasChild.—Male  persons all of whose children are not male
Person 11 YhasChild._L persons without a child



Formal semantics for AL-concept descriptions

e Semantics based on interpretation 1= (AI, -I)
— A non empty set AN (the domain of the interpretation)

— An interpretation function x
. an atomic concept A: a set AT C At
. an atomic role r: a binary relation 7% C AZ x A%

AT AL

e Inductive extension to concept descriptions

TI — AI
1 = ¢
(—:A)I — AI\AI
(cnbDY = cInp?
Vr.CY = {zeAl|Vy:(z,9)ert —>yecCL}
@Er.TY = {zeAl|y: (zy)cr?}



The family of AL-languages

e More expressive languages can be obtained by adding further constructors

— Union of concepts (U)
written C U D

interpreted as  (C U D)t =CcZu D?

— Full existential quantification (E)

written .
interpreted as (Ir.C)t = {z € AT |y : (z,y) e rt Ay € C%}

— Negation (C)
written —(
interpreted as  (-C)Z = AT\CZ




The family of AL-languages

— Number restrictions (N)
written > n r (at-least restriction)
< n r (at-most restriction)

Interpreted as

(>nr)t
(<nr)t

{ze Al |H{ye Al | (z,y) €rl} >n}
{z e AL | #{y € AT | (z,y) € 1} < n}

e Extending AL by any subset of the above operators yields a particular
language identified by a string of the form

ALU][ETIVIIC]




The family of AL-languages

Concept constructors ALN | ACE | ALEN | ALC
T X X X X
1 X X X X
—-A X X X X
-C X
CcCnbD X X X X X
cCubD X
vr.C X X X X X
Ar. T X X X X X
Fr.C X X X
>nrT X X

<nr X X




The family of AL -languages

e Based on their semantics, prove the equivalence between the languages:

ALC and ALUE
ALCN and ALUEN

Union and full existential quantification can be expressed
using negation, because of the equivalences:

CuD=-(-Cn-D)
dr.C = —Vr.—-C




Overview of the tutorial

e Knowledge bases
e Reasoning
 Non standard reasoning
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DL knowledge bases

Formed by two components: The intentional one, called TBox and the

extensional one called ABox.

TBox (T )

— Schema describing the concepts of the application domain, their

properties and the relations between them.

ABox (A)
— Partial instantiation of the schema describing
assertions on individuals.

A knowledge base is noted

>, = (T,A)

TBox

ABOX

KB




Intentional knowledge

e A TBox is a set of terminological axioms having one of the forms:

Primitive concept — ~N, . o o
necessary conditions A =X C Primitive Concept specification

. A = C Concept definition
Defined concept —__~>

necessary and
sufficient conditions Concepts not appearing in the left-hand side of any

terminological axiom are called atomic concepts

e A more general kind of TBox, called free-7Box is obtained by admitting
terminological axioms of the form: C < D and C = D

e An example of a TBox from the family domain

Man = Human 1 Male
Parent = Human 1 3hasChild.Human
Father = Man M Parent
HappyFather = Father 1 vhasChild.-Male
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Cycles

e A concept name A directly uses a concept Bin a TBox 7 if Bappears on
the right-hand side of the definition of A.

e« We call uses the transitive closure of the relation directly uses.
« 7 is called acyclic iff there does not exist a concept name in Z that uses

Itself.

- A1 = AsTI1dr.A

A cyclic TBox: 1 2 4

y A, = 3r.Asz0 As
Az = A

e Expansion of an acyclic TBox

Man
Parent

Human M Male
Human 1 dhasChild.Human

————————————————————————————————————————————————————————————————————————————————————————————————

Man M Parent
Father M YhasChild.—-Male

Father
appyFather

Human M Male M dhasChild.Human M YhasChild.—-Male

The expansion contains only atomic concepts in the right-hand
side of each definition
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TBoxes with primitive specifications

Primitive specifications are used when we are unable to define completely
a concept.

For example, if the concept Man could not be defined in detail, one can
require that every man is a human with the primitive specification:

Man < Human

A TBox T containing primitive specifications can be transformed into a
regular TBox Z" with only definitions by adding to primitive specifications
a concept standing for the absent part of the definition.

Man = Human I‘IMan,\

Qualities that distinguish a man among humans

T is called the normalization of ‘T~
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Semantics

e An interpretation | satisfies the terminological axiom:

ir AL cc?
it AL=c?
if ctcpt
if ¢t=Dp*

- A

- A
O O QQ

A
A
C
C =

e An interpretation | is a model of a TBox T iff it satisfies each
terminological axiom in T.
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Extensional knowledge

e An ABox Is a set of assertions having one of the forms:

C(a) concept assertion

r(a,b) role assertion

« An example of an ABox from the family domain

Man(PETER)
Man(MARCQC)
hasChild(PETER, MARC)

e Semantics

— Extend interpretations to individual names: an interpretation | maps an
individual name a to an element aZ € A%

— An interpretation | satisfies the assertion:
C(a) if of €T
r(a,b) if (at,b*)ert

— An interpretation | is a model of an ABox A If it satisfies each assertion in A

LIM
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Individual names in the description language

e Individual names can appear in the TBox
— The one-of constructor (O)
written {81, -+, @n}
interpreted as {01, ey an}I — {a'%-) “eey a%}
example: {CHINA,FRANCE,RUSSIA,UK,USA}

— In a language with the union constructor, a constructor for singleton
sets adds sufficient expressiveness to describe arbitrary sets as

{a1,---,an} is equivalent to {a1} U ... U {an}

— The fil/s constructor
written T+ @
interpreted as (r : a)t = {d € AT | (d,a’) € 1}

— In a language with singleton sets and full existential quantification
“fills " does not add anything new as

r . a is equivalent to Jr.{a}
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Overview of the tutorial

e Reasoning




Reasoning tasks for TBoxes

e Concept satisfibility (written 7 = C = 1)

— A concept C'is satisfiable with respect to T if there exists a model | of
T such that CZ is nonempty.

e Subsumption (written 7 = C E D or C E D)

— A concept C'is subsumed by a concept D with respect to T ifCZ C D%
for every model | of T.

— Example: Parent subsume Father

e Equivalence (written T |=C =D or C =7 D)

— Two concepts ¢ and D are equivalent with respect to T if 02 = DZ
for every model | of T.

e Disjointness

— Two conceptsC and D are disjoint with respect to T if cCInDtf=9¢
for every model | of T.
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Reductions

e Reduction to subsumption

(i) C is unsatisfiable & C is subsumed by 1;
(ii) C and D are equivalent < C is subsumed by D and D is
subsumed by C;
(iii) C and D are disjoint & C D is subsumed by .

e Reduction to satisfiability (systems allowing negation)

(i) C is subsumed by D < C 1 -D is unsatisfiable;
(ii) C and D are equivalent < both (Cr—-D) and (-C D) are
unsatisfiable;
(iii) C and D are disjoint < C 11 D is unsatisfiable.
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Reasoning tasks for ABoxes

e Consistency (written 3° =)
— The problem of checking whether_ is satisfiable, i.e. it has a model
e Instance checking (written }° &= C(a))

— The problem of checking whether the assertion C(a) is satisfied in
every model of 2-.

e Reduction of instance checking to consistency

Y EC() &Xu{-Ca)} E




Reasoning tasks of a DL system

e Terminological
— Classification 5
L] OX ™

compute the subsumption hierarchy
Language
/

™ ABox 7

KB

Application l

e Assertional Programs
— Realisation

return the most specific concepts, w.r.t. the subsumption relation,
of which a concept a is an instance

— Retrieval
return all instances of C'.
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Reasoning algorithms

e Two types of algorithms are employed to decide inference problems:
— Structural subsumption algorithms<—\

— Tableau-based algorithms only applicable for DLs not allowing for
/‘ disjunction and full negation, useful for
solving non-standard inferences (c.f.
state of the art technique to Part I1)

decide inferences for a great
variety of very expressive DLs

e lllustrate the underlying idea for both approach
— Running example

Ir.POVr.QnMNvr.Q,
Ir. (PNQ)NVr.Q,

Cex
Des
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Structural subsumption algorithms

e Two phases:

— Turn the given potential subsumee into a normal form (making the
Implicit knowledge contained in the description explicit),

— syntactically compare the (potential) subsumer with the normal form
of the (potential) subsumee.

e Normalization
— Uses a set of normalization rules
— For our example we need the following rules:

Vr.ENVr.F — Vr(ENF),
Jr.EOVr.F — FJr.(ENF)NVr.F.

— We obtain Cl, . =3Ir.(PNQNQHNvVr.(QNQ".
check if for all names and C
restrictions in the subsumer there ;
exists more specific expressions in = Degz = Ar. (PN Q) NVr.Q',

the normal form of the subsumee =
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Normalization rules for ALE

Vr.COVr.D — Vr.(CN D) (1)
Vr.CM3r.D — Vr.CN3ar.(CND) (2)
Vr.T — T (3)

cCnT —» C (4)
Prn—-P — 1,forall Pe N¢ (5)
Jr.l — L (6)

cCnltL — L (7)
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Tableau algorithms

e Employed for DLs that allow for negation, the subsumption is reduced to
deciding satisfiability of concepts: C C D & C' 1 -D is unsatisfiable.

Cexz M —Degx = ArPOVE.QMOAVI.Q M-COr.(PNQ)Nvr.Q")

=, 3rPOVr.QNVr.Q N (Vr.(-PU-Q)U3r.—-Q") =: Eey
Negation normal form

« BuildZ withEZ, % 0 ao € EZ
~»aq With (ag,a1) € r* and aq € PZ
a1 ePINQRTNQZ
~»ag € (Vr.(=P U-Q) U3Ir.-QN
< a1 € (-PLU-Q) ¥
" ag € (Ar.~Q)* Backtrack
as with (agp,as) € rZ and a5 € —-Q":I
az € (N NQATNQT 3k
Fey is unsatisfiable = Cez C Deg
e >




A tableau algorithm for ALCN

(< r)(=),
’l"((B, yl)a ey T(iB, y‘n,-l-l)

A rue | A
(C1 1M C2) (=) — C1(z), Ca(x)
(C1 U Co)(z) —LJ C(z) where C € {C1,C5}
(3r.C)(z) —3 C(y),r(z,y)
where ¢y not occurring in A
(vr.C)(z),r(z,y) v C(y)
(> r)(z) —> | {r(=,y) |1 <i<n}u
{yiFy;|1<i<j<n}
where y1, ..., Yyn NOt occurring in A
—< [y:/y;](renaming)

-ll- [
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A tableau algorithm for ALCN

e Test the satisfiability of an ALCN-concept in negation normal form

——C — C
-(CnND) — =CuU-D
e Start with ABox -(3r.C) — Vr.—-C
Ao = {Co(wo)} ~(¥rC) — r=C
e Apply propagation rules until -(<nr) - (>n+1r)
— no more rule apply -(>0r) — L
(>nr) - (Kn+41r)forn>0

Agls consistent, Cq satisfiable
— A contradiction (called clash) occurs
Apis inconsistent, Cg insatisfiable

Clashes (i) {1(z)} C A;
(i) {A(z),~A(z)} C A;

(ii)) {(< nr) (@) }U{r(z,y:) | 1 < i <nt+1}U{y; &

yi|1<i<j<n+4+1} CA
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An example

e Verify the validity of the subsumption:
C3nNnar(PNQQ)C (>2r)n3r.P

(CG3r)NIr(PNQR)NUKL 1r) UVr.—-P)) (x)

—n (= 3r)(z) @r.(PNQ))(z) (£ 1r) UVr—-P)(z)
—3 r(z,y1) (PNQ)(y1)

—n P(11) Q(y1)

—> r(z,y2) m(z,y3) Y1 F Y2 ¥y1 7 Y3 Y2 7 Y3

—| (L 1r)(x) * Clash

— ] (Vr.—P)(x)

—y  2P(y;) ~P(y2) ~P(yz) ¥ Clash
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A philosophical question

e The link between structural subsumption and tableau algorithms




