
A variant of genetic algorithm for non-homogeneous population

Najmeh Alibabaie1, Mohammad Ghasemzadeh 2,*, and Christoph Meinel 3

1 Computer Department, Engineering Campus, Yazd University, Yazd, Iran

2 Assoc. Prof. at Yazd University in Iran and Guest Researcher at HPI, Potsdam, Germany
3 President and CEO of Hasso Plattner Institute (HPI), at Potsdam University, Potsdam, Germany

Abstract. Selection of initial points, the number of clusters and finding proper clusters centers are
still the main challenge in clustering processes. In this paper, we suggest genetic algorithm
based method which searches several solution spaces simultaneously. The solution spaces are
population groups consisting of elements with similar structure. Elements in a group have the
same size, while elements in different groups are of different sizes. The proposed algorithm
processes the population in groups of chromosomes with one gene, two genes to k genes.
These genes hold corresponding information about the cluster centers. In the proposed method,
the crossover and mutation operators can accept parents with different sizes; this can lead to
versatility in population and information transfer among sub-populations. We implemented the
proposed method and evaluated its performance against some random datasets and the Ruspini
dataset as well. The experimental results show that the proposed method could effectively
determine the appropriate number of clusters and recognize their centers. Overall this research
implies that using heterogeneous population in the genetic algorithm can lead to better results.

 1 Introduction

Optimization is one of the most important topics in
various fields of science and technology. In computer

science, this issue is concerned with finding optimal

solutions for some problems. There are exact and

efficient algorithms for a subset of optimization

problems, but for lot of them we need to do a

comprehensive search in an exponentially large solution

space, which most of times is impractical. In order to

find a solution for these problems, we usually use

heuristic and approximation methods. These problems

include wide range of applications such as data mining,

computer vision, knowledge discovering and decision

support systems. The heuristic methods do not
necessarily find the optimal solutions, but often they

manage to find a solution which is close to the optimal

solution. This can be accomplished by consuming

reasonable time and processing resources. Many

problems involve complex search spaces with conflicting

objectives. In these cases, optimization of an objective

may prevent to achieve the other objectives. Here,

sometimes there are a set of optimal solutions which

have no clear superiority on each other. In multi

objective optimization problems we try to find a trade-

off among the requested objectives.

 Clustering is a data mining technique, which is

used widely in solving related problems [1]. The main

issue in clustering is to partition the given data, with a

specified number of clusters such that minimize the total

within cluster variation (TWCV) and maximize the

variance between clusters. The k-means algorithm is the
simplest and the most popular clustering method [2].

The initial cluster centers usually have a high

efficacy on performance of the k-means algorithm. If

these centers are selected randomly, the process may

converge to suboptimal partitions [3]. Regardless of the

applied clustering method, one of the other most

important parameters is number of clusters. In non-

hierarchical clustering methods like k-means, this issue

corresponds to finding a proper value for k. This

parameter must be determined before the clustering

process starts. There is no straightforward or easy way to

determine this value, because it depends on different
issues like the form and distribution of data, as well as

the clustering resolution expected by the user.

The ultimate goal of this research is to find the best

cluster centers and the best number of clusters

simultaneously. The proposed method takes advantage

of a genetic algorithm in which the population consists

of some sub-populations. Since each point in the k-gene

solution space can be a solution candidate, we allow

these points to stay in the population at the same time,

To be published at:
International Conference on Applied Mathematics, Computational Science and Systems Engineering,
Sapienza University, Italy-Rome, November 5-7, 2016.

and in their corresponding sub-populations. Furthermore

we let them contribute in evolution of the final solution

by applying genetic operators on them. In this regard, the

genetic operators are implemented in such a way that

could combine individuals of different sub-populations

to create new varied individuals for the sub-population

groups. Individuals in a subpopulation compete with

each other, and also the best individuals of each

subpopulation compete with each other as well. The

main idea is that we want the genetic algorithm select the

best solution from non-homogeneous solutions which are
being evaluated by the same criteria.

2 Literature Review
In K-Means (KM), the initial cluster centers usually have

a high impact on the clustering process. If these centers

are selected randomly from the dataset, then each run of

KM on the same dataset may lead to a different result. In

other words choosing different centroid points every

time gives different clusters. Furthermore the process

may converge to suboptimal partitions [3]. In order to

cope this dilemma, Sawant [4] in his research, proposed
to calculate the neighbourhood distance between the first

data item and the other data items, and then sort the

items according to the obtained distances. Afterwards he

divides the arranged data items into K equal portions. As

an initial candidate, the first data item of each

partitioning takes part in the KM process. The above

method, manages to find appropriate results with higher

degree of accuracy in fewer number of steps, but since it

requires computing neighbourhood distance between

data items and rearranging them, it would be very slow

in clustering large datasets.
The proposed method by Karegowda et al. [5], also

the proposed method by Al-Shboul and Myaeng [3] use

genetic algorithm (GA) to determine the initial values of

the clusters. In both of them a population is generated by

using a GA process. They apply classic KM algorithm to

evaluate fitness of each candidate center. When the

terminating condition of GA goes true, the chromosome

with highest fitness value decides which samples will be

the k-means initial cluster centers. Since KM algorithm

must be run for many times, these methods are usually

computationally expensive.
The research carried out by Krishna and Murty [2],

and another investigation performed by Yi Lu et al. [6]

are also based on using GA. These methods compared to

the already mentioned methods[5,3] are faster and

always converge to the global optimum. In addition they

are not sensitive to the initial values. These methods

maintain a population of some coded solutions and apply

a single step K-means operator (KMO) to evaluate the

chromosomes. The common point among all the existing

methods which try to find better initial centers, is that

they need to start with a given number of clusters.

Another challenge in clustering algorithms is related
to deciding about number of clusters, in other words,

determination of the K parameter. The algorithm pro-

posed by Hamerly and Elkan [7] is based on a statistical

test. It relies on the hypothesis that a subset of data

follows a Gaussian distribution. The algorithm starts

with a small number of clusters, and then increases them

when needed. In each iteration of the algorithm, if any

cluster appear whose data dispersion do not follow the

Gaussian distribution then that cluster would be divided

into two clusters. In order to determine the number of

clusters, some of the recent research works rely on using

GA. In this regard, Llet´ et al. [8] use the silhouette to

find the appropriate number of clusters. The common

point among all the existing methods which are

developed to find an appropriate number of clusters is
that they evaluate the concerned criteria separately for

different values of k. In other words, they need to run the

KM algorithm for different values of K; this process is

usually very time consuming.

The research works reported by Li and Chang [9] and

also Chittu and Sumathi [10] are based on introduction

of modified genetic algorithms. They divide the existing

population into a number of subpopulations. The

chromosomes of a population have the same structure,

but they use different parameters for the subpopulations.

This could let information be transferred between
subpopulations. In fact, migration of individuals between

subpopulations along with application of genetic

operators would lead to generation of new individuals.

The purpose of using this modified genetic algorithm

with multiple subpopulations and dynamic parameters is

to make GA run faster.

3 The proposed method
One of the most important topics and applications of

computer science is concerned with information
clustering. The K-means algorithm is one of the most

popular methods used widely for this purpose.

This algorithm gets the data set and the desired

number of clusters, and then it finds the clusters and

their centers. In order to find the best number of clusters,

typically the user must run this algorithm for different

number of clusters and evaluate the obtained results. It

can be shown that this parameter may be determined
automatically by using genetic algorithms. Genetic

algorithm is a search algorithm inspired from nature and

genetics. Unlike many other search algorithms, which

perform local and greedy search, GA performs a

stochastic universal search. It is mainly composed of

three operators: reproduction, crossover and mutation.

In many clustering problems, the classical genetic

algorithm can be applied easily and get acceptable
results. But still there are some disadvantages that need

special consideration. One of these disadvantages is

concerned with deciding about the suitable number of

clusters and their centers. In order to cope with these

disadvantages we proposed a modified structure for the

genetic algorithm. In fact, in this paper, we show how

we can organize the population in several sub-

populations and mend the relevant operators to attain an
improved genetic algorithm. We accomplish this by

considering a population consisting of several set of

chromosomes. The structure of these sets is almost

similar because these genes hold corresponding

information about the cluster centers but the number of

genes in every group differs. In other words, the

structure of the chromosomes is different in terms of

number of constituent genes. In the proposed method,

the existing population is processed in the form of

several subsets which respectively contain one gene, two

genes to k genes. These genes hold corresponding

information about the cluster centers. New individuals
are created by using the two main genetic recombination

operators known as crossover and mutation. We re-

implemented these operators to let them accept parent

chromosomes with different size. This could lead to have

variation in the population and which in turn lets better

data transfer between the subsets.

Let be the set of n patterns and

denoting dth feature of . For the existing dataset if we
consider number of clusters to be k for k=1, 2,…, K,

then structure of the individuals which belong to each
respective sub-space would be in the form of

, in which . Here,
the number of genes in a subpopulation is proportional to

the number of clusters and the gene length is also

proportional to the data dimension. In other words, the

proposed method maintains a set of encoded solutions

(called chromosomes). Number of chromosomes is

specified by the user. Here, each allele in the

chromosome represent the value of cluster center, and
number of genes in a chromosome stands for number of

clusters.

Recombination (or crossover) is the process of

generating new items (offsprings) by exchanging a part

(or some parts) between the chosen individuals (parents).

Crossover is made with the hope that new chromosomes

will contain good parts of each parent chromosomes and

therefore the new chromosomes would constitute a better
generation. In order to have heterogeneous populations

in next generations, the genetic operators must be able to

accept and also create heterogeneous individuals.

Therefore we implemented the crossover operator in

such a way that it could accept parent chromosomes,

andd , with different lengths (different number of

genes). A parent chromosome is selected from the fittest

individuals with probabilityy or it is selected randomly

from the population with probability . The number
of genes in an offspring is proportional to the number of

genes of its parents. As shown in Fig. 1., If is one of

the parents with genes and is the other parent with

 genes and , then number of genes of offspring

 will be and the number of genes of offspring

will be genes. genes of each offspring are created
by a weighted average of similar genes of the parents.

The remaining genes of the longer offspring is the
same as the genes of the longer parent that were not

similar to any genes of the shorter parent.

The mutation operation randomly changes the value

of a gene in the offspring. Mutation is applied after the
crossover with a low probability, called the mutation

probability. This operator is used to prevent premature

convergence to local optima. If is an encoded solution,

it will change one or more genes with probability .

According to evolutional theory, mutation takes place in

a way that new generation would be more perfect than

the former generation.

Fig. 1. Crossover of parents with different number of

genes.

In the proposed method, mutation may be applied to

individuals in two ways. 1) One or some genes in a

chromosome are changed with probability , 2)
Number of genes in a chromosome are changed with

probability .
That means one or more genes are inserted into

chromosome structure or are deleted from it. The allele

of these genes will be set randomly. In this way, the

concerned genetic operators generate the new population

of every generation by combining different

subpopulations of the former generation.

Selection is operator that selects a solution from the

current population for the next population according to
its fitness value. Selection of individuals with higher

fitness to form the next generation lets the population

converge toward the generation which include the

desired solutions of the search space. Already, in order

to speed up the convergence process,

A K-means operator (KMO), known as “one step of

the classical K-means algorithm” [6] has been

introduced. We implemented a modified version of
KMO to find the closest cluster to every point.

The silhouette value for each point is a measure of

how similar that point is to points in its own cluster

compared to points in other clusters [8]. It is defined as:

 (1)

with

 (2)

Where w(i) is the average distance from the ith point

to the other points in its own cluster, and B(i, k) is the

average distance from the ith point to points in another

cluster k. The value of the parameter S(i) is in the range
of [-1, +1].

This measure ranges from +1, indicating points that

are very distant from neighboring clusters, through 0,

indicating points that are not distinctly in one cluster or

another, to −1, indicating points that are probably

assigned to the wrong cluster [8]. If number of clusters is

equal to number of objects, then for every point we

would have w(i) = 0 and s(i) = 1. In order to prevent

generation of singleton clusters, we set S(i) = 0. In order

to improve computational performance, we used the

average distance of data in a cluster to cluster center as

an approximation to w(i) and used

as an approximation for b(i).

Applying genetic operators can generate two

identical cluster centers in a chromosome. In other to

stop illegal solutions caused by , we consider

 instead. In fact, this idea will prevent

these individuals to transfer into the next generation. The

main steps of the proposed method are shown in Fig. 2.
The essential difference between our method and the

classical genetic algorithm is in regard to using the

populations with heterogeneous individuals and the

changings we made to the basic operators. The new

operators can accept heterologous individuals and

structure of the mutation operator output won’t be

necessarily the same as the input structure.

1. Determine the maximum number of

clusters(Kmax)

2. Initialize the heterogeneous population (generate

individuals for subpopulations k=1, 2,.., Kmax).

3. Evaluate individuals using the fitness function.

4. Repeat until terminating condition is met:

a) Select the parent chromosomes from the

subpopulations and apply the crossover
operation.

b) Apply the mutation operation (change genes

value or insert genes into or delete genes from

the chromosomes).

c) Evaluate new individuals using the fitness

function (needed to decide who can transfer to

the next population).

d) Select individual for next generation (replace low
fit chromosomes with new high fit

chromosomes).

e) Update crossover probability and mutation

probability by their adjustment functions.

5. Extract number of clusters and their centroid from

the fittest chromosome.

Fig. 2. The main steps of the proposed method.

4 Implementation
We implemented the proposed method on a

microcomputer in MATLAB. Although in the employed

development environment there is special toolbox for

running some optimization and genetic algorithms, but

since our proposed method uses a different structure for

its chromosomes and some changes were needed in the

genetic operator functions, we couldn’t use the available
toolbox, therefore we implemented the required

procedures using the basic commands and facilities that

were available in the MATLAB software environment.

The pseudo-code of our modified genetic algorithm

along with its crossover and mutation operators are

shown in Fig. 3.

Fig. 3. Pseudo-code of modified genetic algorithm along with

its crossover and mutation operators.

5 Experimental results
In order to evaluate the proposed method, we examined

its performance against four different datasets [8, 3]. The

first three datasets are generated by mathematical

models. These datasets are shown in Fig. 4. They include

some samples consisting of three or four clusters with

different distributions, the other database is known as

Ruspini data [11].

a. Dataset 1

b. Dataset 2

c. Dataset 3

Fig. 4. Random dataset distribution.

Already experimental results and official analysis

have shown that silhouette value can also be used

efficiently for higher dimensions [8]. We evaluate our

proposed method against these data sets which consist of

two-dimensional data, but since we have applied the

silhouette value, the obtained results would also apply to

dataset with higher dimensions. In fact, we chose the

two-dimensional datasets for capability of easier
presentation and spatial perception.

Dataset 1 consists of 300 points gathered around 3

clusters. The points are scattered with a radius of 0.2

around 3 specific points (0.2, 0.6), (0.6, 0.2) and (0.8,
0.8). They have same values in their boundary points.

Dataset 2 Consists of 400 points scattered around 4

specific points with a radius of 0.2, the points are (0.125,

0.25), (0.625, 0.25), (0.375, 0.75) and (0.875, 0.75). The
points two and four have horizontal interleaving on the

boundary. This dataset is to be clustered into 4 clusters.

Dataset 3 Consists of 400 points scattered around 4

points with a radius of 0.3 for the first 3 centers and
radius 0.4 for the last center. Points are (0.2, 0.2), (0.2,

0.5), (0.2, 0.8) and (0.8, 0.5). The point of the last cluster

seems to be isolated except for the points between the

cluster center and the other three cluster; the first three

clusters have common boundary points. This dataset is to

be clustered into 4 clusters.

Dataset 4 is the well-known Ruspini data [11]. This
dataset consists of 75 samples, with two features for each

sample. This dataset is frequently used in evaluation of

clustering methods. Fig. 5-a shows the initial raw

dataset. It is clear that this dataset consists of four

clusters (Fig. 5-b). If we consider number of clusters
k=5, then k-means would give the clustering shown in

Fig. 5-c. Depending on the initial centers, for k=5, we

may get another form of clustering like the one shown in

Fig. 5-d; this time the bold circles are the objects which

have been separated to form the fifth cluster.

Usually, in order to find the best number of clusters
and corresponding centers for a clustering problem using

k-means, it is usually required to run it for different

number of clusters and for different initial centers.

In addition, if these best values are being found by a
classic genetic algorithm, we would presumably need to

make some changes in the encoding: The proposed

algorithm looks simultaneously for these goals and it

doesn’t require any alternations in the coding of

solutions. In the experiments, we set population size to

be 100 and the number of generations to be 30. The
termination condition is met when we reach the

predefined number of generations. The crossover and

mutation operators were implemented as mentioned

earlier. Maximum number of clusters set to be 6 to avoid

too much calculation. Table 1 shows these parameters

along with some other related parameters.

By considering a different structure for the genetic
algorithm we managed to find the suitable centroids and

the appropriate number of clusters, in a reasonable time.

Fig. 6 shows the experimental results of running the

proposed algorithm on datasets 2.

 a : (Ruspini) raw data

 b: Clustering with k=4.

 c: Clustering with k=5 (Random centers1).

 d : Clustering with k=5 (Random centers2)

Fig. 5. The Ruspini dataset [8].

Table 1. Configuration parameters for the proposed algorithm.

Value Parameter

100 Population size

Randomly Sub-populations size

0.8 Initial crossover probability

0.1 Initial mutation probability

f(iteration)
Probability of changing Nr. of genes

Probability of changing genes values

6 Maximum Nr. of clusters (Kmax)

30 Number of generations

Fig. 6-a Shows how the proposed method managed to

determine the clusters centroids truly. Fig. 6-b shows
how the proposed algorithm could converge after only

15 iterations. Fig. 6-c shows (average) number of

clusters of the fittest chromosome in every generation.

These information were obtained from averaging results

of ten independent runs of the algorithm during the first

30 generations. In early iterations, some points of the

search space with k=3, compared to the others gain

higher fitness (Fig. 6-c) but mutation and transformation
of information between subpopulations could eventually

lead the process to converge toward the better solution

k=4.

Table 2 shows the clusters centroids and number of
clusters found by the proposed method. In fact it shows

how the proposed algorithm manages to find clusters

centers and number of clusters correctly.

6-a. The proposed centroids by the proposed method

6-b. Fitness of fittest chromosome and average

fitness of population in every generation.

6-c. Nr. of clusters in the chromosome with the best

fitness in every iteration (Average of 10 run)

Fig. 6. The proposed method output for dataset2.

Table 2. The clusters centroids and the number of clusters found by the proposed algorithm.

 Nr. of
clusters The clusters centroids obtained by the proposed method

Dataset 1 3 (.79 , .79) (.61 , .17) (.18 , .60) ---

Dataset 2 4 (.30 , .77) (.10 , .24) (.62 , .25) (.84 , .76)

Dataset 3 4 (.79 , .50) (.18 , .49) (.20 , .79) (.19 , .20)

Ruspini 4 (65.22 , 18.95) (16.36 , 69.26) (148.37 , 40.18) (115.70 , 101.94)

Considering a different structure for the population

and chromosome patterns could let the procedure not

require a separate run for every value of k, this means
reducing runtime. It is obvious that we would get better

results when the objective function could establish a

better trade-off between minimize the total within cluster

variation (TWCV) and maximize the variance between

clusters. Although the fitness function we adopted from

Llet´ et al [8] can also work efficiency for high

dimension datasets, but combining it with other

measures can improve it to work efficiently for
overlapping data as well. In the testing phase, each

dataset was used 20 times and then we calculated the

average running time. The obtained results are shown in

Table 3.
Table 3. Performance evaluation

 Proposed
algorithm

K-means
algorithm

GA+KM
(constant k)

Dataset 1 2.60 0.01 18.51

Dataset 2 1.03 0.013 15.32

Dataset 3 2.61 0.02 11.12

Ruspini 0.87 0.02 8.84

If we try to use the classic genetic algorithm for

solving problems which involve several search spaces,

then for each search space we need to apply a different
encoding and run the algorithm from the beginning;

while the proposed approach doesn’t require any change

in the encoding and it performs the corresponding

operations in parallel.

Since the proposed model for population consists of

some subpopulations with different structures and we

use improved genetic operators for recombining them, it

is expected that offsprings will inherit appropriate
information from their parent, leading to find an

appropriate solution for the concerned problem. This

cooperation and information exchange among

subpopulations could also reduce the required processing

time. In the implemented algorithm, despite presence of

individuals from different search spaces, because of

using the modified mutation operator, during

consecutive generation, the best search space dominates
and most of individuals in the last generation belong to

the best solution space. When we want to apply our idea

in solving optimization problems involving solutions

from different search spaces, if we fix the number of

individuals in subpopulations and allocate a certain

proportion of the population to every subpopulation in

successive generations, the algorithm can converge to

the best solutions of different spaces.

5 Conclusion and future work
In this research a different structure for the genetic

algorithm was introduced. This method can be applied to

problems that several groups of different solutions are

evaluated according to the same criteria. It shows that a

heterogeneous population in genetic algorithm could

accelerate the search process and improve the final

results. In a further research, the fitness function can be
improved by considering other criteria such as entropy

for overlapping data or by considering a constant

proportion for each subpopulation, apply it in solving

problems that require to find best solutions from several

search spaces.

References
1. A. Amirkhanyan, F. Cheng, C. Meinel. Real-time

clustering of massive geodata for online maps to
improve visual analysis. 11th International
Conference on Innovations in Information
Technology (IIT). 308-313. Dubai. (2015).

2. K. Krishna, M. N. Murty. Genetic K-means

algorithm. IEEE Transactions on Systems, Man, and
Cybernetics,, 29(3): 433-439. (1999).

3. B. Al-Shboul, S. H. Myaeng. Initializing KMeans

using genetic algorithms. The International Journal
of Computer, Electrical, Automation, Control and
Information Engineering, 3(6): 1481-1485. (2009).

4. K. B. Sawant. Efficient Determination of Clusters in

K-Mean Algorithm Using Neighborhood Distance.
The International Journal of Emerging Engineering
Research and Technology 3(1): 22-27. (2015).

5. A. G. Karegowda, V. T. Shama, M. A. Jayaram, A.

S. Manjunath. Improving Performance of K-Means

Clustering by Initializing Cluster Centers Using

Genetic Algorithm and Entropy Based Fuzzy

Clustering for Categorization of Diabetic Patients. ,

In Proceedings of International Conference on
Advances in Computing, 899-904. MSRIT,

Bangalore: Springer India. (2013).

6. Y. Lu, S. Lu, F. Fotouhi, Y. Deng, S. J. Brown.

Incremental Genetic K-Means Algorithm And Its

Application In Gene Expression Data Analysis.
BMC Bioinformatics 5(1):172. (2004).

7. G. Hamerly, C. Elkan. Learning the k in k-means.

Advances in Neural Information Processing Systems

17:281–288. (2004).

8. R. Llet´, M.C. Ortiz, L.A. Sarabia, M.S. Sanchez.

Selecting variables for k-means cluster analysis by

using a genetic algorithm that optimises the

silhouettes. Analytica Chimica Acta 515(1): 87-100.

(2004).

9. R. Li, X. Chang. A Modified Genetic Algorithm

with Multiple Subpopulations and Dynamic
Parameters Applied in CVaR Model. International
Conference on Computational Intelligence for
Modelling Control and Automation, 151.

Washington, DC: IEEE Computer Society. (2006).

10. V. Chittu, N. Sumathi. A Modified Genetic

Algorithm Initializing K-Means Clustering. Global
Journal of Computer Science and Technology 11(2):

54-62. (2011).

11. E. H. Ruspini. Numerical methods for fuzzy

clustering. Information Sciences 2(3): 319–350.

(1970).

