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Abstract. Selection of initial points, the number of clusters and finding proper clusters centers are 
still the main challenge in clustering processes. In this paper, we suggest genetic algorithm 
based method which searches several solution spaces simultaneously. The solution spaces are 
population groups consisting of elements with similar structure. Elements in a group have the 
same size, while elements in different groups are of different sizes. The proposed algorithm 
processes the population in groups of chromosomes with one gene, two genes to k genes. 
These genes hold corresponding information about the cluster centers. In the proposed method, 
the crossover and mutation operators can accept parents with different sizes; this can lead to 
versatility in population and information transfer among sub-populations. We implemented the 
proposed method and evaluated its performance against some random datasets and the Ruspini 
dataset as well. The experimental results show that the proposed method could effectively 
determine the appropriate number of clusters and recognize their centers. Overall this research 
implies that using heterogeneous population in the genetic algorithm can lead to better results. 

 1 Introduction  

Optimization is one of the most important topics in 
various fields of science and technology. In computer 

science, this issue is concerned with finding optimal 

solutions for some problems. There are exact and 

efficient algorithms for a subset of optimization 

problems, but for lot of them we need to do a 

comprehensive search in an exponentially large solution 

space, which most of times is impractical. In order to 

find a solution for these problems, we usually use 

heuristic and approximation methods. These problems 

include wide range of applications such as data mining, 

computer vision, knowledge discovering and decision 

support systems. The heuristic methods do not 
necessarily find the optimal solutions, but often they 

manage to find a solution which is close to the optimal 

solution. This can be accomplished by consuming 

reasonable time and processing resources. Many 

problems involve complex search spaces with conflicting 

objectives. In these cases, optimization of an objective 

may prevent to achieve the other objectives. Here, 

sometimes there are a set of optimal solutions which 

have no clear superiority on each other. In multi 

objective optimization problems we try to find a trade-

off among the requested objectives.  

 Clustering is a data mining technique, which is 

used widely in solving related problems [1]. The main 

issue in clustering is to partition the given data, with a 

specified number of clusters such that minimize the total 

within cluster variation (TWCV) and maximize the 

variance between clusters. The k-means algorithm is the 
simplest and the most popular clustering method [2].  

The initial cluster centers usually have a high 

efficacy on performance of the k-means algorithm. If 

these centers are selected randomly, the process may 

converge to suboptimal partitions [3]. Regardless of the 

applied clustering method, one of the other most 

important parameters is number of clusters. In non-

hierarchical clustering methods like k-means, this issue 

corresponds to finding a proper value for k. This 

parameter must be determined before the clustering 

process starts. There is no straightforward or easy way to 

determine this value, because it depends on different 
issues like the form and distribution of data, as well as 

the clustering resolution expected by the user.  

The ultimate goal of this research is to find the best 

cluster centers and the best number of clusters 

simultaneously. The proposed method takes advantage 

of a genetic algorithm in which the population consists 

of some sub-populations. Since each point in the k-gene 

solution space can be a solution candidate, we allow 

these points to stay in the population at the same time, 
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and in their corresponding sub-populations. Furthermore 

we let them contribute in evolution of the final solution 

by applying genetic operators on them. In this regard, the 

genetic operators are implemented in such a way that 

could combine individuals of different sub-populations 

to create new varied individuals for the sub-population 

groups. Individuals in a subpopulation compete with 

each other, and also the best individuals of each 

subpopulation compete with each other as well. The 

main idea is that we want the genetic algorithm select the 

best solution from non-homogeneous solutions which are 
being evaluated by the same criteria. 

2 Literature Review  
In K-Means (KM), the initial cluster centers usually have 

a high impact on the clustering process. If these centers 

are selected randomly from the dataset, then each run of 

KM on the same dataset may lead to a different result. In 

other words choosing different centroid points every 

time gives different clusters. Furthermore the process 

may converge to suboptimal partitions [3]. In order to 

cope this dilemma, Sawant [4] in his research, proposed 
to calculate the neighbourhood distance between the first 

data item and the other data items, and then sort the 

items according to the obtained distances.  Afterwards he 

divides the arranged data items into K equal portions. As 

an initial candidate, the first data item of each 

partitioning takes part in the KM process. The above 

method, manages to find appropriate results with higher 

degree of accuracy in fewer number of steps, but since it 

requires computing neighbourhood distance between 

data items and rearranging them, it would be very slow 

in clustering large datasets.  
The proposed method by Karegowda et al. [5], also 

the proposed method by Al-Shboul and Myaeng [3] use 

genetic algorithm (GA) to determine the initial values of 

the clusters. In both of them a population is generated by 

using a GA process. They apply classic KM algorithm to 

evaluate fitness of each candidate center. When the 

terminating condition of GA goes true, the chromosome 

with highest fitness value decides which samples will be 

the k-means initial cluster centers. Since KM algorithm 

must be run for many times, these methods are usually 

computationally expensive.  
The research carried out by Krishna and Murty [2], 

and another investigation performed by Yi Lu et al. [6] 

are also based on using GA. These methods compared to 

the already mentioned methods[5,3] are faster and 

always converge to the global optimum. In addition they 

are not sensitive to the initial values. These methods 

maintain a population of some coded solutions and apply 

a single step K-means operator (KMO) to evaluate the 

chromosomes. The common point among all the existing 

methods which try to find better initial centers, is that 

they need to start with a given number of clusters.  

Another challenge in clustering algorithms is related 
to deciding about number of clusters, in other words, 

determination of the K parameter. The algorithm pro-

posed by Hamerly and Elkan [7] is based on a statistical 

test. It relies on the hypothesis that a subset of data 

follows a Gaussian distribution. The algorithm starts 

with a small number of clusters, and then increases them 

when needed.  In each iteration of the algorithm, if any 

cluster appear whose data dispersion do not follow the 

Gaussian distribution then that cluster would be divided 

into two clusters. In order to determine the number of 

clusters, some of the recent research works rely on using 

GA. In this regard, Llet´ et al. [8] use the silhouette to 

find the appropriate number of clusters. The common 

point among all the existing methods which are 

developed to find an appropriate number of clusters is 
that they evaluate the concerned criteria separately for 

different values of k. In other words, they need to run the 

KM algorithm for different values of K; this process is 

usually very time consuming.  

The research works reported by Li and Chang [9] and 

also Chittu and Sumathi [10] are based on introduction 

of modified genetic algorithms. They divide the existing 

population into a number of subpopulations. The 

chromosomes of a population have the same structure, 

but they use different parameters for the subpopulations. 

This could let information be transferred between 
subpopulations. In fact, migration of individuals between 

subpopulations along with application of genetic 

operators would lead to generation of new individuals. 

The purpose of using this modified genetic algorithm 

with multiple subpopulations and dynamic parameters is 

to make GA run faster.  

3 The proposed method  
One of the most important topics and applications of 

computer science is concerned with information 
clustering. The K-means algorithm is one of the most 

popular methods used widely for this purpose.  

This algorithm gets the data set and the desired 

number of clusters, and then it finds the clusters and 

their centers. In order to find the best number of clusters, 

typically the user must run this algorithm for different 

number of clusters and evaluate the obtained results. It 

can be shown that this parameter may be determined 
automatically by using genetic algorithms. Genetic 

algorithm is a search algorithm inspired from nature and 

genetics. Unlike many other search algorithms, which 

perform local and greedy search, GA performs a 

stochastic universal search. It is mainly composed of 

three operators: reproduction, crossover and mutation.  

In many clustering problems, the classical genetic 

algorithm can be applied easily and get acceptable 
results. But still there are some disadvantages that need 

special consideration. One of these disadvantages is 

concerned with deciding about the suitable number of 

clusters and their centers. In order to cope with these 

disadvantages we proposed a modified structure for the 

genetic algorithm. In fact, in this paper, we show how 

we can organize the population in several sub-

populations and mend the relevant operators to attain an 
improved genetic algorithm. We accomplish this by 

considering a population consisting of several set of 

chromosomes. The structure of these sets is almost 

similar because these genes hold corresponding 



information about the cluster centers but the number of 

genes in every group differs. In other words, the 

structure of the chromosomes is different in terms of 

number of constituent genes. In the proposed method, 

the existing population is processed in the form of 

several subsets which respectively contain one gene, two 

genes to k genes. These genes hold corresponding 

information about the cluster centers. New individuals 
are created by using the two main genetic recombination 

operators known as crossover and mutation. We re-

implemented these operators to let them accept parent 

chromosomes with different size. This could lead to have 

variation in the population and which in turn lets better 

data transfer between the subsets.  

Let  be the set of n patterns and  

denoting dth feature of . For the existing dataset if we 
consider number of clusters to be k for k=1, 2,…, K, 

then structure of the individuals which belong to each 
respective sub-space would be in the form of 

, in which  . Here, 
the number of genes in a subpopulation is proportional to 

the number of clusters and the gene length is also 

proportional to the data dimension. In other words, the 

proposed method maintains a set of encoded solutions 

(called chromosomes). Number of chromosomes is 

specified by the user. Here, each allele in the 

chromosome represent the value of cluster center, and 
number of genes in a chromosome stands for number of 

clusters.  

Recombination (or crossover) is the process of 

generating new items (offsprings) by exchanging a part 

(or some parts) between the chosen individuals (parents). 

Crossover is made with the hope that new chromosomes 

will contain good parts of each parent chromosomes and 

therefore the new chromosomes would constitute a better 
generation. In order to have heterogeneous populations 

in next generations, the genetic operators must be able to 

accept and also create heterogeneous individuals. 

Therefore we implemented the crossover operator in 

such a way that it could accept parent chromosomes,  

andd , with different lengths (different number of 

genes). A parent chromosome is selected from the fittest 

individuals with probabilityy  or it is selected randomly 

from the population with probability . The number 
of genes in an offspring is proportional to the number of 

genes of its parents. As shown in Fig. 1.,  If  is one of 

the parents with genes and  is the other parent with 

 genes and , then number of genes of offspring 

 will be  and the number of genes of offspring  

will be  genes.  genes of each offspring are created 
by a weighted average of similar genes of the parents. 

The remaining  genes of the longer offspring is the 
same as the genes of the longer parent that were not 

similar to any genes of the shorter parent.  

The mutation operation randomly changes the value 

of a gene in the offspring. Mutation is applied after the 
crossover with a low probability, called the mutation 

probability. This operator is used to prevent premature 

convergence to local optima. If  is an encoded solution, 

it will change one or more genes with probability . 

According to evolutional theory, mutation takes place in 

a way that new generation would be more perfect than 

the former generation. 

 
Fig. 1. Crossover of parents with different number of 

genes. 
 

In the proposed method, mutation may be applied to 

individuals in two ways. 1) One or some genes in a 

chromosome are changed with probability , 2) 
Number of genes in a chromosome are changed with 

probability .  
That means one or more genes are inserted into 

chromosome structure or are deleted from it. The allele 

of these genes will be set randomly. In this way, the 

concerned genetic operators generate the new population 

of every generation by combining different 

subpopulations of the former generation.  

Selection is operator that selects a solution from the 

current population for the next population according to 
its fitness value. Selection of individuals with higher 

fitness to form the next generation lets the population 

converge toward the generation which include the 

desired solutions of the search space. Already, in order 

to speed up the convergence process,  

A K-means operator (KMO), known as “one step of 

the classical K-means algorithm” [6] has been 

introduced. We implemented a modified version of 
KMO to find the closest cluster to every point.  

The silhouette value for each point is a measure of 

how similar that point is to points in its own cluster 

compared to points in other clusters [8]. It is defined as: 

                       (1) 

with 

                       (2) 

Where w(i) is the average distance from the ith point 

to the other points in its own cluster, and B(i, k) is the 

average distance from the ith point to points in another 

cluster k. The value of the parameter S(i) is in the range 
of [-1, +1]. 

This measure ranges from +1, indicating points that 

are very distant from neighboring clusters, through 0, 

indicating points that are not distinctly in one cluster or 

another, to −1, indicating points that are probably 

assigned to the wrong cluster [8]. If number of clusters is 

equal to number of objects, then for every point  we 

would have w(i) = 0 and s(i) = 1. In order to prevent 

generation of singleton clusters, we set S(i) = 0. In order 

to improve computational performance, we used the 



average distance of data in a cluster to cluster center as 

an approximation to w(i) and used  

as an approximation for b(i).  

Applying genetic operators can generate two 

identical cluster centers in a chromosome. In other to 

stop illegal solutions caused by , we consider 

 instead. In fact, this idea will prevent 

these individuals to transfer into the next generation. The 

main steps of the proposed method are shown in Fig. 2. 
The essential difference between our method and the 

classical genetic algorithm is in regard to using the 

populations with heterogeneous individuals and the 

changings we made to the basic operators. The new 

operators can accept heterologous individuals and 

structure of the mutation operator output won’t be 

necessarily the same as the input structure. 

 

 
1. Determine the maximum number of 

clusters(Kmax) 

2. Initialize the heterogeneous population (generate 

individuals for subpopulations k=1, 2,.., Kmax). 

3. Evaluate individuals using the fitness function. 

4. Repeat until terminating condition is met: 

a) Select the parent chromosomes from the 

subpopulations and apply the crossover 
operation. 

b) Apply the mutation operation (change genes 

value or insert genes into or delete genes from 

the chromosomes).  

c) Evaluate new individuals using the fitness 

function (needed to decide who can transfer to 

the next population).  

d) Select individual for next generation (replace low 
fit chromosomes with new high fit 

chromosomes). 

e) Update crossover probability and mutation 

probability by their adjustment functions. 

5. Extract number of clusters and their centroid from 

the fittest chromosome. 
 

 
Fig. 2. The main steps of the proposed method. 

 

4 Implementation 
We implemented the proposed method on a 

microcomputer in MATLAB. Although in the employed 

development environment there is special toolbox for 

running some optimization and genetic algorithms, but 

since our proposed method uses a different structure for 

its chromosomes and some changes were needed in the 

genetic operator functions, we couldn’t use the available 
toolbox, therefore we implemented the required 

procedures using the basic commands and facilities that 

were available in the MATLAB software environment. 

The pseudo-code of our modified genetic algorithm 

along with its crossover and mutation operators are 

shown in Fig. 3. 

   

 
 

  

 

 

Fig. 3. Pseudo-code of modified genetic algorithm along with 

its crossover and mutation operators.  



5 Experimental results  
In order to evaluate the proposed method, we examined 

its performance against four different datasets [8, 3]. The 

first three datasets are generated by mathematical 

models. These datasets are shown in Fig. 4. They include 

some samples consisting of three or four clusters with 

different distributions, the other database is known as 

Ruspini data [11].  

 

a. Dataset 1 

 

b. Dataset 2 

 
c. Dataset 3 

Fig. 4. Random dataset distribution. 

Already experimental results and official analysis 

have shown that silhouette value can also be used 

efficiently for higher dimensions [8]. We evaluate our 

proposed method against these data sets which consist of 

two-dimensional data, but since we have applied the 

silhouette value, the obtained results would also apply to 

dataset with higher dimensions. In fact, we chose the 

two-dimensional datasets for capability of easier 
presentation and spatial perception. 

Dataset 1 consists of 300 points gathered around 3 

clusters. The points are scattered with a radius of 0.2 

around 3 specific points (0.2, 0.6), (0.6, 0.2) and (0.8, 
0.8). They have same values in their boundary points. 

Dataset 2 Consists of 400 points scattered around 4 

specific points with a radius of 0.2, the points are (0.125, 

0.25), (0.625, 0.25), (0.375, 0.75) and (0.875, 0.75). The 
points two and four have horizontal interleaving on the 

boundary. This dataset is to be clustered into 4 clusters. 

Dataset 3 Consists of 400 points scattered around 4 

points with a radius of 0.3 for the first 3 centers and 
radius 0.4 for the last center. Points are (0.2, 0.2), (0.2, 

0.5), (0.2, 0.8) and (0.8, 0.5). The point of the last cluster 

seems to be isolated except for the points between the 

cluster center and the other three cluster; the first three 

clusters have common boundary points. This dataset is to 

be clustered into 4 clusters. 

Dataset 4 is the well-known Ruspini data [11]. This 
dataset consists of 75 samples, with two features for each 

sample. This dataset is frequently used in evaluation of 

clustering methods. Fig. 5-a shows the initial raw 

dataset. It is clear that this dataset consists of four 

clusters (Fig. 5-b). If we consider number of clusters 
k=5, then k-means would give the clustering shown in 

Fig. 5-c. Depending on the initial centers, for k=5, we 

may get another form of clustering like the one shown in 

Fig. 5-d; this time the bold circles are the objects which 

have been separated to form the fifth cluster. 

Usually, in order to find the best number of clusters 
and corresponding centers for a clustering problem using 

k-means, it is usually required to run it for different 

number of clusters and for different initial centers. 

In addition, if these best values are being found by a 
classic genetic algorithm, we would presumably need to 

make some changes in the encoding: The proposed 

algorithm looks simultaneously for these goals and it 

doesn’t require any alternations in the coding of 

solutions. In the experiments, we set population size to 

be 100 and the number of generations to be 30. The 
termination condition is met when we reach the 

predefined number of generations. The crossover and 

mutation operators were implemented as mentioned 

earlier. Maximum number of clusters set to be 6 to avoid 

too much calculation. Table 1 shows these parameters 

along with some other related parameters. 

By considering a different structure for the genetic 
algorithm we managed to find the suitable centroids and 

the appropriate number of clusters, in a reasonable time. 

Fig. 6 shows the experimental results of running the 

proposed algorithm on datasets 2. 

 



 
 a : (Ruspini) raw data 

 
 b: Clustering with k=4. 

 
 c: Clustering with k=5 (Random centers1). 

 

 d : Clustering with k=5 (Random centers2) 

 
Fig. 5. The Ruspini dataset [8]. 

Table 1. Configuration parameters for the proposed algorithm. 

Value Parameter 

100 Population size 

Randomly Sub-populations size 

0.8 Initial crossover probability 

0.1 Initial mutation probability 

f(iteration) 
Probability of changing Nr. of genes 

Probability of changing genes values  

6 Maximum Nr. of clusters (Kmax) 

30 Number of generations 

 
Fig. 6-a Shows how the proposed method managed to 

determine the clusters centroids truly. Fig. 6-b shows 
how the proposed algorithm could converge after only 

15 iterations. Fig. 6-c shows (average) number of 

clusters of the fittest chromosome in every generation. 

These information were obtained from averaging results 

of ten independent runs of the algorithm during the first 

30 generations. In early iterations, some points of the 

search space with k=3, compared to the others gain 

higher fitness (Fig. 6-c) but mutation and transformation 
of information between subpopulations could eventually 

lead the process to converge toward the better solution 

k=4.  

Table 2 shows the clusters centroids and number of 
clusters found by the proposed method. In fact it shows 

how the proposed algorithm manages to find clusters 

centers and number of clusters correctly. 

 

 
6-a. The proposed centroids by the proposed method 



 
6-b. Fitness of fittest chromosome and average 

fitness of population in every generation. 

 

6-c. Nr.  of clusters in the chromosome with the best 

fitness in every iteration (Average of 10 run) 

Fig. 6. The proposed method output for dataset2. 

Table 2. The clusters centroids and the number of clusters found by the proposed algorithm. 

 Nr. of  
clusters The clusters centroids obtained by the proposed method 

Dataset 1 3 ( .79 , .79 ) ( .61 , .17 ) ( .18 , .60 ) --- 

Dataset 2 4 ( .30 , .77 ) ( .10 , .24 ) ( .62 , .25 ) ( .84 , .76 ) 

Dataset 3 4 ( .79 , .50 ) ( .18 , .49 ) ( .20 , .79 ) ( .19 , .20 ) 

Ruspini  4 ( 65.22 , 18.95 ) ( 16.36 , 69.26 ) ( 148.37 , 40.18 ) ( 115.70 , 101.94 ) 

Considering a different structure for the population 

and chromosome patterns could let the procedure  not 

require a separate run for every value of k, this means 
reducing runtime. It is obvious that we would get better 

results when the objective function could establish a 

better trade-off between minimize the total within cluster 

variation (TWCV) and maximize the variance between 

clusters. Although the fitness function we adopted from 

Llet´ et al [8] can also work efficiency for high 

dimension datasets, but combining it with other 

measures can improve it to work efficiently for 
overlapping data as well. In the testing phase, each 

dataset was used 20 times and then we calculated the 

average running time. The obtained results are shown in 

Table 3. 
Table 3. Performance evaluation 

  Proposed 
algorithm 

K-means 
algorithm 

GA+KM 
(constant k) 

Dataset 1 2.60 0.01 18.51 

Dataset 2 1.03 0.013 15.32 

Dataset 3 2.61 0.02 11.12 

Ruspini 0.87 0.02 8.84 

If we try to use the classic genetic algorithm for 

solving problems which involve several search spaces, 

then for each search space we need to apply a different 
encoding and run the algorithm from the beginning; 

while the proposed approach doesn’t require any change 

in the encoding and it performs the corresponding 

operations in parallel.  

Since the proposed model for population consists of 

some subpopulations with different structures and we 

use improved genetic operators for recombining them, it 

is expected that offsprings will inherit appropriate 
information from their parent, leading to find an 

appropriate solution for the concerned problem. This 

cooperation and information exchange among 

subpopulations could also reduce the required processing 

time. In the implemented algorithm, despite presence of 

individuals from different search spaces, because of 

using the modified mutation operator, during 

consecutive generation, the best search space dominates 
and most of individuals in the last generation belong to 

the best solution space. When we want to apply our idea 

in solving optimization problems involving solutions 

from different search spaces, if we fix the number of 

individuals in subpopulations and allocate a certain 

proportion of the population to every subpopulation in 

successive generations, the algorithm can converge to 

the best solutions of different spaces. 



5 Conclusion and future work  
In this research a different structure for the genetic 

algorithm was introduced. This method can be applied to 

problems that several groups of different solutions are 

evaluated according to the same criteria. It shows that a 

heterogeneous population in genetic algorithm could 

accelerate the search process and improve the final 

results. In a further research, the fitness function can be 
improved by considering other criteria such as entropy 

for overlapping data or by considering a constant 

proportion for each subpopulation, apply it in solving 

problems that require to find best solutions from several 

search spaces. 
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