434

Chapter 19

Scalability and Performance
Management of Internet
Applications in the Cloud

Wesam Dawoud
University of Potsdam, Germany

Ibrahim Takouna
University of Potsdam, Germany

Christoph Meinel
University of Potsdam, Germany

ABSTRACT

Elasticity and on-demand are significant characteristics that attract many customers to host their Internet
applications in the cloud. They allow quick reacting to changing application needs by adding or releas-
ing resources responding to the actual rather than to the projected demand. Nevertheless, neglecting
the overhead of acquiring resources, which mainly is attributed to networking overhead, can result in
periods of under-provisioning, leading to degrading the application performance. In this chapter, the
authors study the possibility of mitigating the impact of resource provisioning overhead. They direct the
study to an Infrastructure as a Service (laaS) provisioning model where application scalability is the
customer’s responsibility. The research shows that understanding the application utilization models and
a proper tuning of the scalability parameters can optimize the total cost and mitigate the impact of the

overhead of acquiring resources on-demand.

1. INTRODUCTION

With virtually limitless on-demand resources,
cloud offers a scalable and fault tolerant architec-
tures that enable the hosted Internet application
to cope with unpredicted spikes in workload. In
the current cloud world, Software as a Service

DOI: 10.4018/978-1-4666-4522-6.ch019

(SaaS) and Platform as a Service (PaaS) scal-
ability is the provider responsibility. On the other
hand, Infrastructure as a Service (IaaS), which
offers more flexible environment, delegates the
scalability management to the customers. In this
chapter we dedicate our analysis to scalability of
Infrastructure as a Service (IaaS) layer; therefore
we define the entities that are involved in our
study as follows:

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of 1GI Global is prohibited.

Scalability and Performance Management of Internet Applications in the Cloud

Internet Application: An Internet appli-
cation, sometimes called an Internet ser-
vice, is an application delivered to users
from a server over the Internet (Urgaonkar,
2005). Examples of Web applications are
wikis, discussion forums, blogs, online
retails, and news Websites. The number
of users of these applications varies ac-
cording to the time of the day and rises
sharply on occasions. For example, video
games discussion forums endure a cyclical
demand variation, depending on the day
or night times hours, but experience high
traffic with each release of a new game.
Similarly, online retail faces a daily cycli-
cal variation in demand and high spikes
at special occasions such as Christmas. In
fact, these applications existed even before
the cloud emergence. However, the cloud
infrastructure provides elastic environment
for these applications to scale up and down
according to workload variation.

Internet Application’s User: An Internet
application’s user is a user who interacts
with the Internet application through a
Web browser. The interaction may include
browsing, submitting text, or uploading
files.

Figure 1. A detailed multi-tier scalable architecture

Internet Application’s Provider: Typically,
Internet application’s providers are a company
or organization that runs the Internet
application for profit purposes, such as
online retails, or non-profit purposes, such
as Wikipedia. In this chapter, we assume that
the Internet application is hosted in the cloud
infrastructure; therefore, we refer to the owner
as the cloud customer.

Cloud Provider: A cloud provider is the
company that offers the Infrastructure and
the tools for the cloud customers to host
and maintain the performance of their ap-
plications in the cloud (e.g., Amazon EC2).

Typically, Internet applications are implement-
ed as a multi-tier architecture as seen in Figure 1.
However, in some applications, the business logic
(i.e., application tier) and the data representation
(i.e., Web tier) are merged into one tier. In fact,
multi-tier implementation enables simpler scal-
ability for Internet applications especially for the
Web tier and the application tier. The scalability
of the database tier is not as simple as Web and
application tier. However, it also can be scaled
out into many instances using the Master/Slave
architecture as we discuss in Section 3.2.

ok

I 1

: Web Web !
er er

i |

l Web tier) 4

DNS: scalablewebsite.com

= EE
server | | server

P p——_—_

ELB

Availability Zone #2

Availability Zone #n

435

Scalability and Performance Management of Internet Applications in the Cloud

In multi-tier architecture, each tier provides a
particular functionality, while the type of the
incoming request determines the participating
tiers in the request handling. As an example, a
request of a static page can be handled by only a
Web tier. On the other hand, a search for items in
an online retail store will result in interactions
between all tiers including the Web tier, applica-
tion tier, and database tier (Urgaonkar, 2005). To
cope with the incoming workload variation, the
application at each tier may be replicated to many
servers. To keep load balancing, the incoming
workload will be distributed among replicas using
a dispatcher. The emergence of pay-as-you-go
concept in the cloud environment allows custom-
ers to dynamically specify the number of replicas
that cope with workload demand while keeping
the total cost to the minimum. To control the
number of replicas, IaaS providers (e.g., Amazon
EC2) offer the customers an online monitoring
of specific metrics utilization (e.g., CPU, Mem-
ory, and Network). A simpler approach to provi-
sion adequate VMs at any time is to determine a
static upper threshold (e.g., 70% CPU utilization)
as a trigger for increasing the number of Virtual
machines (VM) instances at high workload, and
another static lower threshold (e.g., 30% CPU
utilization) as a trigger for decreasing the number
of VM instances at low workload.

In fact, as we will discuss in Section 2.2,
current IaaS providers, especially Amazon EC2,
provide a wide range of tools and components
helping cloud customers to maintain a reliable
and scalable application in the cloud. However,
the provider leaves the customer unaware of the
following facts:

First, the current implementation of the scal-
ability in the cloud is reactive, meaning that
the scale out is triggered when a predetermined
condition is met. As an example, Web tier scale
out can be triggered when the CPU utilization
is 70% or higher. But, what is the best scale out
threshold? What happens if we rise up the scale
out threshold to 80%? Will this reduce cost? And

436

what is the application performance for each scal-
ability threshold?

Second, provisioning resources in the cloud
do not happen instantly due to the technology
and the virtual machine (VM) image size (i.e.,
network throughput). Accordingly, each provider
can initialize VMs with different overhead (Mao,
2012). If the cloud customer did not consider the
overhead of provisioning resources, the application
can approach periods of performance degradation
with each trigger for scale out.

Our contributions in this chapter are as follows:

e Study and compare the scalability imple-
mentation in some of well known laaS
providers.

e Define the scalability parameters that have
crucial impact on an Internet application’s
performance.

e Analyze the impact of the network overhead
on the scalable applications performance.

e Find the best values of scalability param-
eters that optimize the cost while maintain-
ing a high performance.

For these purposes, we developed ScaleSim.
It is a simulator built on top of CloudSim (Cal-
heiros, 2011) to observe and optimize the Internet
application scalability parameters at large-scale
realistic environment. Our simulator is fed with
realistic measurements of the application per-
formance and the workload variation to provide
accurate results. In this chapter, we simulated
RUBIS benchmark (Cecchet, 2002) at large scale.
However, our simulator can be fed with models
and traces from Internet applications running in
aproduction environment. ScaleSim contains the
basic functionality of Amazon EC2 scalability
components. In addition, it is implemented as
modules, which allows replacing current reac-
tive scalability controllers by self-implemented
proactive scalability controllers.

In the next section, we summarize the basic
concepts that face any researcher orengineer deal-

Scalability and Performance Management of Internet Applications in the Cloud

ing with the scalability in the cloud infrastructure.
In Section 2.2 we define the main components of
ascalable application. In Section 2.3, we shed the
light on the scalability parameters that have a direct
impact on Internet application’s performance. Af-
terwards, in Section 3 we suggest a methodology
for calculating performance thresholds of each
tier. In Section 4, we implement a simulator on
the light of the available scalability components
in Amazon EC2 to observe and analyze Internet
application scalability at large scale. In Section
5, we evaluate the current reactive scalability. In
Section 6, we study the possibility of tuning the
scalability parameters for lower cost and less Ser-
vice Level Objectives (SLOs) violations. Finally,
in Section 7, we conclude our work and point out
to the future work.

2. INTERNET APPLICATION
SCALABILITY

Dynamic scalability is not only crucial for IaaS
customers, but also for PaaS and SaaS providers
who host their systems into laaS layer. In fact,
IaaS providers offer architectures and compo-
nents that ease scaling applications in [aaS. On
the other hand, a non-trivial part of the task lies
on the customer’s side. Due to the vast number of
the hosted applications into [aaS and the variant
behaviors and demand of each application, custom-
ers should not expect IaaS providers to watch the
performance of each hosted application. In fact,
what an IaaS provider describes in Service Level
Agreement (SLA) is the running time of the VM
machine instance. For that reason, the response
time and the performance of an application hosted
in IaaS will stay forever the customer’s responsi-
bility. To have a reliable and scalable application,
customers need enough knowledge of the scalable
architecture and the scalability components. In
this section, we begin with a detailed scalable
architecture and then define the main component
of the scalability followed by related scalability
parameters that require customer’s awareness.

2.1. Scalable Applications’
Architecture

In addition to VMs instances as computation
units, as seen in Figure 1, there are many auxiliary
components that can be accessed as Web services.
Consuming these services may include added cost.
However, the offered services are manageable,
reliable, and fault-tolerant compared to custom-
ers self-created components, as we explain in the
next section.

2.2. Scalability Components

With the advance of cloud computing infrastruc-
ture, many services and concepts have emerged
to ease and support scalable and reliable Internet
applications. As a matter of fact, Amazon EC2
(Amazon EC2, 2012) is considered a pioneer in
cloud computing infrastructures. Therefore, we
explain the services and concepts that are related
to application scalability in terms of Amazon EC2
but also map them to other providers’ terms.

1. Amazon Machine Image (AMI): AMI is
a pre-configured operating system image
that can be used to create a virtual machine
instance. Windows Azure (Windows Azure,
2012)as well as Amazon EC2 (Amazon EC2,
2012) allow the clients to upload their own
image or select from a list of available im-
ages. Different providers and communities
offer images with software stacks to deliver
ease in running of their software. These im-
ages are stored in a non-volatile repository.
Most of the IaaS providers also allow users
to customize virtual machine (VM) images
and create their own images as snapshots.

2. Amazon Simple Storage Service (S3): S3
isasimple Web service that provides a fault-
tolerant and durable data storage. The data is
stored as objects redundantly across different
geographical regions for higher availability.
The stored objects can be accessed by URL.
S3 is optimal for storing static data that

437

438

Scalability and Performance Management of Internet Applications in the Cloud

will be delivered to users directly without
manipulation. In addition, it is used to store
virtual machine images. According to the
used technology, the rate of data transfer
varies from one provider to another. For
example, at the time of writing this book,
RackSpace (RackSpace, 2012) displayed a
data transfer rate of (22.5 MB/s). This fact
results in lower overhead for running a VM
instance compared with Amazon EC2 and
Windows Azure (Mao, 2012).

Amazon Elastic Block Store (EBS): EBS
is a block level storage volume that persists
independently from the VM instance life.
Unlike the local storage that can be lost after
a failure or a planned termination of a VM
instance, the EBS volume lasts permanently.
Consequently, it is used for applications that
need permanent storage like databases. At
any time a VM instance fails, the EBS vol-
ume can be re-attached to another healthy
VM instance. Despite the fact that the EBS
volumes are stored redundantly, to reduce
the recovery time from a failure, users can
periodically take snapshots of these volumes.
In addition, for high durability, the snapshots
also could be stored in S3 storage. As an
example, in Figure 1, a best practice is to
map the Master database to EBS storage.
Whenever the database instance fails, we
can remap the storage volume to another in-
stance and restore the database to operational
mode quickly. To balance the workload on
database tier a user can dump the database
into S3 storage that can be used to initiate
Slave instance, as we explain in details in
Section 5.2.

Regions and Availability Zones: Cloud
infrastructure is designed to offer a fast and
reliable service globally. As a result, data
centers of a cloud provider are distributed
to span more geographical location areas
(i.e.,Regions). Within each Region, there are
many Availability Zones that are engineered

to beisolated from failures propagation. The
networking between the Availability Zones
within the same Region is inexpensive and
induces a low networking latency. On the
other hand, the networking between VM
instances within Availability Zones located
in different Regions implies networking
through the Internet. As a result, even for
reliability and fault-tolerance, the cloud
customers are not advised to split application
tiers into different Regions.

Static Load Balancer (SLB): Alsoreferred
to as Load Balancer (LB) or a dispatcher.
Usually, it is a VM running a third-party
software (e.g., HAProxy, Nginx, and
Apache-proxy) todistribute workload across
many back-end VM instances (i.e., replicas).
The re-direction of the request to the back-
end instances follows a specific algorithm.
Round robin is a widely used algorithm in
Load Balancers. In case of unequal size of
back-end instances, weighted round robin
can be used to direct a quantity of the traffic
proportional to back-end instance capacity.
In case of databases, especially when the
majority of the requests dispatch read que-
ries, a load balancer can be stood in front
of the database tier. The database tier itself
can be split into a Master database instance,
and one or more Slave instances. The write
quires are directed by the load balancer to
the Master database, while the read queries
are directed to the Slave database instances.
Again, to be sure about the data consistency,
the Master and Slave instances should not
be located in different Regions to avoid high
latency synchronization through the Internet.
Nevertheless, to scale database into differ-
ent Regions other techniques like database
sharding (Curino, 2010; Agrawal, 2011)
can be used.

Elastic Load Balancing: The challenge with
the SLB is that they are in need to have up
to date lists of the available healthy replicas

Scalability and Performance Management of Internet Applications in the Cloud

behind it. Whenever a replica fails or does 7. Auto Scaling Group: It is a concept by
not work properly, it should be excluded Amazon EC2 which keeps a healthy group
from the list to avoid losing or delaying the of instances running under a unique name.
routed traffic to it. On the other hand, when- At the creation time of the group, the user
ever a new replica is initiated it has a new can specify the minimum number of the
IP address that is unknown to SLB. For the healthy instances that should be available all
third party load balancers, it is the Internet the time. Whenever a VM instance does not
application owner’s job to mange registering work correctly, the group controller replaces
and de-registering instances to the SLB. This itautomatically with a new one. Connecting
implies running an additional component to the auto scaling group with an ELB is nec-
interface with the load balancer and update essary to provide the ELB an updated list
the replicas list with each exclusion or ad- of the available running replicas within the
dition of a replica. Moreover, SLB owners scaling group.

should run additional components to allow 8. Auto Scaling Policies: Auto scaling poli-
the balancer to distinguish between healthy cies should be attached to a specific scaling
and non-healthy replicas. Alternatively, group. They describe how the scaling group
Elastic Load Balancer of Amazon EC2 is should behave whenever it receives a scale
supported with additional control compo- out or down trigger.

nent that keeps watching the status of the 9. CloudWatch: A Web service that enables
replicas. Whenever a VM instance does monitoring various performance metrics,
not respond properly, it is discarded from as well as configuring alarm actions based
the replicas to prevent routing traffic to it. on the status of the monitored metrics. For
When the instance recovers to healthy mode, example, the user can set up CloudWatch
ELB can consider it in the possible replicas to send an email or trigger scalability when
again. It is important to note that register- the CPU utilization of a database instance
ing and de-registering instances to the Load goes over 70%. More details can be seen in
Balancer are not part of the Elastic Load the example at the end of this section.
balancer job. They are done by what is called 10. Route 53: In reality, ELB is limited to one

an Auto Scaling Group, which is explained
next. On the contrary to ELB as a software
load balancer, GoGrid offers a hardware
load balancer that has a rich interface with
many functions. Some of the distinguishing
features of the GoGrid load balancer are
the ability to have log files formats similar
to apache style access log. Furthermore, it
has an important feature called connection
throttling, which allows the load balancer
to accept only a pre-defined number of
connections per an IP address. By this way,
the load balancer can mitigate malicious or

region. As aresult, Amazon offers Route 53
(Route 53, 2012) as a scalable and highly
available Domain Name System (DNS). It al-
lows scaling an Internet application globally
for less latency and higher reliability. With
Route 53, Internet application users can be
directed to the closest region according to
their geographical location. In this way, the
users will be served from the closest datacen-
ter. This allows a geographical distribution
of the load and a high reduction of latency.

In Table 1, we summarize scalability com-

abusive traffic to Internet application. ponents that are implemented by some of the

significant public cloud providers.

439

Scalability and Performance Management of Internet Applications in the Cloud

As shown in Table 1, Amazon EC2 has all the
components that are necessary for efficient scal-
ability. For the other providers, third parties like
RightScale (RightScale, 2012), open source man-
agement tools like Scalr (Scalr, 2012), or self
implemented controllers are necessary to imple-
ment dynamic and automated scalability.

How to Configure Auto Scaling
in Amazon EC2 laaS?

In the following example, we summarize how
a cloud customer can enable the scalability to
specific tier using the components offered by
Amazon EC2. The purpose of this example is
to express the parameters that are required to be
determined by the customer and have high impact
on the application performance. The same con-
cepts are applicable to the other providers either
by third party scaling systems or by the provider
self-developed tools. In this example, we assume
a Web tier that should maintain running at least
two VMs and can scale up to fifteen instances of
type ml.small. The group adds one instance per
a scale out, and terminates one instance per a
Scale down. The scale out is triggered when the
aggregated CPU utilization of all the instances
in the scalability group goes over 70%. On the
other hand, the Scale down is triggered when the
aggregated CPU utilization of all the instances

in scalability group goes under 30%. The system
will not scale out before five minutes of the last
scale out, and will not Scale down before seven
minutes of the last Scale down (see Figure 2).

1. Prepare an Image to Run: As described
before, customers can create their own in-
stance or pick one of the available images
offered by the provider. For example, we
consider running instances from the image
ami-4f35f826, where the customer is sup-
posed to install a Web server and configure
it with the IP of the load balancer of the
application tier. The customer can copy the
html pages to the Web folder within the im-
age. A more efficient practice in case of high
frequently html code updating is to keep the
code inexternal storage (e.g., S3) and retrieve
it at the VM initializing time.

2. Launch Configuration: For auto scaling,
the customer should pre-determine the
launch configurations. It is important to
mention that not all scalability configurations
can be done through the Web dashboard.
Until the time of this writing, to create a
launch configuration, customers should have
Amazon auto scaling command line pack-
age (AutoScaling, 2012). To create launch
configuration, customers should determine
a unique name of the configuration, a valid

Table 1. Scalability components of some of public laaS providers

Amazon EC2 Windows Azure Rackspace GoGrid
AMI Images N/A GoGrid Server Images (GSIs)
and PartnerGSIs
ELB N/A Cloud Load Balancer F5 Load Balancer (Hardware)
EBS Windows Azure Drives Only a local storage N/A
S3 Azure Blob Storage Rackspace (cloud files) Cloud Storage

Regions and Availability
zones

Regions but no Availability
zones

Regions but no Availability zones

Regions but no Availability
zones

Scalability Group

N/A

N/A

N/A

Scalability Policies

N/A

N/A

N/A

440

Scalability and Performance Management of Internet Applications in the Cloud

Figure 2. Main components of a dynamic scalable system in Amazon EC2

®
ELB: mybalancer
®
ami-4f35f826

ﬁuto scaling group

CloudWatch

{

5
Auto scaling policies 9—%K

Auto scaling
group

Launch

S3

configuration configuration

instance id, the type of the instance to be run,

the name of the key pair, and the security

group. An example of creating a launch
configuration is as follows:

a. as-create-launch-config my_
launch_conf_group --image-id ami-
4f35f826 --instance-type ml.small
--key my_key --group my_group
--monitoring-enabled

b. Thekey and security group can be cre-
ated using the dashboard. More details
canbe found in Amazon (Amazon EC2,
2012).

Running a Load Balancer: If auserdecided

to run ELB, the CNAME of the Internet ap-

plication should point to the DNS name of
the ELB not the IP. It appears that, Amazon

EC2 does not dedicate a public IP for each

ELB. In our example, we consider running

an ELB called mybalancer. It is necessary

to determine both the incoming port of the

ELB and the forward port that the replicas

are waiting on. The elastic load balancer also

should be configured with metrics that help
it to abandon non-healthy replicas depend-

ing on predetermined criteria. Running and

managing an ELB can be done either by

command line (ELB APIs, 2012) or through
the dashboard.

Auto Scaling Group Configuration: To

create a scaling group, customers should

determine aunique name forit, alaunch con-
figuration, an availability zone, a minimum
number of instances, a maximum number
of instances, and a grace period in seconds.

The purpose of the grace period is to give the

system time to stabilize after each initializa-

tion of a VM instance within the group. The
command of creating a scaling group can be
as follows:

a. as-create-auto-scaling-groupmy_scal-
ing_group --launch-configuration
my_launch_conf_group --availability-
zones us-east-1a --min-size 2 --max-
size 15 --load-balancers mybalancer
--health-check-type ELB --grace-pe-
riod 120

Auto Scaling Policies: In our example, to

create a scale out policy that should be trig-

gered by the CloudWatch whenever a specific

441

442

Scalability and Performance Management of Internet Applications in the Cloud

condition is fulfilled, we run the following

command:

a. as-put-scaling-policy --auto-scaling-
group my_scaling_group --name
scale-out --adjustment / --type
ChangelnCapacity --cooldown 300

b. A similar policy, but for Scale down
can be as the follows:

c. as-put-scaling-policy --auto-scaling-
group my_scaling_group --name
scale-down ““--adjustment=-1"" --type
ChangelnCapacity --cooldown 420

d. Asdisplayed above, to create a scaling
policy, the customer should configure
these parameters: the name of the
auto scaling group, a unique scaling
policy name, the size of the scaling
step, the type, and the cooldown time
in seconds. The positive scaling step
(i.e., adjustment) means adding the
specified number of instances to the
scaling group, while negative adjust-
ment means removing the specified
number from the scaling group.
Another important parameter is the
cooldown time. It describes how many
seconds the auto scaling group should
wait after each scaling before going
into another scaling. The cooldown
time is used to give the scaling group
a time to stabilize after triggering any
scaling policy. More details about the
command parameters can be found in
AutoScaling, (2012).

CloudWatch: Provides monitoring service

allowing customers to watch their applica-

tion performance and react immediately
for workload variation. To trigger scaling
policies, CloudWatch should be configured
either with CloudWatch command line

(CloudWatch Command Line, 2012) or

through the Web interface. Amazon offers

an easy Web interface that enables creating
metric alarms. There are many metrics to

monitor, including single instance metrics
or aggregated metrics. In our example, we
select the aggregated metric of an auto scal-
ing group while it describes the whole group
performance. To list the created metric auser
can run the command mon-describe-alarms
from CloudWatch command line tool. The
output was as follows:

ScaleOutAlarm OK
arn:aws:autoscalin...olicyName/scale-
out AWS/EC2 CPUUtilization 300
Average 1 GreaterThanOrEqualTo-
Threshold 70.0

ScaleDownAlarm OK
arn:aws:autoscalin...olicyName/scale-
AWS/EC2 CPUUtilization 420
Average 1
old 30.0

down
LowerThanOrEqualToThresh-

Currently, CloudWatch provides a free mode
where the metrics are measured at five-minute
frequency. From our experience, free mode is not
efficient for those applications that have frequent
changes in the workload. The other choice offers
more frequent measurement (i.e., one-minute
frequency) by setting what is called a detailed
monitoring of an instance; however it is charged
monthly per an instance. Furthermore, for both
modes, customers will be charged monthly per
alarm and per thousand API requests. More
details about the CloudWatch can be found in
CloudWatch, (2012).

2.3. Scalability Parameters

To summarize, in Table 2, we list the parameters
that are required to be set by the customer and
have crucial impact on the dynamic scalable ap-
plication performance.

It is clear that cloud providers have many ef-
ficient components that help the customer to build
a scalable application. Nevertheless due to the
fact that provider cannot understand each hosted

Scalability and Performance Management of Internet Applications in the Cloud

Table 2. The scalability parameters that have most impact on scalability performance

Component Parameter

Description & Impact on performance

Auto Scaling Group | grace-period

The period after an instance is launched. During this period, any health check failure of
that instance is ignored. In our experiments we noticed that a value greater than the booting
time of the VM instance (e.g., 120 seconds) works fine while a very high value causes a
slow reaction to VM instance failure after first run. On the other hand, a very low value
causes instability to the system.

Auto Scaling Group | default-cooldown

The time period that should pass after a successful scaling activity to consider a new one.
This value can be determined globally per scalability group or individually per each
scalability policy, as we did in our example.

Auto Scaling Policy | cooldown

Depending on the incoming workload fluctuation, customers can determine the best
cooldown after each scale either up or down. In our example, we set this value to be 300
seconds for the scale up but 420 seconds for the Scale down. While setting these values,
customers should keep in mind the following:
o A very high value causes slow reaction to workload variation.
o A very low value may cause adding or removing many instances quickly which will
result in an instable system
o In general, wrong values increase the probability of having periods of
over-provisioning or under-provisioning.

Auto Scaling Policy | adjustment

This parameter determines the size of the scaling step. The positive values means scaling
out, while negative values means scaling down. In Section 6, we study the impact of the
size of the step on both the cost and performance.

CloudWatch metric-name

performance.

The name of the metric to be watched. Depending on the application, a customer should
determine the metric that has the most impact on application performance. In Section
5, we concentrate on the CPU utilization and analysis how it can impact the application

CloudWatch threshold

these thresholds.

The threshold which the metric value will be compared.
Each application has its specific performance thresholds. In Section 3, we study the impact
of these values on application performance and explain the practical way to determine

CloudWatch period
the threshold.

Number of consecutive periods for which the value of the metric needs to be compared to

CloudWatch

evaluation-periods | Number of consecutive periods for which the value of the metric needs to be compared
to threshold. The multiplication of period by evaluation-periods should be higher than or
equal to cooldown value at Auto Scaling Policy. In other words, it is meaningless to have
very frequent triggers for a scalability group while it scales one time per five minutes.

application requirements and demand variation
they leave tuning the scalability parameters to the
customers. Any misconfiguration due to the lack
of knowledge can have an impact on the applica-
tion performance and may not achieve cost savings
expected by moving to the cloud infrastructure.
In the rest of this chapter, we develop the meth-
odology, the environment, and the tools that allow
bothresearchers and cloud customers to investigate
directly the Internet applications scalability pa-
rameters.

3. MODELING AN INTERNET
APPLICATION

Understanding the application model is crucial for
maintaining the Internet application performance
by avoiding bottlenecks in system performance.
What makes modeling an Internet application
behavior complex is fact that each tier in the In-
ternet application runs different software that has
different requirements. The dependency between
the Internet application tiers propagates the degra-
dation in performance of one tier to the other tiers
(Igbal, 2010; Urgaonkar, 2005a; Zhang, 2007). As
an example, a database server is known to be an
I/Ointensive application that requires abig RAM.

443

Scalability and Performance Management of Internet Applications in the Cloud

At any time the allocated RAM exceeds 90%,
the operating system starts paging to the virtual
memory allocated at hard disk. This swapping
results in more I/O operations and consumes much
of the CPU time, which consequently, degrades
the whole Internet application performance dra-
matically. The solution is to keep the memory
allocation less than 90% as a threshold either
by scaling vertically as described by Heo et al.
(2009) and Dawoud et al. (2011) or horizontally
by determining a scale out threshold (e.g., 90%)
for all tiers considering the memory as metric.
Actually, the memory model is relatively sim-
ple compared to CPU model where the response
time is not a function of the CPU utilization only
but also the incoming requests rate (Heo, 2009).
To understand the CPU model of software, re-
sponse time should be examined with different
request rates. In our research, we selected RUBIiS
benchmark (Cecchet,2002) as an Internet applica-
tion. It is an online auction site developed at Rice
University to model basic functions of ebay.com
system. We selected the RUBiS implementation
which consists of Apache as a Web server, Tomcat
as an application server, and MySql as a database.

3.1. State of the Art

Towards avoiding bottlenecks in multi-tier sys-
tems, Igbal et al. (2010) implemented a prototype
using multi-instances scaling architecture. This
approach considers scaling database layer horizon-
tally, but it did not discuss associated challenges
(e.g.,datareplication and synchronization). Using
analytical models to describe different tiers behav-
ior, Urgaonkaret al. (2005b) presented a multi-tier
model based on a network of queues, while each
queue represents a different tier. The scalability
of this model is implemented by dispatching new
instances at each tier except database tier which is
notreplicable in their model. In fact, implementing
Urgaonkar’s approach in a production environment
is challenging, as it requires monitoring low level
metrics. The more efficient modeling for appli-
cations is the black box models (Dawoud, 2012;
Igbal, 2011). The black box models can be less
444

accurate, but more efficient to implement in pro-
duction environments. Using regression analysis
of CPU utilization and service time to predict the
bottlenecks, Dubey et al. (2009) demonstrated an
approach for performance modeling of two-tier
applications (Web and database). Even though
the approach does not imply dynamic scaling,
it aids in understanding application behavior for
optimum capacity planning. Using queuing theory
models along with optimization techniques, Jung
et al. (2008) presented off-line techniques to pre-
dict system behavior and automatically generate
optimal system configurations. Nevertheless, the
authors considered scaling resources vertically,
which limits a VM scaling into one physical host.

3.2. Physical Setup

To reduce the experiment budget, we setup both
the workload generator and the load balancer
inside Amazon EC2 infrastructure. Both the Web
and the application are run on instances bundled
to Amazon S3. Write only database (i.e., Master
database) is created from an instances mapped to
EBS storage for permanent storage, while read
only a database (i.e., Slave database) is created
from a bundled image stored at Amazon S3. The
type of images was Small instance (m1.small) for
the Web, the application, the slave databases, and
the load balancers. For master database and load
generator we run Medium instances (m1l.medium).
To avoid the other tiers’ impact on the tier under
analysis, we create many replicas in the other tiers
that keep the CPU utilization around 30%. As an
example, to model CPU utilization of Web tier,
we run four instances of application tier and two
instances of slave database.

The generated workload is step traffic that
increases the number of simultaneous clients
gradually. In our experiments we consider the
95th percentile of transaction response times,
which means that 95% of the measured response
times of all requests is less than or equal to a given
value (e.g., 95% of the requests is less than 100
milliseconds).

Scalability and Performance Management of Internet Applications in the Cloud

3.3. Web, Application, and
Database Tier Thresholds

As the number of requests increases, the CPU
utilization also increases. The relation between
the number of requests and the CPU utilization
is linear most of the run time, as seen in Figure
3. On the other hand, the response time increases
exponentially with the CPU utilization. At some
high values of the CPU utilization, the response
time increases dramatically while the requests
spend long time in the queue waiting for process-
ing. Our goal of this analysis is to determine the
CPU threshold that keeps the response time within
a specific limit. In our system, we consider 100
ms as a higher limit of response time, while a
response time around this value gives the user the
feeling that the system is reacting instantaneously
(Nielsen, 1993). Figure 3 demonstrates the fol-
lowing: to keep the response time of 95% of the
requests less than or equal to 100 ms, the CPU
utilization of each instance at Web tier should be
less than or equal to 70%.

Repeating the experiment with the same work-
load and different number of instances, one ap-

Figure 3. Web tier performance thresholds

» CPU utilization (%)

120 -~ A RS

® Response time

100

60

CPU Utilization (%)

40

20

1000

——Linear (CPU utilization (%))

80 y=0.0384x +1.2501 %
Rf= 0.9222& ®

1500
Number of requests

plication instance and four Web instances shows
the following: to keep the response time of 95%
of the requests less than or equal to 100 ms the
CPU utilization of each instance at application
tier should be less than or equal to 62%.

For the same setup but with five instances at
Web tier and four at application tier, the result
shows the following: to keep the response time of
95% of the requests less than or equal to 100 ms
the CPU utilization of each instance of read only
databases should be less than or equal to 72%.

Our experiment shows that each tier has a
different performance threshold. If the customer
failed to determine the right threshold for each
tier, the whole Internet application performance
is exposed to degradation. As an example, in our
setup, the auction Website owner (i.e., RUBIS)
has a Service Level Objective (SLO) to keep the
response time of 95% of the requests less than 100
milliseconds. In this case, the periods of time at
which the CPU utilization of application tier are
higher than 62% but less than 70% (i.e., High, but
not high enough to scale out) will result in SLO
violation even though the other tiers’ utilization is
still under the threshold. In Section 6, we discuss

—Expon. (Response time)

+ S00

]
L 450
a0 @
£
=
@
L350 £
=
&
300 2
2
L 230 &
e
o <
@ [™ 200 €
@
— 0.0009x =]
9.804¢' % 2
@ " R?=0.7171 =
r3
L 100 &8
= ol 10n
=
L 50
0

2000 2500 3000

445

Scalability and Performance Management of Internet Applications in the Cloud

the possibility of tuning the scale out threshold
for lower cost and SLO violation.

3.4. ARX Model Extractions

To have online measurements of the instance under
analysis, we built a java client that continuously
monitors basic metrics: CPU utilization, Memory
allocation, Network IN/OUT rate, and Disk read/
write rate. In addition to monitored metrics, we
enabled the load balancertolog URL requests. The
monitored metrics are synchronized with the log
file. For each monitoring interval (i.e.,one minute
in our case) we count the number of requests of
eachtype. As we have done in (Dawoud, 2012), we
consider 18 types of requests in RUBiS benchmark
depending onthe URL. The vector of requests rate
is the input for our MISO Autoregressive model
with eXogenous inputs (ARX), while the output
is the modeled metric (e.g., CPU of the Web tier).
Extracted models for each resource are necessary
to run more realistic simulation of Internet appli-
cations in a large scale environment. To have an
accurate model, we had only samples from areas
showing no spikes in response time. The fitness
of Web and application tiers models was higher
than 94%, as explained in (Dawoud, 2012). The
high fitness of models leads to simulation results
close to the results from experiments conducted
on physical setup.

4. LARGE SCALE INTERNET
APPLICATION SIMULATION
(SCALESIM)

Implementing a scalable and efficiently running
application in the cloud is a demanding research
topic (Dawoud, 2012; Igbal, 2010; Chieu, 2011;
Li, 2012; Jayasinghe, 2011). Nevertheless, pro-
posed approaches are mostly tested in small test
beds or prototypes, which make it difficult to
compare the performance of the new proposed
algorithms. Moreover, every researcher has differ-

446

ent experimental setup with certain assumptions
and specific workload. To ease the comparison
and offer an environment for large scale running
of Internet application in the cloud, we developed
(ScaleSim). It is a simulator built on top of the
CloudSim framework (Calheiros, 2011). We build
it to examine the current implementation of the
scalability in production environments (e.g., Ama-
zon EC2). The simulator is built into components
that can be customized by other researchers to
compare their algorithms with the current running
algorithms in a production environment and also
with the other researchers’ scalability algorithms.

4.1. State of the Art

CloudSim (Calheiros, 2011) is a framework
for modeling and simulating cloud computing
infrastructures and services. It allows scalable,
repeatable, and fast evaluation of the new devel-
oped algorithms and polices before implementing
them to a production environment. CloudSim
supports modeling and simulation of federated
cloud, data center network topologies, energy
aware computation, and most importantly it sup-
ports user defined polices for provisioning virtual
machines. Therefore, it was the best framework for
us to implement our components and algorithms
to analyze scaling an Internet application in a
public cloud.

To reduce the time for building a test-bed
setup for examining Web applications in the
cloud, researchers at UC Berkeley RAD Lab
developed Cloudstone framework (Sobel, 2008).
The goal of the project is to offer a benchmark
that involves using flexible and more realistic
workload to examine realistic Web 2.0 applica-
tions. The project consists of two parts. Olio
(Olio, 2012) as a Web 2.0 kit and Faban (Faban,
2012) as Markov-chain based workload generator
that can be used with Olio. Olio implements the
basic functions of a social-event calendar Web
application. Both components are developed in
cooperation between UC Berkeley RAD Lab and

Scalability and Performance Management of Internet Applications in the Cloud

Sun Microsystems Inc. The framework is scal-
able at the real infrastructure. However, it can be
costly to have large scale experiments at physical
infrastructure. Nevertheless, it is very useful to
use it to get real measurements that can be fed to
our simulator for large scale simulation.
Another developed benchmark to examine
Wikipedia similar Web applications is WikiBench
(Van Baaren, 2009). It is a trace based benchmark
able to create thousands of requests per a second.
The traces are realistic while they are anonymous
real traces from Wikimedia foundation. The
benchmark has the ability to control the traffic
intensity without affecting the traffic properties
like inter-arrival time and distribution of page
popularity. Again, this benchmark, as same as
RUBIS benchmark that is used in this research, is
designed to run in physical environment. We are
looking forward to taking these measurements at
physical environment to our simulator for more
experiments on differ application like Wikipedia.

4.2. Developed Simulator (ScaleSim)
In our simulator, we implemented the functionality

of the main components of scalability in the cloud.
To make configuring the system more flexible,

we depend on meta-data files (i.e., xml files) for
configuration. With each new run, components
fetch the attached configuration files. Figure 4
explains in details the components of our devel-
oped simulator (ScaleSim) and the interaction
between the components as follows:

1. Thetrainingfile(e.g., training.csv) contains
real measurements of an application in a
physical environment. The measurements
consist of the rate of each considered URL
request and the utilization of the monitored
resources. The file is built as described in
Section 3.4. However, same procedures can
be implemented to any other Internet
application.

2. Therunningfile(e.g., running.csv) contains
an artificial generated workload. To have
more realistic results, the workload should
be generated to mimic the real behavior of
Internet applications. We explain in details
the workload generation for our experiment
in Section 4.3.

3. Models extraction and workload generation
module dotwo tasks: first, it read the training
files to extract models. Second, it calculates
the consumption of resources. The expected

Figure 4. Our implementation for cloud computing scalability (ScaleSim)

—

B
[AlarmsManager ?

5
I UtilizationManQ——»
7

CloudSim

[AutoScaleManager

1
[il T
AutoScaleGroups
db.xml

f CloudProfiler }

o)

Models extraction

scaling_polices.xml]

b

&
workload generation

T

scaling_groups.xml

2
running.csv ?

1
training.csv ?

447

448

Scalability and Performance Management of Internet Applications in the Cloud

consumption of the resources is passed to
CloudProfiler object. It is an object resides
in CloudSimto build the datacenters and the
brokers that manage the coming workload.
In CloudSim we implemented a simple
Datacenter to avoid internal optimization
of resources (e.g., VM migration) that
might influence our simulation. At the
start of the simulation, a new object of
UtilizationManager is created.

Whenever UtilizationManager is started,
it creates an object of AutoScaleManager
class. In fact, UtilizationManager is con-
sidered as an actuator for the scalabil-
ity commands, which are received from
AutoScaleManager. UtilizationManager has
adirect monitoring of resources in CloudSim
environment. It passes these measurements
to AutoScaleManager that decides about
scaling out or down to cope with incoming
workload. Usually, starting anew VM com-
mands are passed to CloudSimincluding the
profile of the VM image to be started. In our
simulator, the VM profile also includes the
total required time to puta VM to operational
mode. More details will be shown in Section
- K 8

AutoScaleGroupsis an objectimplementing
the same concept of the scalability groups
in Amazon EC2. It maintains the number of
the VMs in a group to the number predeter-
mined by the Internet application owner. For
example, it can be configured to guarantee
that the minimum number of instances at each
tier is one. Moreover, it can be configure to
prevent the number of instances in a specific
tier from exceeding a pre-defined number
of instances.

AutoScaleManager is the component that
is responsible for the scalability algorithm
intelligence. Incase of reactive scaling (e.g.,
current implantation in Amazon EC2), the
scalability is controlled by both the scal-
ing policies as input from the application

owners (i.e., scaling_polices.xml) and the
AutoScaleGroups. To employ proactive
scaling algorithm, AutoScaleManager can
be developed to consider historical measure-
ments for coming workload prediction.

8. AlarmsManager is a queue receiving a
stream of alerts. The alerts are initiated at
AutoScaleManager whenever the utilization
matches any of scaling polices. Each alert
contains attributes (e.g., timestamp, scaling
group, scale direction, and evaluation peri-
ods) that help the AlarmsManager manager
to group the alerts and pass the scalability
decision to AutoScaleManager at the proper
time.

4.3. Workload Generation

To have real measurements, our experiment is
conducted on physical environment to extract the
application models. At the simulation environ-
ment, the input to the models is the rate of each
URL request type. So, to simulate a realistic and
large scale running of Internet applications, we
need to preserve the real user behavior (e.g., flow
pattern and thinking time), otherwise results can
be inconsistent (Menascé, 2002). RUBIS bench-
mark, as same as Faban workload generator, has
flow probability matrix M which is NxN matrix
describes N states of the system. Each element
of the probability matrix (i.e., Mij) describes the
probability that the workflow j follows workflow i
(Sobel, 2008). According to probability matrix, a
Website receives a specific percentage of each re-
questtype (Candea, 2004). Similarly, we calculate
the probability of the appearance (i.e. the requests
rate) of each request type. This probability can be
changed according to Internet application users’
interest or by modifying a Web page contents.
However, this is out of the scope of this research.
Moreover, this fact does not have crucial impact
on our experiments while our intention in this
simulator is to provision resources that cope with
the workload in each tier.

Scalability and Performance Management of Internet Applications in the Cloud

To mimic a realistic arrival rate of users and
workload variation, we used the world cup 1998
workload (Arlitt, 1999) traces. They are apache
log style traces of 1.35 billion requests initiated to
world cup 1998 official Website over three months
period. Even, they are traces of different applica-
tions; they have a real arrival rate of requests that
can be mapped to RUBIS bench mark requests’
rate. For each period of time (i.e., one minute in
our case) we multiply the number of requests by
the probability of each of the RUBiS benchmark
requests. The result is the rate of each considered
request of RUBIS benchmark (i.e., 18 requests in
our case), which is stored in running.csv file, as
explained in Figure 4. The rates vector, for each
time window, is used to calculate the consumption
of resources at each tier (see Figure 5).

As expected, using world cup request rates
causes over-utilization of a single VM. Our
simulator, depending on the scalability policies,
finds the best number of VMs that should run in
each tier to cope with the coming workload. This
is what we study in details in next section.

5. DYNAMIC SCALABILITY

Elasticity is one of the great characteristics that
attract many customers to move into the cloud in-
frastructure. It enables dynamic scalability where
cloud customers can acquire more VM instances
dynamically to handle the workload surges. Actu-
ally, there is a delay between initiating a request
for a VM until having it ready. In this section, we
study the source of these delays and their impact
on the current reactive implementation of the
scalability in the cloud.

5.1. Initializing a VM in the Cloud

In this section, we explain the stages of running
a VM in the cloud. The goal is to point out the
sources of overhead in running the VM instance.
Networking overhead is the main source of the
delay in running a VM instance. As an example,
Mao (2012) shows that running a Linux instance
at Rackspace takes half the time to run the same
size instance at Amazon EC2. Itis understandable
when we know the data transfer rate between a
VM and Image Store is 22.5 MB/s at Rackspace,
compared to 10.9 MB/s at Amazon EC2.

Figure 5. Requests’ rate to world cup 1998 official website for one week started at June 15th, 1998

o

1]

2

%4000 g

S 3000 IM

2 2000 - J | J%

E L

E it ¥ | w

0 1440 2880 4320

5760 7200 8640

Time (minutes)

449

