
Technische Berichte Nr. 85

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

HPI Future SOC Lab:
Proceedings 2012
Christoph Meinel, Andreas Polze, Gerhard Oswald,
Rolf Strotmann, Ulrich Seibold, Bernhard Schulzki
(Hrsg.)

ISBN 978-3-86956-276-6
ISSN 1613-5652

Technische Berichte des Hasso-Plattner-Instituts für
 Softwaresystemtechnik an der Universität Potsdam

Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam | 85

Christoph Meinel | Andreas Polze | Gerhard Oswald | Rolf Strotmann |
Ulrich Seibold | Bernhard Schulzki (Hrsg.)

HPI Future SOC Lab

Proceedings 2012

Universitätsverlag Potsdam

Bibliografische Information der Deutschen Nationalbibliothek
Die Deutsche Nationalbibliothek verzeichnet diese Publikation in der
Deutschen Nationalbibliografie; detaillierte bibliografische Daten sind
im Internet über http://dnb.dnb.de/ abrufbar.

Universitätsverlag Potsdam 2014
http://verlag.ub.uni-potsdam.de/

Am Neuen Palais 10, 14469 Potsdam
Tel.: +49 (0)331 977 2533 / Fax: 2292
E-Mail: verlag@uni-potsdam.de

Die Schriftenreihe Technische Berichte des Hasso-Plattner-Instituts für
Softwaresystemtechnik an der Universität Potsdam wird herausgegeben
von den Professoren des Hasso-Plattner-Instituts für Softwaresystemtechnik
an der Universität Potsdam.

ISSN (print) 1613-5652
ISSN (online) 2191-1665

Das Manuskript ist urheberrechtlich geschützt.
Druck: docupoint GmbH Magdeburg

ISBN 978-3-86956-276-6

Zugleich online veröffentlicht auf dem Publikationsserver der Universität Potsdam:
URL http://pub.ub.uni-potsdam.de/volltexte/2014/6899/
URN urn:nbn:de:kobv:517-opus-68991
http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68991

mailto:verlag@uni-potsdam.de

Contents

Spring 2012

Prof. Dr. Ben Juurlink, Architektur eingebetteter Systeme, Technische Universität
Berlin

Parallelizing H.264 Decoding with OpenMP Superscalar . 1

Prof. Dr. Jürgen Döllner, Computer Graphics Systems, Hasso-Plattner-Institut

Service-Based 3D Rendering and Interactive 3D Visualization 7

Dr. Ralf Kühne, SAP Innovation Center, Potsdam

Benchmarking and Tenant Placement for Efficient Cloud Operations 11

Prof. Dr. Christoph Meinel, Internet-Technologies and Systems Group, Hasso-Plattner-
Institut

Towards Multi-Core and In-Memory for IDS Alert Correlation: Approaches and Capabilities . 15

Multicore-Based High Performance IPv6 Cryptographically Generated Addresses (CGA) . . . 21

Blog- Intelligence Extension with SAP HANA . 27

Accurate Mutlicore Processor Power Models for Power-Aware Resource Management 29

VMs Core-allocation scheduling Policy for Energy and Performance Management 35

Prof. Dr. Andreas Polze, Operating Systems & Middleware Group, Hasso-Plattner-
Institut

Parallelization of Elementary Flux Mode Enumeration for Large-scale Metabolic Networks . . 41

Dr. Felix Salfner, SAP Innovation Center, Potsdam

Early Anomaly Detection in SAP Business ByDesign . 47

Prof. Dr. Michael Schöttner, Betriebssysteme, Universität Düsseldorf

ECRAM (Elastic Cooperative Random-Access Memory) . 53

Prof. Dr. Steffen Staab, Institute for Web Science and Technologies, Universität
Koblenz-Landau

KONECT Cloud — Large Scale Network Mining in the Cloud 55

Prof. Dr. Rainer Thome, Chair in Business administration and business computing,
Universität Würzburg

Integrated Management Support with Forward Business Recommendations 59

i

Fall 2012

Prof. Dr. Jürgen Döllner, Hasso-Plattner-Institut Potsdam

Service-Based 3D Rendering and Interactive 3D Visualization 63

Prof. Dr. Jorge Marx Gómez, Carl von Ossietzky University Oldenburg

Smart Wind Farm Control . 65

Prof. Dr. Helmut Krcmar, Technical University of Munich

Measurement of Execution Times and Resource Requirements for single user requests 69

Dr. Ralph Kühne, SAP Innovation Center Potsdam

Benchmarking for Efficient Cloud Operations . 71

Prof. Dr. Christoph Meinel, Hasso-Plattner-Institut Potsdam

Instant Intrusion Detection using Live Attack Graphs and Event Correlation 73

Prof. Dr. Andreas Polze, Hasso-Plattner-Institut Potsdam

Exploiting Heterogeneous Architectures for Algorithms with Low Arithmetic Intensity 77

Dr. Felix Salfner, SAP Innovation Center Potsdam

Using In-Memory Computing for Proactive Cloud Operations 83

Prof. Dr. Kai-Uwe Sattler, Ilmenau University of Technology

Evaluation of Multicore Query Execution Techniques for Linked Open Data 89

Dr. Sascha Sauer, Max Planck Institute for Molecular Genetics (MPIMG) Berlin

Next Generation Sequencing: From Computational Challenges to Biological Insight 95

Prof. Dr. Michael Schöttner, Heinrich Heine University of Düsseldorf

ECRAM (Elastic Cooperative Random-Access Memory) . 99

Prof. Assaf Schuster, HPI research school, Technion IIT

Analysis of CPU/GPU data transfer bottlenecks in multi-GPU systems for hard real-time data
streams . 103

Prof. Dr. Steffen Staab, University of Koblenz and Landau

KONECT Cloud — Large Scale Network Mining in the Cloud 107

Prof. Dr. Rainer Thome, University of Würzburg

Adaptive Realtime KPI Analysis of ERP transaction data using In-Memory technology 111

Till Winkler, Humboldt University of Berlin

The Impact of Software as a Service . 115

ii

Parallelizing H.264 Decoding with OpenMP Superscalar

Chi Ching Chi, Ben Juurlink
Embedded Systems Architecture

Einsteinufer 17
10551 Berlin

{chi.c.chi,b.juurlink}@tu-berlin.de

Abstract

Since the advent of multi-core processors and systems,
programmers are faced with the challenge of exploit-
ing thread-level parallelism (TLP). In the past years
several parallel programming models have been intro-
duced to simplify the development of parallel applica-
tions. OpenMP Superscalar is a novel task-based pro-
gramming model, which incorporates advanced fea-
tures such as automated runtime dependency reso-
lution, while maintaining simple pragma-based pro-
gramming for C/C++. We have parallelized H.264
decoding using OpenMP Superscalar to investigate its
ease-of-use and performance.

1 Introduction

Because multi-core processors have become om-
nipresent, there is a lot of renewed interest in parallel
programming models that are easy to use while being
expressive, and allow to write performance-portable
applications. An important question is, however, how
to evaluate the ease of use, expressiveness, and perfor-
mance of a programming model. In this work we try
to answer this question by describing our experiences
in parallelizing H.264 decoding using OmpSs, a novel
task-based parallel programming model. To evaluate
its performance, the performance of the OmpSs appli-
cation is compared to a similary structured Pthreads
applications. H.264 decoding is an excellent case
study because it is highly irregular and dynamic, ex-
hibits many different types of data dependencies as
well as rather fine-grained tasks, and requires differ-
ent types of parallelism to be exploited.
In OmpSs [3], in addition to OpenMP functionality,
programmers can express parallelism by annotating
certain code sections (typically functions) as tasks,
as well as the inputs, outputs, and inputs/outputs of
these tasks. When these functions are called, they are
added to a task graph instead of being executed. The
task dependencies are resolved at runtime, using the
input/output specification of the function arguments.

Once all input dependencies of a task are resolved, it
is scheduled for execution.
A key difference between OmpSs and other task-based
parallel programming models is the ability to add tasks
before they are ready to execute. This is a power-
ful feature which allows more complex paralleliza-
tion strategies that simultaneously exploit function-
level and data-level parallelism. In this paper we show
how these features can be used to implement a parallel
implementation of H.264 decoding.
The structure of this paper is as follows: Sections 2
to 5 describe the implementation and optimization of
parallel H.264 video decoding using OmpSs. In Sec-
tion 6 the performance of the OmpSs version is eval-
uated and compared to an optimized Pthreads imple-
mentation. Conclusions are drawn in Section 7.

2 Pipelining H.264

The H.264 decoder pipeline consists in our design of
5 pipeline stages, shown in Figure 1. In the read stage
the bitstream is read from the disk and parsed into sep-
arated frames. In the parse stage the headers of the
frame are parsed and a picture info entry in the pic-
ture info buffer (PIB) is allocated. The entropy decode
(ED) stage performs a lossless decompression by ex-
tracting the syntax elements for each macroblock in
the frame. Some syntax elements are directly pro-
cessed, e.g. the motion vectors differences are trans-
formed into motion vectors. The macroblock recon-
struction stage allocates a picture in the decoded pic-
ture buffer (DPB) and reconstructs the picture using
the syntax elements and motion vectors. The output
stage reorders and outputs the decoded pictures either
to an output file or the display.
In contrast to other task-based programming models,
like Cilk++ [7] and OpenMP [2], pipeline parallelism
can be straightforwardly expressed in OmpSs, because
OmpSs tasks can be spawned before its dependencies
have been resolved [8, 6]. Listing 1 presents the sim-
plified code of the pipelined main decoder loop using
OmpSs pragmas. A task is created for each pipeline
stage in each loop iteration. For correct pipelining of
the tasks, it is required that all tasks in iteration i are

1

Read Output

Info 1 Info x

PIB

Pic 1 Pic n

DPB

Parse ED MBRED

∼ 40%

MBR

∼ 50%

Figure 1. H.264 decoder pipeline stages
in our design

executed in-order. To accomplish this, each task in
the same iterations is linked to the previous task in the
same iteration via one or more input and output/inout
pairs. Additionally, task T of iteration i must be com-
pleted before the instance of the same task T in itera-
tion i+1 is started. To accomplish this, each task has
a context structure that is annoted as inout, e.g., Read-
Context *rc, NalContext *nc, EntropyContext *ec, etc.
The pipeline parallelism is uncovered by using entry of
a circularly buffer of size N for the task inputs and out-
puts. This eliminates the WAR and WAW hazards that
would have occurred if the same entry is used in each
iteration, which would eliminate all the parallelism.
Exploiting the FLP, however, is not enough to get scal-
able performance. The performance of the pipelined
implementation is limited by the longest stage in the
pipeline. The entropy decode and macroblock recon-
struct stages take around 40% and 50% of the total
execution time, respectively. The total speedup is in
this case limited to a factor of two. To gain additional
speedups both the entropy decode and macroblock re-
construct stages must be further parallelized. Both
these stages exhibit DLP and how they can be ex-
ploited is discussed in the following sections.

3 Parallelizing Entropy Decoding

The ED stage performs entropy decoding using
CABAC or CAVLC. In both these methods the inter-
pretation of each bit in the stream depends on the pre-
vious bit. Therefore, no task parallelism exists inside
the entropy decode of one frame. Multiple frames,
however, can be decoded in parallel as they are sep-
arated by start codes. The frames, however, are not
fully independent as illustrated in Figure 2.
In Figure 2, four frames are decoded in parallel. The
hatched blocks represent the current MBs that are de-
coded in parallel and the blue blocks denote the al-
ready processed MBs in each frame. For blocks in the
B-frames some blocks may need the motion vectors of
the co-located block in the previous frame. To express
this parallelism, the code segment in Listing 2 can be
used replacing the entropy_decode_task in Listing 1.
The entropy decode task is split in three tasks.
The init task initializes the context tables, the
decode_entropy_line_task entropy decodes a mac-

#pragma omp task inout(*rc) output(*frm)
void read_frame_task(ReadContext *rc, EncFrame *frm

);

#pragma omp task inout(*nc, *frm) output(*s)
void parse_header_task(NalContext *nc, Slice *s,

EncFrame *frm);

#pragma omp task inout(*ec, *s) input(*frm) output(
*mbs)

void entropy_decode_task(EntropyContext *ec, Slice
*s,

EncFrame *frm, H264mb *mbs);

#pragma omp task inout(*rc) input(*s, *mbs) output(
*pic)

void reconstruct_task(MBRecContext *rc, Slice *s,
H264Mb *mbs, Picture *pic);

#pragma omp task inout(*oc) input(*pic)
void output_task(OutputContext *w, Picture *pic);

EncFrame frm[N]; Slice slice[N];
H264Mb *ed_bufs[N]; Picture pic[N];

int k=0;
while(!EOF){

read_frame_task(rc, &frm[k%N]);
parse_header_task(nc, &slice[k%N], &frm[k%N]);
entropy_decode_task(ec, &slice[k%N], &frm[k%N],

ed_bufs[k%N]);
reconstruct_task (rc, &slice[k%N], ed_bufs[k%N],

&pic[k%N]);
output_task(oc, &pic[k%N]);
k++;

#pragma omp taskwait on (*rc)
}

Listing 1. Pipelining the main decoder
loop using OmpSs pragmas

I

1

P

2

B

3

B

4

Figure 2. Parallelism in entropy decod-
ing in multiple consecutive frames. Col-
ored MBs have been entropy decoded.
Hatched blocks are decoded in parallel.

roblock line of the picture, and the release task releases
one or more Picture Info entries, which are no longer
referenced. To have multiple entropy decodes in flight,
the EntropyContext is renamed in the same fashion as
the pipeline buffers shown in Listing 1.
To maintain the dependencies shown in Figure 2, the
entropy_decode_line_task has several annotated argu-
ments. The EntropyContext is annotated with inout
to enforce that the lines of each picture are decoded
sequentially. H264Mb *mb_in is annotated as an in-
put and H264Mb *mb_out is annotated as an output,
to maintain the dependencies between frames. By
passing the pointers to the first H264Mb of the co-
located line in the previous entropy buffer and the

2

#pragma omp task inout(*ec, *s, *mbs) input(*frm)
void init_entropy_task(EntropyContext *ec, Slice *s

,
EncFrame *frm, H264Mb *mbs);

#pragma omp task inout(*ec, *s) input(*mb_in)
output(mb_out[0;columns])

void entropy_decode_line_task(EntropyContext *ec,
int line, Slice *s, H264Mb *mb_in, H264Mb *mb_out

);

#pragma omp task inout(*s, *dummy)
void release_PI_task(Slice *s, int *dummy);

...
init_entropy_task(&ec[k%N], &slice[k%N], &frm[k%N],
ed_bufs[k%N]);

for(int i=0; i<row; i++){
entropy_decode__line_task(&ec[k%N], i, &slice[k%N

],
&ed_bufs[(k+N-1)%N][i], &ed_bufs[k%N][i]);

}
release_PI_task(&slice[k%N], &k);
...

Listing 2. Code fragment replacing the
entropy task to perform parallel entropy
decoding.

first H264Mb of the current line in the current entropy
buffer to mb_in and mb_out, respectively, it is ensured
that each line x in frame n is decoded before starting
to decode line x in frame n+1. A task for each mac-
roblock line is created instead for each macroblock to
increase the task granularity at expense of parallelism.
The parallelism is still sufficient, however, with a max-
imum of 135 for QFHD resolution videos.

4 Parallelizing Macroblock Reconstruc-
tion

In the macroblock reconstruction stage the image is re-
constructed using the syntax elements produced by the
entropy decoding stage. To reconstruct a macroblock
in H.264 several pixel areas from adjacent recon-
structed macroblock are required. For each hatched
macroblock in Figure 3, the adjacent red pixels are
needed for the intra-prediction and the deblocking fil-
ter kernels. Therefore, only macroblocks on a wave-
front are parallel. The wavefront parallelism is not
massive, but sufficient with a maximum of 120 free
macroblocks in 4k × 2k resolution videos. The wave-
front parallelism can be exploited using the code frag-
ment in Listing 3.
The wavefront dependencies are static and are covered
by the dependencies to the left macroblock and the
upper right macroblock. The wavefront dependencies
of the reconstruct_mb_task are maintained through its
H264mb*arguments by annotating the left macroblock
ml and upper right macroblock mur as inputs and
the current macroblock m as inout. Since the recon-
struct_mb_tasks are added in scan line order, this in-
put and the output specification ensures that the wave-

Decoded MBs

Dependency data

Parallel MBs

Figure 3. Wavefront parallelism in H.264
macroblock reconstruction.

#pragma omp task input(*rc, *s, *ml, *mur) inout(*m
)

void reconstruct_mb_task(MBRecContext *rc, Slice *s
,

H264mb *ml, H264mb *mur, H264mb *m);

#pragma omp task inout(*rc) input(*s, mbs[0;rows
*cols])

output(*pic)
void reconstruct_task(MBRecContext *rc, Slice *s,

H264Mb *mbs, Picture *pic){
init_ref_list(s);
get_picture_buffer(rc, s);
for(int i=0; i< rows; i++){

for(int j=0; j< cols; j++){
H264mb *m = &mbs[i*cols + j];
H264mb *ml = m - ((j > 0) ? 1: 0);
H264mb *mur = m - (((j < cols-1) && (i >0))

? cols-1: 0);
reconstruct_mb_task(rc, s, ml, mur, m);

}
}
H264mb *lastmb = &mbs[smb_width*smb_height -1];

#pragma omp taskwait on (*lastmb)
release_ref(rc, s);
*pic = s->pic;

}

Listing 3. Wavefront algorithm
expressed in OmpSs.

front dependencies are maintained. In addition to the
pragmas, only the code that computes the left and up-
per right macroblock must be added to the sequen-
tial code. The ability to express dependencies be-
tween tasks makes the OmpSs implementation rela-
tively clean and simple.

5 Optimizing Task Granularity

The OmpSs implementation of parallel macroblock
reconstruction shown in Listing 3 is a clean way
to express the wavefront parallelism. The de-
code_mb_tasks, however, are fine-grained and have an
average execution time of around 2µs on a commodity
processor. The task management overhead of OmpSs
does not allow such fine-grained tasks to perform well.
A technique to overcome this is to coarsen the tasks by
grouping several macroblocks. Due to the wavefront
dependencies, however, macroblocks must be grouped
in tetris-block shapes, as shown in Figure 4.
Expressing task dependencies between these tetris-
shaped superblocks directly is not straightforward, es-
pecially when it is desired to support an arbitrary pic-
ture and superblock sizes. To overcome this the su-

3

perblocks are remapped to a regular structure. Inde-
pendent of their shapes, all superblock variants still ex-
hibit wavefront dependencies. The dependencies can
be easily checked, in the same way as the regular un-
grouped macroblocks when they are remapped to a
regular matrix form as depicted in Figure 4.

1 2 3 4
5

6 7 8 9
10

11 12 13 14 15

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 4. Remapping the irregular su-
perblock shapes back to regular shapes
simplifies the dependency expression
for the programmer and task depen-
dence checking for the runtime system.

The remapping does somewhat increase the code com-
plexity. First, it must be calculated how many su-
perblocks fit in the width and the height of a pic-
ture. Second, when decoding the superblock it must
be checked which macroblocks belong to this particu-
lar superblock. This can be performed by checking if
the macroblocks covered by the superblock shape are
inside the picture.
If it is ensured that every first superblock in a line has
the maximum number of macroblocks in its top row,
as is the case in Figure 4, then the code fragment in
Listing 4 can be used instead of the code fragment in
Listing 3 to reconstruct coarsened superblocks instead
of individual macroblocks, for an arbitrary block and
picture size.
The code in Listing 4 resembles the code in Listing 3.
The main differences are the reduced loop bound-
aries smb_rows and smb_columns, calling the recon-
struct_super_mb_task, and checking for valid mac-
roblocks covered by the superblock before calling the
inner reconstruct_mb function. This method is gen-
erally applicable to specify coarsened wavefront par-
allelism in OmpSs for arbitrary superblock sizes and
picture dimensions with minimal runtime dependency
checking overhead.

6 Experimental Results

A 4-socket cc-NUMA machine with a total of 32 cores
is used for the performance evaluation. The full hard-
ware and software specification of our evaluation plat-
form is listed in Table 1.
Figure 5 shows the effect of increasing the task gran-
ularity described in the previous section. From the
figure we can see that the highest performance is
achieved with a superblock size of 8×8. When the
task size is too small the performance is bottlenecked

#pragma omp task input(*rc, *s, *ml, *mur) inout(*m
)

void reconstruct_super_mb_task(MBRecContext *rc,
Slice *s, Supermb *ml, Supermb *mur, Supermb *m){
for (int k=0, i=mby; i< m->mby + sheight; i++, k

++)
for (int j= m->mbx -k ; j< m->mbx- k + swidth;

j++){
// if (i,j) is a valid macroblock
if (i< rows && j>=0 && j<columns)

reconstruct_mb(rc, s, i, j);
}

}

#pragma omp task inout(*rc) input(*s,
smbs[0;srows*scols]) output(*pic)

void reconstruct_task(MBRecContext *rc, Slice *s,
Supermb *smbs, Picture *pic){
init_ref_list(s);
get_picture_buffer(rc, s);
for(int i=0; i< srows; i++)

for(int j=0; j< scols; j++){
Supermb *m = &smbs[i*scols + j];
Supermb *ml = m - ((j > 0) ? 1: 0);
Supermb *mur = m - (((j < scols-1) && (i >0))

?
scols-1: 0);

reconstruct_super_mb_task(rc, s, ml, mur, m);
}

Supermb *lastmb = &smbs[srows*scols -1];
#pragma omp taskwait on (*lastmb)

release_ref(rc, s);
*pic = s->pic;

}

Listing 4. Decoding tetris-
shaped superblocks instead of single
macroblocks.

Hardware Software
Processor Xeon X7550 OS Ubuntu 10.10
Cores 8 Kernel 2.6.35.10
Frequency 2.00 GHz Compiler GCC 4.4.5
Last level cache 18 MB OmpSs

compiler
Mercurium
(git Aug’11)Sockets 4

Total cores 32 OmpSs
runtime

Nanos++ (git
Aug’11)Total memory 1 TiB

Total mem. BW 102.3 GB/s Opt. level -O2
SMT Disabled
Turbo mode Disabled

Table 1. Experimental setup.

by the runtime dependence checking. Increasing the
block size from 2×2 to 4×4 improves the performance
almost proportional to the increase in block size. Too
large block sizes, on the other hand show again lower
performance, because the parallelism is reduced too
much.
The performance of the OmpSs H.264 decoder is com-
paring to an optimized Pthreads implementation [1]
for up to 32 cores in Figure 6. For the OmpSs vari-
ant a block size of 8 × 8 is used. The figure shows
that the performance results of the two are similar up
to 8 cores, but are drifting further apart at higher core
counts. By grouping the macroblocks, however, the
parallelism is limited, which in turn limits the perfor-
mance at higher core counts. In the Pthreads version
of h264dec the synchronization is highly optimized us-

4

0

5

10

15

20

25

30

35

40

45

50

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

F
ra
m
es

p
er

se
co
n
d

Cores

2×2
4×4
8×8
12×12
16×16

Figure 5. Performance impact of the dif-
ferent superblock sizes.

ing a line decoding strategy and, therefore, grouping of
tasks is not necessary, resulting in a higher scalability.

5

10

15

20

25

30

Sp
ee

du
p

1 8 16 24 32

Cores

Pthreads
OmpSs

Figure 6. Speedup results for an opti-
mized Pthreads and OmpSs variant of
the full H.264 decoder

To improve the scalability more parallelism can be ex-
ploited by starting to decode the next frame before the
current frame is completely decoded. Because the mo-
tion vectors have limited sizes some macroblocks of
the next frame can already be decoded. The difficulty
is that another dependency must be added between
macroblocks in consecutive frames, which could in-
crease the task dependence checking overhead more
than the additional parallelism gains in performance.
Another way to increase the scalability is to reduce
the task dependency checking overhead. This can be
achieved by changing the order tasks are submitted, in
order to reduce the tasks-in-flight without reducing the
parallel schedulable tasks. Less tasks-in-flight lead to
a lowere cost for task dependency checking.

7 Conclusions

In this report we have discussed how H.264 decod-
ing can be parallelized in OmpSs to capture both the
function-level and data-level parallelism. In OmpSs
this can be done intuitively in contrast to Pthreads and
other task-based programming models such as Cilk++
and OpenMP. The runtime task overhead, however,
forces that the granularity of the tasks is increased,
which reduces the scalability at higher core counts. In
future work we will investigate how parallelism can
be exploited in consecutive frames. Also we will try
to reduce the task dependence checking overhead by
reducing the task window size for a given amount of
parallelism.

8 Acknowledgements

This research has been supported by the Euro-
pean Community’s Seventh Framework Programme
[FP7/2007-2013] under the ENCORE Project
(www.encore-project.eu), grant agreement n◦

248647 [4]. Computational support has been provided
by the Future SOC Lab of Hasso-Plattner-Institute
Potsdam [5].

References

[1] C. C. Chi and B. Juurlink. A QHD-Capable Parallel
H.264 Decoder. In Proc. 25th Int. Conf. on Supercom-
puting, 2011.

[2] L. Dagum and R. Menon. OpenMP: A Proposed In-
dustry Standard API for Shared Memory Programming.
IEEE Computing in Science and Engineering, 1997.

[3] A. Duran, E. Ayguadé, R. M. Badia, J. Labarta, L. Mar-
tinell, X. Martorell, and J. Planas. OmpSs: A Proposal
for Programming Heterogeneous Multi-Core Architec-
tures. Parallel Processing Letters, 21, 2011.

[4] Encore Project. ENabling technologies for a future
many-CORE.

[5] Hasso-Plattner-Institut Potsdam. Fu-
ture SOC Lab. http://www.hpi.uni-
potsdam.de/forschung/future_soc_lab.html.

[6] A. Pop and A. Cohen. A Stream-Computing Exten-
sion to OpenMP. In Proc. 6th Int. Conf. on High Per-
formance and Embedded Architectures and Compilers,
2011.

[7] K. H. Randall. Cilk: Efficient Multithreaded Comput-
ing. PhD thesis, Department of Electrical Engineering
and Computer Science, Massachusetts Institute of Tech-
nology, 1998.

[8] H. Vandierendonck, P. Pratikakis, and D. Nikolopou-
los. Parallel Programming of General-Purpose Pro-
grams Using Task-Based Programming Models. In
Proc. 3rd USENIX Workshop on Hot Topics in Paral-
lelism, 2011.

5

Service-Based 3D Rendering and Interactive 3D Visualization

Benjamin Hagedorn
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam

benjamin.hagedorn@hpi.uni-potsdam.de

Jürgen Döllner
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam

doellner@hpi.uni-potsdam.de

Abstract

This report describes the subject and preliminary
results of our work in the context of the HPI Future
SOC Lab, which generally aims on how to exploit
high performance computing (HPC) capabilities for
service-based 3D rendering and service‐based, inter-
active 3D visualization. A major focus is on the ap-
plication of HPC technologies for the creation, man-
agement, analysis, and visualization of and interac-
tion with virtual 3D environments, especially with
complex 3D city models.

1 Motivation

Virtual 3D city models represent a major type of
virtual 3D environments. They can be defined as a
digital, geo-referenced representation of spatial ob-
jects, structures and phenomena of a distinct geo-
graphical area; its components are specified by geo-
metrical, topological, graphical and semantically data
and in different levels of detail.
Virtual 3D city models are, e.g., composed of digital
terrain models, aerial images, building models, vege-
tation models, and city furniture models. In general,
virtual 3D city models serve as information models
that can be used for 3D presentation, 3D analysis,
and 3D simulation. Today, virtual 3D city models are
used, e.g., for urban planning, mobile network plan-
ning, noise pollution mapping, disaster management,
or 3D car and pedestrian navigation.
In general, virtual 3D city models represent promi-
nent media for the communication of complex spatial
data and situations, as they seamlessly integrate het-
erogeneous spatial information in a common refer-
ence frame and also serve as an innovative, effective
user interface. Based on this, virtual 3D city models,
as integration platforms for spatial information, rep-
resent essential building blocks of today’s and future
information infrastructures.

1.1 Complexity of 3D city models
Virtual 3D city models are inherently complex in
multiple dimensions, e.g., semantics, geometry, ap-

pearance, and storage. Major complexities are de-
scribed in the following:
Massive amounts of data: Virtual 3D city models
typically include massive amounts of image data
(e.g., aerial images and façade images) as well as
massive amounts of geometry data (e.g., large num-
ber of simple building models, or smaller number of
buildings modeled in high detail). Vegetation models
represent another source of massive data size; a sin-
gle tree model could contain, e.g., approximately
150,000 polygons).
Distributed resources: In today’s so called geospa-
tial data infrastructures (GDIs), the different compo-
nents (i.e., base data) of virtual 3D city models as
well as functionalities to access, and process (e.g.,
analyze) virtual 3D city models can be distributed
over the Internet. In specific use cases such as in
emergency response scenarios, they need to be identi-
fied, assembled, and accessed in an ad-hoc manner.
Heterogeneity: Virtual 3D city models are inherently
heterogeneous, e.g., in syntax (file formats), schemas
(description models), and semantics (conceptual
models).
As an example, the virtual 3D city model of Berlin
contains about 550,000 building models in moderate
and/or high detail, textured with more than 3 million
single (real-world) façade textures. The aerial image
of Berlin (covering an area of around 850 km2) has a
data size of 250 GB. Together with additional the-
matic data (public transport data, land value data,
solar potential) the total size of the virtual 3D city
model of Berlin is about 700 GB.

1.2 Service-based approach
The various complexities of virtual 3D city models
have an impact on their creation, analysis, publishing,
and usage. Our overall approach to tackle these com-
plexities and to cope with these challenges is to de-
sign and develop a distributed 3D geovisualization
system as a technical framework for 3D geodata
integration, analysis, and usage. For this, we apply
and combine principles from Service-Oriented Com-
puting (SOC), general principles from 3D visualiza-

7

tion systems, and standards of the Open Geospatial
Consortium (OGC).

Figure 1: 3D client for exploring the 3D city
model of Berlin, running on an iPod.

To make complex 3D city models available even for
small devices (e.g., smart phones, tablets), we have
developed a client/server-system that is based on
server-side management and 3D rendering [1]: A
portrayal server is hosting a 3D city model in a pre-
processed form that is optimized for rendering, syn-
thesizes images of 3D views of this data, and trans-
fers these images to a client, which (in the simplest
case) only displays these images. By this, the 3D
client is decoupled from the complexity of the under-
lying 3D geodata. Also, we can optimize data struc-
tures, algorithms and rendering techniques with re-
spect to specialized software and hardware for 3D
geodata management and 3D rendering at the server-
side. – Figure 1 shows our 3D client running on an
iPod; it allows a user to interactively explore the
virtual 3D city model of Berlin.
Our project in the context of the HPI Future SOC Lab
aims on research and development of how to exploit
its capabilities for such a distributed 3D visualization

system, especially for 3D geodata preprocessing,
analysis, and visualization. The capabilities of inter-
est include the availability of many cores, large main-
memory, GPGPU-based computing, and parallel
rendering.

2 Processing massive 3D city models

As raw geodata cannot be used directly for visualiza-
tion and rendering purposes, this data needs to be
transformed into graphics representations that can be
rendered by a 3D rendering engine. Geodata prepara-
tion includes preprocessing of terrain data (geometry
and textures, e.g., aerial images) as well as prepro-
cessing of building data (geometry and façade tex-
tures). Building data are, e.g., originally provided in
the CityGML format, an XML-based standard model
and format for the specification of 3D city models,
including semantics, geometry, attributes, and ap-
pearance information. Figure 2 illustrates the prepro-
cessing of such CityGML building data, which in-
cludes the following three major stages and sub tasks:
Data extraction: building feature extraction, geome-
try extraction and triangulation, object-id assignment
to each building object, spatial organization of all
buildings in a quadtree structure.
Geometry optimization: geometry batching, data
serialization.
Façade texture optimization: texture atlas computa-
tion, texture atlas tiling, texture coordinate adjust-
ment.
Typically, the texture data of a large virtual 3D city
model does not completely fit into a graphics card’s
texture memory. Thus, rendering large 3D city mod-
els requires selecting and loading the data (in appro-
priate level of detail) that is required for a specific
camera position and view frustum. Texture prepro-
cessing and optimization is a time-consuming stage

Figure 2: Preprocessing scheme for 3D geodata for 3D rendering.

8

in the preparation of massive 3D building data for
efficient rendering and visualization. It includes a)
arranging many single façade textures in texture
atlases which represent parts of a very large virtual
texture and b) cutting these texture atlases into even
smaller parts that could be selected and handed over
to the graphics card to render a specific view.
Our original implementation of this texture prepro-
cessing stage was designed for being executed on
standard desktop PCs. Due to relatively small main
memory and disk space (compared to HPC servers),
it had to encode and store intermediate texture data as
image files on the hard disk. Starting with this im-
plementation we experimented to take advantage of
the HPC servers of the HPI Future SOC Lab to re-
duce the time for texture preprocessing.
First experiments included to reduce I/O-related
overhead of this process. For this, we set up and used
a 160 GB large virtual RAM drive in the server’s
main memory. Only through this, we extremely re-
duced the time to preprocess the massive 3D city
model of Berlin (ca. 550.000 buildings including
façade textures) from more than a week on a desktop
PC (2.80 GHz, 8 logical cores; 6 GB main memory)
to less than 15 hours on the Future SOC Lab’s
RX600-S5-1 (256 GB RAM; 48 logical cores).
Also, we redesigned the implementation of our pre-
processing tools to take advantage of potentially very
large main memory (for storing intermediate texture
data instead of encoding it and writing to hard disk)
and large number of available threads (for increasing
the degree of parallel tiling of texture atlases).

3 Processing massive 3D point clouds

3D point clouds are another major source of 3D
geodata, which are collected, e.g., via airborne or
terrestrial laser scanning. 3D point clouds can repre-
sent a digital surface model of the earth’s surface and
are a starting point for deriving high-level data, e.g.,
based on classification, filtering, and reconstruction
algorithms. For such algorithms it is crucial to be
able to handle and manage the often very large 3D
point data sets. 3D point clouds of a single city can
easily contain several billion points. In the past, we
had developed a set of algorithms and tools to cope
with this challenge and to process, analyze, and visu-
alize massive 3D point clouds [2, 3].
Spatial organization and rasterization are two major
preprocessing tasks for 3D point clouds:
Spatial organization: To efficiently access and
spatially analyze 3D points, they need to be ordered
in a way that allows efficient access to the data;
quadtrees and octrees represent common structures
for their organization.
Rasterization: Rasterized 3D point clouds are a
central component for visualization techniques and
processing algorithms, as they allow efficient access

to points within a specific bounding box.
Rasterization transforms arbitrary distributed 3D
points into a gridded, reduced, and consolidated rep-
resentation; representative points are selected and
missing points are computed and complemented.
Rasterized point clouds are used, e.g., for the compu-
tation of triangulated surface models, for consistent
level-of-detail techniques, and other efficient pro-
cessing algorithms.
In the context of the Future SOC Lab we have started
to research on how the HPC capabilities can help to
improve speed and quality of these two tasks.

3.1 Spatially organizing 3D point clouds
To create a quadtree/octree structure, we have used
the PARTREE algorithm, a parallel algorithm that
creates several trees that are combined to a single one
later (Figure 3).
The parallel quadtree/octree generation process for
3D point clouds was implemented based on OpenMP.
We tested our implementation with data sets of up to
26.4 million 3D points. In this setting, the HPC sys-
tem with 8 logical cores (FluiDyna Typhoon, 2.4
GHz, 24 GB RAM, 8 logical cores) was faster than a
Desktop PC with 4 logical cores; however, the gain
in time is not dramatically (Figure 4). The time re-
quired to merge the generated component trees into
one tree is increasing with their number (i.e., the
number of threads); in this step, the HPC server out-
performs the desktop system.

Figure 3: Functional scheme of PARTREE
algorithm. Two threads create two local
trees (here: quadtrees) that are merged then
into a single one.

Figure 4: Time to compute an octree from
26.4 million 3D points by PARTREE method.

9

3.2 Rasterization of 3D point clouds
Rasterization is a multi-step process which 1) identi-
fies for each point of an unordered 3D point cloud the
corresponding raster cell and assigns the raster cell
ID, 2) ordering the points according to their raster
cell ID, 3) computing one characteristic 3D point for
each raster cell (representing the relevant input
points), and 4) interpolating cell points for empty
raster cells. For sorting the points according to their
raster cell ID, our implementation uses the
Bitonicsort algorithm, which requires to establish a
bitonic order before sorting.
We have implemented the rasterization algorithm in
two versions: a) a version for multi-core processors
(using OpenMP) and b) a data-parallel GPU-based
version (using CUDA). The CUDA version has been
tested with the Future SOC Lab’s TESLA system. It
can rasterize a point cloud of 30.5 million 3D points
in only 22 minutes in contrast to more than 5 hours of
a single threaded CPU-version.

4 Next Steps

The continuation of our work in the area of exploita-
tion of HPC capabilities for service-based 3D render-
ing and 3D visualization systems and in the context
of the HPI Future SOC Lab will include further im-
provement of our algorithms, processes, and tools.
Also, we plan to extend our work to research and
development on HPC-based analysis of massive 3D
geodata (such as solar potential analysis) and on
service-based technologies for assisted interaction
and camera control in massive virtual 3D city models
[4]. For this, we will exploit parallel and GPU-based
algorithms to generate so called “best views” on
virtual 3D city models based on visual, geometrical
and usage-related characteristics.

5 Conclusions

This report briefly described the subject of our re-
search and development in the context of the HPI
future SOC Lab, preliminary results, as well as in-
tended future work. Work and results were mainly in
the areas of preprocessing massive 3D city model
data and processing of massive 3D point clouds.
Here, we could dramatically increase the time re-
quired to preprocess raw 3D geodata (CityGML data
with geometry and textures; and massive 3D point
clouds). Also, we identified additional opportunities
for optimizing these algorithms. More generally, this
work leads to new opportunities for research and
development on advanced and innovative technolo-
gies for the exploitation (e.g., analysis and visualiza-
tion) of massive spatial 3D data sets.

Acknowledgment
We would like to thank Markus Behrens for his help
with the implementation and evaluation of 3D point
cloud processing and its evaluation.

References
[1] D. Hildebrandt, J. Klimke, B. Hagedorn, J. Döllner:

Service-oriented Interactive 3D Visualization of Mas-
sive 3D City Models on Thin Clients. In: Proc. of 2nd
Int. Conf. on Computing for Geospatial Research &
Application COM.Geo 2011, 2011.

[2] R. Richter, J. Döllner: Out-of-Core Real-Time Visual-
ization of Massive 3D Point Clouds. In: Proc. of 7th
Int. Conf. on Virtual Reality, Computer Graphics,
Visualisation and Interaction in Africa, pp. 121-128,
2010.

[3] R. Richter, J. Döllner: Potentiale von massiven 3D
Punktwolkendatenströmen. In: Proc. of Geoinformatik
2012, Braunschweig, 2012.

[4] J. Klimke, B. Hagedorn, J. Döllner: A Service-based
Concept for Camera Control in 3D Geovirtual Envi-
ronments. In: Proc. of 7th Int. 3D GeoInfo Conference
2012. (accepted)

10

Future SOC Lab Autumn Term Project Activities Report:
Benchmarking and Tenant Placement for

Efficient Cloud Operations

Multi-Tenancy Project Team
SAP Innovation Center Potsdam

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

Jan Schaffner
EPIC Chair, Hasso-Plattner-Institute

August-Bebel-Straße 88
14482 Potsdam, Germany

Abstract

Cloud computing mainly turns the overall IT costs of
companies that move into the cloud into operational
expenditures that they pay for the consumed services
to a cloud provider. Consequently, the risk of cor-
rectly dimensioning the infrastructure as well as the
need to keep capital expenditures as well as adminis-
trative costs at viable levels is transferred to the
cloud provider. Multi-tenancy, i.e. consolidating
several customers onto the same infrastructure, is
one method to achieve higher utilization and there-
fore a more efficient cloud operation.

This project’s main focus is on the efficiency and
reliability of cloud services provided by server ma-
chines in virtualized, multi-tenant environments. By
intelligently placing and later migrating tenants in
this environment, we aim to achieve load balancing
and a consistent service quality of the provided cloud
services while keeping operational costs minimal.
Before these investigations can take place, an evalua-
tion and testing environment must be built up and
suitable testing scenarios, e.g. in the form of bench-
marks, need to be defined. This was the first major
work stream that we followed out in the past lab
term. The second work stream relates to tenant
placement. Both are work-in-progress and are con-
cisely described in the following. A proposal for
continuation of this project in the coming lab term
concludes this report.

1 Introduction

Having instantaneous access to relevant business
information anywhere and anytime is becoming more
and more important [1]. To realize this economically,
it is necessary to deal with huge amounts of data and
load at fewer costs. Big companies that felt this pres-

sure like Amazon [2] and Google [3] developed ap-
proaches to handle these requirements that are now
called Cloud Computing.

The idea behind the cloud is to offer computing as
a service with seemingly endless capacity that can be
added or removed on demand [4]. The user keeps the
data inside the cloud infrastructure and has access to
the performance of a data center to execute complex
operations on it. Through the network, data can be
accessed in an easy way with various devices.

One essential aspect to achieve the required cost
savings is multi-tenancy [4], which describes consol-
idating multiple clients on a small hardware set. An
additional advantage is that clients can not only share
the server hardware, but also applications, content
and data.
When thinking about multi-tenancy, several chal-
lenges become obvious [5, 6], such as tenant place-
ment and tenant migration. Another very important
topic is benchmarking. It is not enough to develop
new technologies, but also to demonstrate where
exactly the strengths of a system are and how it per-
forms compared to others. Furthermore, there is a
need to support the development process with tools
that can help checking the quality of the implemented
approach. To do this, benchmarks can be helpful tool.

2 Benchmarking

Current database benchmarks do not support cloud
computing scenarios and multi-tenancy. To realize
this, the following tasks have to be tackled:
• handling of data sizes and user scenarios that are

typical for cloud computing
• supporting multi-tenant environments
• defining an industry benchmark to compare dif-

ferent approaches

11

The goal of this first work stream is to implement
a first benchmark that fits the needs described above.
Our approach is guided through the reuse of the al-
ready existing database benchmark called Composite
Benchmark for Transactions and Reporting (CBTR)
[7] developed by Anja Bog at the EPIC chair of HPI.

This system brings in several useful functionalities
compared to other database benchmarks. It provides
the possibility to mix analytical and transactional
workloads and it operates on a dataset based on real
customer data. Furthermore, it uses the Order-to-
Cash scenario with a schema definition typical for
SAP customers, namely implementing several tables
with more than 100 columns.

The original implementation can handle one ten-
ant that maintains the connection to the database.
This tenant serves several clients that continuously
query the database, to identify its properties under
maximum load. This scenario had to be extended to a
multi-tenant system with variable load profiles and
think times.

Based on the original CBTR implementation we
conducted an extension of the existing architecture as
well as implemented new functionalities to support
multiple tenants. We call the resulting Benchmark
CBTRmt.

The following functionalities are part of
CBTRmt:
• Maintaining multiple tenants at the same time,

where each of them handles a number of different
clients.

• Maintaining connection pooling for each of the
tenants.

• Configurable think times between the queries
submitted by each client.

• A load profile that specifies the workload of each
tenant on the base of a 24h day.

• Exchangeable tenants.
While developing the described benchmark, the

need to create an arbitrary number of tenants with
different sizes, loads and datasets became apparent.
The so-called Experiment Generator (ExpG) was
therefore conceptualized to be able to create all nec-
essary files and setting for a complete experiment
setup.

The functionality covered by the ExpG includes
the generation of realistic data sets for the database
schema used in the CBTR benchmark. The imple-
mentation not only considers the data type, length,
primary key and foreign key specifications, but also
the size relation between the input tables. In parallel
to the data generation, also query parameters are
generated. This allows the querying of the generated
data, just as it would be the original customer data.
The ExpG is implemented in Java, based on a ran-
domization algorithm. By specifying the seed of the
Random object, one can influence the data generation

directly. It is also possible to regenerate an old da-
taset by knowing its seed value.

One open issue for the ExpG is the support of dif-
ferent database schemas, which is already planned for
the upcoming project phase. The output of the ExpG
can then be directly loaded into the CBTRmt Bench-
mark and run as a whole experiment on the database.

This work stream heavily employed the SAP
HANA machine in the Future SOC Lab as well as
one to two high-performance servers to generate the
tenant load on the SAP HANA machine as client
machines.

3 Tenant Placement

The second work stream focuses on the Robust
Tenant Placement and Migration Problem (RTP).
The goal of this optimization problem is to assign r ≥
2 copies of a given number of tenants to a number of
(cloud) servers such that

• no server is overloaded in terms of memory and
CPU,

• no server contains more than one copy per ten-
ant,

• the failure of a single server does not cause
overloading any other server, and

• the number of active servers is minimal.
A tenant comprises a set of database tables as well

as users issuing requests against those tables. Any
tenant t is characterized by its size σ(t) (i.e. the
amount of main memory each replica of the tenant
consumes) and its load l(t). For in-memory column
databases, the latter depends on the current request
rates of the tenant’s users as well as the size of a
tenant. For more information about how to experi-
mentally obtain l(t) for a given set of database tables
and workload, we refer to our previous work on per-
formance prediction for in-memory column data-
bases [9]. Note that we assume that l(t) is additive
across multiple tenants. We assume that queries are
load balanced across tenant replicas in a round-robin
fashion. Thus, a server only receives a fraction of the
total load of a tenant, depending on the number of
replicas.

Tenants are placed on servers. We call a server ac-
tive if the server holds at least one tenant with non-
zero size and non-zero load.

Example 1. Figure 1 (left) depicts an exemplary
placement. Tenants A, B, C, D, E each have two
copies and are distributed on four servers S1–S4.
Each server has load capacity lcap = 1.0 and memory
is limit-less (σcap = ∞). The load consumption of the
tenants are depicted as small numbers in the boxes.
The total load of a tenant is split across all its replicas
(e.g. the total load of tenant A is 0.2). The failure of a
server, say server S2, means that server S4 must in

12

turn handle the load that was formerly shared be-
tween servers S2 and S4. This must not lead to the
overload of S4. In this example, S4 gets a load of 0.3
after failure of S2, which does not lead to overload-
ing server S4.

Figure 1: Left: Greedy-Placement and Mirror-
ing. Right: Interleaving

At first glance, RTP resembles the two-
dimensional bin- packing with conflicts, where the
conflicts arise from the constraint that no server
should hold more than one copy of the same tenant.

However, RTP is different from the two-
dimensional bin-packing [8] with conflicts [9] prob-
lem because we are interested in finding an assign-
ment of tenants to servers such that the assignment is
robust towards server failures. A server failure causes
a load increase on those servers that hold copies of
tenants that were placed on the failed server. This
excess load is shared among the remaining servers
that hold replicas of those tenants. While it is com-
mon to handle replication using a static placement
strategy (e.g. mirroring), we let the tenant placement
be flexible within the following constraints: tenants
can be placed on arbitrary servers, as long as no two
copies of any particular tenant reside on the same
server; and, each server must have enough spare
capacity to deal with extra load coming from tenants
on a failed servers. As a result of allowing a flexible
placement strategy, assignments with fewer active
servers can often be found, as we shall see in the
following example.

Example 2. Fig. 1 (right) shows an example with
five tenants, A, B, C, D, and E, as well as their load
l(t) (we neglect σ(t) in this example). A conventional
approach to assigning those tenants to servers would
be to sort the tenants by load (in descending order),
use a simple greedy algorithm assuming only one
copy per tenant must be placed, and finally mirroring
the resulting placement. This approach, shown on the
left side of the figure, requires four servers. A flexi-
ble way to place the same tenants, which we shall
call interleaving, shown on the right side of the fig-
ure, requires only three servers. Table 1 shows the
total load on each server both for normal operations
and with one other server failing. For example, in the

mirrored case, a failure of server S1 doubles the load
on S3, while the load on S2 and S4 remains constant.
With interleaving, the excess load caused by a failure
is distributed among multiple servers.

In addition to guaranteeing that placements are ro-
bust towards single-server failures, we acknowledge
that dealing with a variable number of servers re-
quires frequent migration of tenant replicas between
servers. RTP is an incremental problem in the sense
that it has to be solved periodically using an existing
placement as a starting point. The frequency of the
reassignment interval limits the amount of change
that can be applied to the original placement. In pre-
vious work we have found that migrating tenants
away from or onto an active server temporarily re-
duces the server’s ability to serve requests [10]. In
the case of in-memory column databases, we are able
to precisely quantify the reduction of a servers query
processing capacity lcap incurred by migration for a
given set of database tables and workload. The size
of a tenant does not impact how much the capacity of
a server is reduced during migration but it affects
how long it takes to migrate the tenant [10]. Thus, the
amount of migration that is permissible in each step
depends on the length of the reorganization interval
and to what degree migrations can be performed in
parallel.

Currently, we are conducting experiments on a va-
riety of algorithmic approaches to solve the RTP as
well as experiments for finding a good benchmark.
Algorithms we evaluate on the Future SOC Lab
computing resources range from special purpose
greedy-heuristics to meta-heuristics and, finally,
exact algorithms. Our experiments are work-in-
progress.

4 Project Proposal for Next Lab Term

As both work streams are still work-in-progress we
propose a continuation of the current project also in
the Future SOC Lab spring term of 2012. We plan to
apply current implementations and findings in order
to achieve the defined goals. The focus remains on
efficiency and reliability of cloud services provided
by server machines in virtualized, multi-tenant envi-
ronments. By migrating tenants in this environment,
we aim to achieve load balancing and a consistent
service quality of the provided cloud services.
A migration manager responsible for this process
shall act as follows: First, a forecasting method esti-
mates the load that tenants are likely to produce. This
forecast could be based on load profiles of customers
as well as business information such as a factory
calendar. Based on this forecast, a multi-criteria op-
timization takes place. Examples for objectives in the
optimization could be cost of the migration process

13

and possible re-migration, benefit of load balancing
and expected quality of service.
Success will be evaluated based on fulfillment of
given service level agreements in experiments based
on real-world scenario as well as on other criteria that
will be defined as part of this project. In a next step
we plan to extend the approach to include failure
prediction algorithms for migration decision-making
once a potential failure has been identified. This aims
at increasing the reliability of the overall cloud solu-
tion for cases in which server machines may fail.
These activities would make use of the FutureSOC
Lab computing resources in a similar way as in the
first project phase.

5 Acknowledgements

The project members wish to thank Bernhard Rabe
of Future SOC Lab/HPI for his invaluable
administra-tive support to setup and run the
numerous tests as part of the benchmarking efforts.

6 References

[1] Shuai Zhang, Shufen Zhang, Xuebin Chen, Xiuzhen
Huo. Cloud Computing Research and Development
Trend. Future Networks, International Conference
on, pp. 93-97, 2010 Second International Conference
on Future Networks, 2010.

[2] Amazon Elastic Compute Cloud [URL].
http://aws.amazon.com/ec2/, access on Feb. 2012.

[3] Google App Engine [URL].
http://code.google.com/appengine/, access on Feb.
2012.

[4] Peter Mell, Timothy Grance. The NIST Definition of
the Cloud Computing. NIST Special Publication 800-
145. 2011.

[5] Curino, Carlo et al. Relational Cloud: A Database-
as-a-Service for the Cloud. 5th Biennial Conference
on Innovative Data Systems Research, CIDR 2011,
January 9-12, 2011 Asilomar, California.

[6] Dean Jacobs, Stefan Aulbach. Ruminations on Multi-
Tenant Databases. BTW 2007: 514-521

[7] Anja Bog, Hasso Plattner, Alexander Zeier. A mixed
transaction processing and operational reporting
benchmark. Springer Science + Business Media, LLC
2010.

[8] W. Leinberger, G. Karypis, and V. Kumar. Multi-
Capacity Bin Packing Algorithms with Applications
to Job Scheduling under Multiple Constraints. In
ICPP, pages 404–412, 1999.

[9] L. Epstein and A. Levin. On Bin Packing with Con-
flicts. SIAM Journal on Optimization, 19(3):1270–
1298, 2008.

[10] J. Schaffner, B. Eckart, D. Jacobs, C. Schwarz, H.
Plattner, and A. Zeier. Predicting in-memory data-
base performance for automating cluster manage-
ment tasks. In Proceedings of the 27th International
Conference on Data Engineering, ICDE 2011, April

11-16, 2011, Hannover, Germany, pages 1264–1275,
2011

14

Towards Multi-Core and In-Memory for IDS Alert Correlation:
Approaches and Capabilities

Sebastian Roschke, Seraj Fayyad, David Jaeger, Feng Cheng, Christoph Meinel
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam

{sebastian.roschke, seraj.fayyad, feng.cheng, meinel}@hpi.uni-potsdam.de
{david.jaeger}@student.hpi.uni-potsdam.de

Abstract

Intrusion Detection Systems (IDS) have been widely
deployed in practice for detecting malicious behavior
on network communication and hosts. The problem
of false-positive alerts is usually addressed by corre-
lation and clustering of alerts. As real-time analysis
is crucial for security operators, this process needs to
be finished as fast as possible, which is a challenging
task as the amount of alerts produced in large scale
deployments of distributed IDS is significantly high.
We identify the data storage and processing algorithms
to be the most important factors influencing the per-
formance of clustering and correlation. The Security
Analytics Lab (SAL) is developed to make use of multi-
core and in-memory processing. Using the SAL, a mul-
titude of algorithms is implemented, such as Attack-
Graph based correlation using HMMs, QROCK cate-
gorical clustering, and rule-based correlation using a
knowledge base. The SAL is using the Common Event
Expression (CEE) and supports generic flat log data.

1 Alert Correlation and its Performance

The alert correlation framework usually consists of
several components [4]: Normalization, Aggrega-
tion (Clustering), Correlation, False Alert Reduction,
Attack Strategy Analysis, and Prioritization. Over
the last years, alert correlation research focused on
new methods and technologies for these components.
IDMEF[5], CEE [7] and CVE [6] are important efforts
in the field of Normalization. Approaches of aggrega-
tion are mostly based on similarity of alerts or gen-
eralization hierarchies. The correlation algorithms [4]
can be classified as: Scenario-based correlation, Rule-
based correlation, Statistical correlation, and Tempo-
ral correlation. The aspect of performance and quality
is the focus of the “Security Analytics Lab“ (SAL) [2].
The SAL is developed to provide an experiment envi-

ronment for IDS correlation algorithms to support se-
curity operators with real-time monitoring and foren-
sics. The SAL is designed with efficiency in mind,
i.e., optimized quality and performance of the algo-
rithms as well as the storage and organization of orig-
inal alerts. The platform introduced in [2] consid-
ers different storage mechanisms and can handle mas-
sive amounts of data for specific algorithms that make
heavy use of the caching mechanisms of the platform.
For storage, a column-based database, an In-Memory
alert storage, and memory-based index tables lead to
significant improvements of the performance. Further-
more, the SAL supports the usage of GPU-based algo-
rithms by providing necessary APIs.
We believe that research in the area of IDS and net-
work security as application for multi-core and In-
memory based platforms can provide new paradigms
for conducting security. Correlation and clustering is
currently only done in a limited way using filtered data
sets. Using the multi-core and In-memory platforms,
it might be possible to do correlation and clustering on
an unfiltered data set. Thus, it might not be necessary
to fine tune (e.g., exclude certain detection rules) the
IDS sensors anymore, as the correlation and clustering
can do meaningful reasoning on all alerts in a short
time. Furthermore, we expect correlation and cluster-
ing services offered in the Cloud. A flexible and exten-
sible correlation platform can provide the foundation
work for a new paradigm in security.

2. Results and Achievements

During the last few month, we have been working on
improving the implementation on the Common Event
expression (CEE) [7]. Furthermore, we have been im-
plementing several convenience features to improve
the handling of the platform in case of multiple data
sets. A data set switching mechanism is implemented
that allows the switching of data bases from the web
UI. To improve the Attack Graph (AG) based corre-
lation, we optimized the modeling of the attack graph

15

and adjusted the corresponding AG correlation mod-
ule. The AG-based algorithm was redesigned to fit
additional attack scenarios. We further developed
an algorithm for evaluating attack paths and attacks
progress depending on multiple conditions, such as
importance of the target, existence of a public exploit,
etc.
Apart from the practical achievements, we have been
able to publish a paper on the Attack Graph based al-
gorithm [3], which is currently finalized for a Journal
publication. A detailed description of the results is
given in the following subsections.
We deployed the prototype of the correlation platform
a FutureSOC VM (1 CPU, 4 GB Ram) and developed
multiple features to improve performance and usabil-
ity. Furthermore, we conducted some tests and exper-
iments using the NVIDIA FluiDyna System as well as
the Fujitsu RX600 S5 1.

3 Towards High-quality Attack-Graph-
based Correlation

In this section, a modified AG based correlation al-
gorithm is described which only creates explicit cor-
relations. Implicit correlations, as described in [14],
make it difficult to use the correlated alerts in the
graph for forensic analysis of similar attack scenarios.
Furthermore, the hardware environment used for the
In-Memory databases provides machines with huge
amounts of main memory which downgrades the prior-
ity of memory efficiency for this work. The algorithms
consists of five steps, while each step can be parame-
terized to fine tune the results: 1) preparation, 2) alert
mapping, 3) aggregation of alerts, 4) building of an
alert dependency graph, and 5) searching for alert sub-
sets that are related. In the preparation phase, all nec-
essary information is loaded, i.e., the system and net-
work information is gathered, the database with alert
classifications is imported, and the AG for the network
is loaded. The proposed algorithm works based on the
exploit dependency graph created by MulVAL [15].
This type of attack graph is used simply because the
tool is freely available. MulVAL is used to generate
an AG which describes the corresponding system and
network information for the target network. The out-
put of MulVAL is a simple graph description which is
not using a standardized format. Thus, the MulVAL
output is interpreted and a corresponding graph struc-
ture is build in memory.
The algorithm is based on a set of basic definitions.

3.1 Definitions

Let T be the set of all timestamps, H be the set of
possible hosts, and C be the set of classifications. A
can be defined as:

A = T ×H ×H× C (1)

Let a single alert a ∈ A be a tuple a = (t, s, d, c)
while the following functions are defined:

• ts(a) = t - returns t ∈ T , the timestamp of the
alert

• src(a) = s - returns s ∈ H , the source host of
the alerts

• dst(a) = d - returns d ∈ H , the destination host
of the alert

• class(a) = c - returns c ∈ C, the classification
of the alert

Let I be the set of impacts described by MulVAL [15]
and VR be the set of known vulnerabilities. Let V be
a set of vertices defined as:

V = I ×H × VR (2)

For each triple v = (im, h, r) | v ∈ V , the following
functions are defined:

• imp(v) = im - returns im ∈ I, the impact of the
vertex

• host(v) = h - returns h ∈ H, the host of the
vertex

• ref(v) = r - returns r ∈ VR, the vulnerability
reference of the vertex

Let AG = (V,E) be an AG with vertices V and edges
E. An edge e ∈ E ⊆ V 2 is an ordered tuple of vertices
(v, v′) with v ∈ V ∧v′ ∈ V . PAG defines all the paths
in the AG. The path P ∈ PAG is defined as a set of
edges P = (v, v′) ∈ E. ord(P) defines the number of
edges in the path P . in(v, P) depicts whether a vertex
lies in the path:

in(v, P) := ∃(v, v′) ∈ P ∨ ∃(v′, v) ∈ P (3)

3.2 Mapping

The mapping function mapi maps matching alerts to
specific nodes in the AG and is defined as:

mapi : a 7→ {v ∈ V | Φi(a, v)} (4)

There are different kinds of Φi(a, v) defined in (5), (6),
(7), (8), and (9) to parameterize the mapping function.

Φ1(a, v) := ∃v′ ∈ V : (src(a) = host(v′))

∧(dst(a) = host(v))

∧(class(a) = ref(v)) (5)

Φ2(a, v) := (dst(a) = host(v))∧(class(a) = ref(v))
(6)

16

Figure 1. AG-based Correlation Algo-
rithm - Mapping

Φ3(a, v) := (class(a) = ref(v)) (7)

Φ4(a, v) := ∃v′ ∈ V : (src(a) = host(v′))

∧(dst(a) = host(v)) (8)

Φ5(a, v) := (dst(a) = host(v)) (9)

In this work, the modes use a specific Φi(a, v). The
match modes are named as follows:

• Φ1(a, v) - match mode cvesrcdst

• Φ2(a, v) - match mode cvedst

• Φ3(a, v) - match mode cve

• Φ4(a, v) - match mode srcdst

• Φ5(a, v) - match mode dst

Figure 1 shows the principle of the mapping step. The
stream of alerts is mapped to the nodes of the AG, i.e.,
a filtering is done based on the match mode.

3.3 Aggregation

Let A ⊂ A be the set of alert that is supposed to be
aggregated. Let th be a threshold and x ∈ A, y ∈ A
two alerts, then the relation RA is defined as:

RA = {(x, y) ∈ A2 :

(| ts(x)− ts(y) |< th) ∧ (src(x) = src(y))

∧(dst(x) = dst(y))

∧(class(x) = class(y))} (10)

R∗A defines an equivalence relation on the transitive
closure of RA. The alert aggregation combines alerts
that are similar but where created together in a short
time, i.e., the difference of the timestamps is below a
certain threshold th. It defines a set of equivalence
classes A/R∗

A
over the equivalence relation R∗A.

3.4 Alert Dependencies

Let Am ⊂ A be the set of alerts that have been
matched to a node in an AG:

Am = {[a] ∈ A/R∗
A
| mapi(a) 6= ∅} (11)

The alert dependencies are represented by a graph
DG = (Am, Em,k), with Em,k as defined in (12).

Em,k = {([x], [y]) ∈ (A/R∗
A

)2 | Ψk([x], [y])} (12)

The set Em,k can be parameterized by the functions
Ψk as shown in (13), (14), and (15).

Ψ1([x], [y]) := (ts([x]) < ts([y]))

∧(∃(v, w) ∈ E : (v ∈ mapsi(x)

∧w ∈ mapsi(y))) (13)

Ψ2([x], [y]) := (ts([x]) < ts([y]))

∧(∃P ∈ PAG : (ord(P) = n)

∧(∃v, w :

(v ∈ mapsi(x) ∧ w ∈ mapsi(y)

∧in(v, P) ∧ in(w,P)))) (14)

Ψ3([x], [y]) := (ts([x]) < ts([y]))

∧(∃P ∈ PAG : ∃v, w :

(v ∈ mapsi(x) ∧ w ∈ mapsi(y)

∧in(v, P) ∧ in(w,P))) (15)

The dependency graph DG is defined by the matched
and aggregated alerts Am as vertices and the relations
between these alerts as edges Em,k. There are three
possible ways to define these relations using Ψk. Ψ1

defines two alerts as related, if they are mapped to
neighboring vertices in AG. Ψ2 defines two alerts as
related, if they are mapped to two vertices in AG that
are connected by the path P with the length of n. Ψ3

defines two alerts as related, if they are mapped to two
vertices in AG that are part of the same path P .
As shown in Figure 2, the alert dependency graph is
created based on the mapping results.

3.5 Searching

Each path in the alert dependency graph DG identi-
fies a subset of alerts that might be part of an attack
scenario. DG is used in the last step to determine
the most interesting subsets of alerts, respectively the
most interesting path in the alert dependency graph.
The last step of searching alert subsets is done by per-
forming a Floyd Warshall algorithm [16, 17] to find all

17

Figure 2. AG-based Correlation Algo-
rithm - Creation

Figure 3. AG-based Correlation Algo-
rithm - Finding

the shortest paths. Furthermore, the diameter dia (i.e.
the value of the longest instance of the shortest paths)
is determined and each path DPi that has the length
ord(DP) = dia is converted in subsets of alerts. All
the subsets Sx are defined as:

Sx = {a ∈ A | in(a,DPi)} (16)

Figure 3 shows the identified attack subsets in the de-
pendency graph that correspond to the diameter.
With a simple optimization, the algorithm allows to
identify multiple different attack scenarios of the same
anatomy. By sorting the suspicious alert subsets ac-
cording to the smallest difference between alert a1 and
an, the algorithm will identify the alerts that are near
each other on the time-line as related to one attack sce-
nario. Let as = {a1, ..., an} and bs = {b1, ..., bn} be
two alert sets where the only difference between ai and
bi is the times-tamp ts(ai) 6= ts(bi). There are three
different combinations how these alerts can be located
on a time-line:

1. as and bs are not overlapping at all, i.e., ts(an) <
ts(b1)

2. as = {a1, a2, ..., ak, ...an} and bs = {b1, ..., bn}
are partially overlapping, i.e., ∃k ∈ N∀ai∈{1,k} |
ts(ak) > ts(b1)

3. bs is completely overlapped by as, i.e., (ts(a1) <
ts(b1)) ∧ (ts(an) > ts(bn))

The modified algorithm can identify both suspicious
alert sets in case 1. Due to the memory limitation,
this algorithm only considers the last matching alert
for each node in the AG. The cases 2 and 3 are diffi-
cult to be identified correctly.

4 Evaluation and Analysis of Attack
Graphs

Attack Graphs describe a pre-defined known set of at-
tack scenarios that are existing in the current network
under surveillance. These scenarios can be used to
match attack steps very closely and to follow an at-
tacker through the network in real-time. Additionally,
the different attack paths can be evaluated according
to certain severity scores. Thus, having a low severity
score on a currently exploited attack path, the security
operators might be able to finish more urgent tasks be-
fore dealing with this specific attack. Whereas if an
attacker is exploiting an attack path that covers very
important systems and therefore having a high severity
score, the security operators might need to deal with
this attack urgently. One example application of the
evaluation of the attack paths is the sensor placement.
Before data can be monitored and be managed in the
SAL, sensors have to be installed in the scenario.
These sensors can come in two possible forms, i.e.,
as host-based IDS (HIDS) or as network-based IDS
(NIDS). Each of these forms is suited for the detection
of its specific kind of attack. Host-based sensors can
be used to monitor unexpected behavior on a specific
host while Network-based sensors can be used to mon-
itor unexpected behavior on the network. Our goal is
an effective monitoring infrastructure, which only em-
ploys a small number of sensors that can detect each
possible attack in the scenario. With these conditions
and the outlined preferences for the sensors, we can
place sensors with the following strategy.
HIDS sensors are the only way to detect local exploits,
thus installing a HIDS on all hosts that have at least
one locally exploitable vulnerability might be neces-
sary. NIDS on the other hand, can only detect re-
mote exploits but can detect these for multiple hosts,
depending on the host they are installed on. In this
respect it is necessary to find all possible remote ex-
ploits and extract the hosts that are routing the net-
work traffic for these exploits. The severity score can
be considered to find an optimal solution according to
the scenario. In order to do this, all single step attack
paths can be extracted from the attack graph and the
network route between the source and target of the at-
tack path can be determined. Eventually, all hosts need
to be listed in the network route, except the starting
node (e.g. the external network connection), because
this one can be considered to be under control of the
attacker. Using the set cover algorithm described in
[18], a minimal number of hosts can be found, which
are able to intercept all remote exploits. Finally, these
hosts are directly used for the placement of the NIDS.

5. Future Work

Within the next few months, we want to conduct a few
more step to improve the quality of the correlation al-

18

gorithms deployed on this platform. We would like
to work towards our vision with the following prac-
tical steps. Setting up a real deployment with mul-
tiple sensors to conduct practical experiments might
be very useful. Testing the platform with a dataset of
1 TB as well as implementation of more algorithms
with multi-core support will prove the applicability of
the platform. The implementation of HANA support
can provide a performance boost and improves the
flexibility of the SAL. An interactive coding module
for security operators would provide exploration func-
tionality for data sets. Apart from the implementation
requirements, the are multiple research topics, such
as research on correlation algorithms that are using
environment information and attack graphs, research
on statistical correlation algorithms, research on vi-
sualization techniques for correlation results, research
on prediction of alerts and events, research evaluation
of attack paths and attackers, research on prevention
techniques, simulation of attack traffic and alerts, as
well as research on correlation of log events and cor-
responding requirements (in contrast to correlation of
IDS alerts). We hope that we can open one or two of
these new research areas by prolonging the project.

References

[1] S. Roschke, F. Cheng, Ch. Meinel: Using Vul-
nerability Information and Attack Graphs for In-
trusion Detection In: Proceedings of 6th Interna-
tional Conference on Information Assurance and
Security (IAS’10), IEEE Press, Atlanta, United
States, pp. 104-109 (August 2010).

[2] Roschke, S., Cheng, F., Meinel, Ch.: An Alert
Correlation Platform for Memory-Supported
Techniques. In: Concurrency and Computation,
Wiley Blackwell, 2011 (to appear).

[3] Roschke, S., Cheng, F., Meinel, Ch.: A New Cor-
relation Algorithm based on Attack Graph. In:
Proceedings of the 4th Conference on Compu-
tational Intelligence in Security for Information
Systems (CISIS’11), Springer LNCS 6694, Tor-
remolinos, Spain, pp. 58-67 (2011).

[4] R. Sadoddin, A. Ghorbani: Alert Correlation
Survey: Framework and Techniques, In: Pro-
ceedings of the International Conference on Pri-
vacy, Security and Trust (PST’06), ACM Press,
Markham, Ontario, Canada, pp. 1-10 (2006).

[5] Debar, H., Curry, D., Feinstein, B.: The Intru-
sion Detection Message Exchange Format, Inter-
net Draft, Technical Report, IETF Intrusion De-
tection Exchange Format Working Group (July
2004).

[6] Mitre Corporation: Common vulnerabil-
ities and exposures (CVE), WEBSITE:
http://cve.mitre.org/ (accessed Mar 2012).

[7] Mitre Corporation: Common Event Expres-
sion (CEE), WEBSITE: http://cee.mitre.org/ (ac-
cessed Apr 2011).

[8] H. Plattner: A Common Database Approach for
OLTP and OLAP Using an In-Memory Column
Database, In: Proceedings of the ACM SIG-
MOD International Conference on Management
of Data (SIGMOD’09), ACM Press, Providence,
Rhode Island, USA, pp. 1-2 (2009).

[9] S. Roschke, F. Cheng, Ch. Meinel: An Extensi-
ble and Virtualization-Compatible IDS Manage-
ment Architecture, In: Proceedings of 5th Inter-
national Conference on Information Assurance
and Security (IAS’09), IEEE Press, vol. 2, Xi’an,
China, pp. 130-134 (August 2009).

[10] Ning, P. and Xu, D.: Adapting Query Optimiza-
tion Techniques for Efficient Intrusion Alert Cor-
relation, Technical Report, North Carolina State
University at Raleigh, 2002.

[11] Northcutt, S., Novak, J.: Network Intrusion De-
tection: An Analyst’s Handbook, New Riders
Publishing, Thousand Oaks, CA, USA (2002).

[12] Tedesco, G. and Aickelin, U.: Real-Time Alert
Correlation with Type Graphs, In: Proceedings
of the 4th international Conference on Informa-
tion Systems Security (ISS’09), Springer LNCS
5352, Hyderabad, India, pp. 173-187 (2008).

[13] Ning, P., Cui, Y., Reeves, D.: Constructing at-
tack scenarios through correlation of intrusion
alerts, In: Proceedings of the 9th ACM Confer-
ence on Computer and Communications Security
(CCS’02), ACM, New York, NY, USA, pp. 245-
254 (2002).

[14] Wang, L., Liu, A., and Jajodia, S.: Using attack
graphs for correlation, hypothesizing, and pre-
dicting intrusion alerts In: Journal of Computer
Communications, Elsevier, Volume 29, Issue 15,
pp. 2917-2933 (September 2006).

[15] Ou, X., Govindavajhala, S., and Appel, A.: Mul-
VAL: A Logic-based Network Security Ana-
lyzer, In: Proceedings of 14th USENIX Security
Symposium, USENIX Association, Baltimore,
MD, pp. 8 (August 2005).

[16] Floyd, R.: Algorithm 97 (SHORTEST PATH), In:
Communications of the ACM, vol. 5, Issue 6, pp.
345 (1962).

[17] Warshall, S.: A Theorem on Boolean Matrices,
In: Journal of the ACM, vol. 9, Issue 1, pp. 11-12
(1962).

[18] Noel, S., Jajodia, S.: Attack Graphs for Sensor
Placement, Alert Prioritization, and Attack Re-
sponse, In: Cyberspace Research Workshop, pp.
3-20 (2007).

19

Multicore-Based High Performance IPv6 Cryptographically Generated

Addresses (CGA)

Hosnieh Rafiee, Ahmad AlSa’deh, and Christoph Meinel
Hasso-Plattner-Institut, University of Potsdam
P.O. Box 900460, 14440 Potsdam, Germany

{Hosnieh.Rafiee, Ahmad.Alsadeh, Christoph.Meinel}@hpi.uni-potsdam.de

Abstract

Neighbor Discovery Protocol (NDP) is one of the

main protocols in the IPv6 suite. It is used extensively

in several critical functions such as discovering other

existing nodes on the same link, determining others’

link layer addresses, etc. but it is known to be vulner-

able to critical attacks. Thus, SEcure Neighbor Dis-

covery (SEND) is offered to counter the NDP security

threats. SEND is computing intensive. SEND is com-

puting intensive. The computing intensive aspect of

SEND comes in fulfilling the Hahs2 condition for the

address generation of the Cryptographically Gener-

ated Addresses (GGA). Unfortunately the CGA com-

putation speed cannot be significantly improved by

using a multicore processor because the algorithm

used for the CGA generation supports a sequential

process. In this paper we will describe an approach

that breaks down the CGA algorithms in order to

spread their processes over all of the available cores

in the computing device. This proposal suggests the

automatic detection of the number of cores available

on a machine and then creates an equivalent number

of working tasks to compute the Hash2 condition.

When one task meets the CGA Hash2 condition, the

other cores processes stop. To test our approach,

several experiments were carried out in the future

Soc servers. The results of our experiments show that

the CGA creation time can be spedup by increasing

the number of cores in the computing device.

1 Introduction

Cryptographically Generated Addresses (CGA)
[1] is designed to provide for the authentication of
IPv6 addresses and to prevent malicious nodes from
taking ownership of others’ addresses. Unfortunately
CGA, as an essential option in SEcure Neighbor Dis-
covery (SEND) [2], is computationally intense, espe-
cially when; meeting high security level require-
ments. The security parameter (Sec) designates the
security level of the CGA address. For Sec values
greater than zero, there is no guarantee that the se-
quential brute-force search will cease after a certain
time period. For example, it may take several hours
or even days to find the CGA parameters when secu-

rity level of “2”is being used. This long delay is un-
acceptable for several applications.

Today multicore processors greatly increase the
computational capacity of computers and their use
has become the norm. Nearly every computer has a
processor with at least two cores. Some desktops
have up to 8 CPUs. These CPU numbers are likely to
increase in the future. Multicore processors thus pro-
vide a potential opportunity for remarkable speed
improvements in CGA computation. However a dual-
core processor will not automatically double the
CGA computational performance because the CGA
generation algorithm is a sequential process and will
not fully utilized the available CPU cores.
In this paper we will introduce our approach to mul-
ticore processing in order to achieve better perfor-
mance for CGA computations [3]. In our algorithm
we do a brute-force search to find a valid modifier in
parallel rather than sequentially. The number of cores
in the computing device determines the number of
parallel threads that will be used to compute the CGA
address parameters. The multicore CGA version
drastically reduces the CGA generation time. The
experiment results are validated and evaluated by
comparing the performance of the proposed approach
with the conventional approach in the future Soc
servers.
This paper is structured in the following manner.
Section 2 presents the CGA algorithm and our pro-
posal to use multicore threading in the generation of
a CGA. . Section 3 outlines the details of our parallel
approach and presents our experimental results using
the future Soc servers. Section 4 concludes the work
and describes future steps.

2 Project Description

CGA was first proposed as a mechanism for authen-
ticating location updates in Mobile IPv6 [4]. Later,
CGAs were standardized in the context of the SEcure
Neighbor Discovery (SEND) [2] in order to protect
Neighbor Discovery (ND) for IPv6 [5] and the IPv6
Stateless Address Autoconfiguration [6] against
known attacks [7].

21

SHA-1

Hash2

(112 bits)
16*Sec=0?

Increment

Modifier

No

Final

Modifier

(128 bits)

Subnet

Prefix

(64 bits)

Colision

Count

(8 bits)

Public Key

RSA

(variable)

SHA-1

 Hash1

Subnet Prefix Interface ID u g

Yes

CGA

64 bits

S e c

64 bits

leftmost 64 bits

16*Sec leftmost Hash2

bits must be zero

0

CGA

parameters

· Generate/ Obtain an RSA key pairs

· Pick random Modifier

· Select Sec value

· Set Colision Count to 0

U=g=1

Modifier

(128 bits)

0

(64 bits)

0

(8 bits)

Public Key

RSA

(variable)

0 1 2 ... 6 7

(59 bits are in used)

Compute
Intensive
part

Figure 1: CGA Generation Algorithm

CGA was also proposed to prevent Denial-of-Service
(DoS) attacks and to authenticate the Binding Update
messages in Mobile IPv6 [8, 9]. The main disad-
vantage of using CGA for these purposes is the com-
putational cost. This high computational cost is due
to the fact that the CGA algorithm is a sequential
process and thus, as it stands now, does not lend itself
to relief in processing time by running in a multicore
environment. CGA computations may take a long
time especially when a high security value is used.

The fact is that satisfying the Hash2 condition is ac-
tually the most computational expensive part of CGA
generation algorithm

2.1 Cryptographically Generated Address-

es (CGA) Algorithm

In CGA, the interface identifier portion of the IPv6
address is created from a cryptographic hash of the
address owner’s public key and other auxiliary pa-
rameters. Since the 64-bit are not enough to provide
sufficient security against brute-force attacks in the
foreseeable future, the standard CGA uses the Hash
Extension in order to increase the security strength
above 64 bits. The address owner computes two in-
dependent hash values (Hash1 and Hash2) by using
the public key and other parameters. The Hash Ex-
tension (Hash2, or a portion of it) value sets an input
parameter for Hash1. The combination of the two
hash values increases the computational complexity
for generating a new address and thus the cost of
using brute-force attacks. The CGA generation algo-
rithm should fulfill two conditions [1]:
1. The leftmost 64-bit of Hash1 is set to equal the
interface identifier. The Sec, “u” and “g” bits are
ignored for this comparison.

2. The 16×Sec leftmost bits of Hash2 are equal to
zero.
The security parameter (Sec) indicates the security
level of the generated address being used against the
brute-force attacks. Increasing the Sec value by “1”
adds 16 bits to the length of hash that the attacker
must break. The Sec is an unsigned 3-bit integer hav-
ing a value between “0” and “7”. The CGA parame-
ter data structure contains the following parameters:
1. Modifier (128-bit): initialized to a random value.
2. Subnet Prefix (64-bit): set to the routing prefix
value advertised by the router at the local subnet.
3. Collision Count (8-bits): is a counter used for Du-
plicate Address Detection (DAD) to ensure the
uniqueness of the generated address.
4. Public Key (variable length): set to the DER-
encoded public key of the address owner.
5. Extension Field: variable length field for future
needs.
A schematic of the CGA generation algorithm is
shown in Figure 1. CGA generation begins by deter-
mining the address owner’s public key and selecting
the proper Sec value. The process continues with the
Hash2 computation loop until the Final Modifier is
found. The Hash2 value is a hash value comprises of
a combination of the Modifier and the Public Key
which is concatenated with a zero-value of Subnet
Prefix and Collision Count. The address generator
tries different values of the Modifier until the
16×Sec-leftmost-bits of Hash2 reaches zero. Once a
match is found, the loop for the Hash2 computation
terminates. At this point the Final Modifier value is
saved and used as an input for the Hash1 computa-
tion. The Hash1 value is a hash combination of the
entire CGA parameter data structure.

22

After the interface identifier (IID) is derived from
Hash1 the hash value is truncated to the appropriate
length (64-bit). The Sec value is encoded into the
three leftmost bits of the interface identifier. The 7th
and 8th bits from the left of IID are reserved for a
special purpose. Finally the Duplicated Address De-
tection (DAD) process is done to ensure that there is
no address collision within the same subnet.

3 Results and Achievements

We implemented a multicore-based CGA and
conducted several practical experiments by running
the system in a Future SOC infrastructure. We could
then divide the CGA sequential algorithm into small-
er tasks according to the number of cores available in
the Future Soc VMs. We then assigned each task in
order to run them in parallel. Even though the CGA
algorithm speedup is influenced by tightly-coupled
dependencies between the parts of the algorithm, we
could achieve a speedup in the parallel mode. In the
following subsections we explain our CGA parallel
algorithm and our results.

3.1 Implementation

CGA generation is a sequential algorithm. There-
fore the main challenge of CGA parallelization is to
break down the CGA algorithm into parallel parts
and then to assemble those individual results from
each process into the final result. To parallelize a
CGA algorithm two things should be determined:
which part of the CGA algorithm can be parallelized
and into how many parallel processes can it be bro-
ken. The Hash2 condition needs to be broken into a
number of tasks because it is the most intensive part
of the CGA computation. To utilize all cores on a

device, the number of tasks is determined based on
the number of CPU cores. In this way, the CGA gen-
eration algorithm can scale its performance based on
the available CPU cores [3].
Figure2 shows how the CGA generation can be paral-
lelized to use an n-core computing device [3]. In this
approach each task is run in one core to prevent the
CPU from switching between the parallel tasks dur-
ing the CGA generation. The Tasks Generator (TG)
passes particular continuous sets of modifier for each
task, i.e. each task dedicated to do brute-force
searches within a certain range. If the task1 process
modifier range is from 0 to n, then task2 would pro-
cess in a range of n+1 to 2*n, and so on. TG also
passes a termination token to the CGA Generation
(CGAGen) function in order to control and terminate
all tasks when one of the tasks succeeds in finding a
valid modifier which fulfills the Hash2 conditions. If
none of the tasks succeeds in finding the valid modi-
fier within the assigned range, then new tasks with
new ranges of modifiers are generated. We use some
customized classes in the Task Parallel Library (TPL)
[9] to simplify the parallelization management. TPL
simplifies this process and provides a number of clas-
ses and methods which allows the running of a num-
ber of jobs in a parallel fashion. TPL has a Task Fac-
tory Class [10] which provides support for creating
and scheduling Task Objects without sacrificing their
power and flexibility.

3.2 Experiments

We ran our CGA multicore implementation on two
VMs with a Windows 7 64-bit operating system. In
our experiments the first VM machine was a quad-
core CPU and the second VM machine was a single-
core CPU. Both machines had 2 GB of RAM. The

K
e

y
 a

n
d

m
o

d
if

ie
r

g
e

n
e

ra
ti

o
n

Reading

 the number

of CPU cores

Tasks

Generator

(TG)

Task # 1

CGAGen(m, Termination token)

Task # n*(x-1)

CGAGen(m,Termination token)

Analyze

Results

(Modifier

found)

YES

NO

Task Termination

1

n*(x-1)

No
Yes

SHA-1

Modifier

(range n)
0 0 Public Key

 Hash2 (112 bits)
0

16*Sec=0?

16*Sec

Increment

Modifier

Return Modifier

and stop

other threads

Task n*(x-1)

start

End

Figure 2: Flowchart of the Proposed Parallel CGA Generation Process

23

CPUs in both VMs were Intel(R) Xeon(R) E5540
with 2.53GHz speed. Figure 3 shows our CGA multi-
core analyzer user interface. The user can select the
RSA key size, algorithm type and determine the
number of samples. All the measurements are done
for a RSA key size equal to 1024-bit. The CGA ad-
dress was generated 1000 times to ensure sufficient
samples. The average (avg.), the minimum (min.) and
the maximum (max.) values of CGA generation times
for both sequential and parallel mode and a Sec value
“1” are recorded in Table 1. The CGA Multicore
Analyzer has the ability to draw charts and store the
output results, such as average, the standard devia-
tion, the variance, etc., in a file.
As shown in Table 1, the parallel approach spedup
the CGA computation by 70.1%, when using 4 cores
It is clear from the results that the process of compu-

ting the CGA benefited from the use of a multicore
processor. These results show that even though the
sequential process did improve using a multicore
processor, the most dramatic improvements were
achieved by using the parallel processing approach
that we introduced here. In our parallel approach,
described above, more mips are used because of the
ability to process some aspects of the address calcula-
tion functions simultaneously, i.e. in each core, thus
lowering the overall process time. Figure 4 shows the
CPU performance in multi-core for both parallel and
sequential algorithms while running CGA algorithm.

Figure 3: Multicore CGA Analyzer User Interface. The top chart shows the result of each CGA
generation time and the bottom chart shows the average time needed to generate the CGA

Table1: CGA Average Generation Time Comparison of Sequential and Parallel

Number

CPU cores

CGA average generation time

(Milliseconds)

1024-bit RSA key, Sec=1 Percentage of

Speedup
Parallel Mode (CPU usage 85%) Sequential Mode (CPU usage 29%)

Min. Max. Avg. Min. Max. Avg.

1 - - - 28 66 47 -

4 1 45 13,36 8 281 45,7 70.7%

24

4 Future Works

We implemented the multicore CGA using the most
CPU power in a computing device. We would like to
extend our work to a Linux operating system. We
would like to work towards this goal using the fol-
lowing steps:

· Complete our CGA multicore algorithm for
the Linux operating platform

· Test the performance of the foregoing algo-
rithm in the future Soc servers.

· Research on better ways to utilize the CPU's
memory in order to manipulate the CGA al-
gorithm more efficiently.

References

[1] T. Aura: Cryptographically Generated Address,
RFC3972, WEBSITE:
http://tools.ietf.org/html/rfc3972 , In: Internet
Engi-neering Task Force (March 2005)

[2] J. Arkko, J. Kempf, B. Zill and P. Nikander: SEcure

Neighbor Discovery (SEND), RFC 3971 (Proposed
Standard), WEBSITE:
http://tools.ietf.org/html/rfc3971, In : Internet Engi-
neering Task Force (March 2005)

[3] H. Rafiee, A. Alsa’deh, and Ch. Meinel : Multicore-

Based Auto-Scaling SEcure Neighbor Discovery for

Windows Operating Systems, In: in Proceedings of the
26th International Conference on Information Net-

working (ICOIN 2012), IEEE Press, Bali, Indonesia
(February 2012)

[4] G. O’Shea and M. Roe : Child-proof authentication

for MIPv6 (CAM), In: ACM Computer Communica-
tions Review, vol. 31, no 2. (2001)

[5] T. Narten, E. Nordmark, W. Simpson, and H. Soli-
man: Neighbor Discovery for IP version 6 (IPv6),
RFC 4861, WEBSITE:
http://tools.ietf.org/html/rfc4861, In: Internet Engi-
neering Task Force (September 2007)

[6] S. Thomson, T. Narten and T. Jinmei : IPv6 Stateless
Address Autoconfiguration , RFC 4862, WEBSITE:
http://tools.ietf.org/html/rfc4862, In: Internet Engi-
neering Task Force (September 2007)

[7] P. Nikander, J. Kempf and E. Nordmark : IPv6 Neigh-

bor Discovery (ND) Trust Models and Threats, RFC
3756 (Informational), WEBSITE:
http://tools.ietf.org/html/rfc3756, In: Internet Engi-
neering Task Force (May 2004)

[8] J. Arkko, C. Vogt and W. Haddad : Enhanced route
optimization for mobile IPv6, RFC 4866, WEBSITE:
http://tools.ietf.org/html/rfc4866, In: Internet Engi-
neering Task Force (May 2007)

[9] Microsoft TechNet, Task Parallelism (Task Parallel
Library), WEBSITE: http://msdn.microsoft.com/

en-us/library/dd537609.aspx (2011)

[10] Microsoft TechNet, Task Factory, WEBSITE:
http://msdn.microsoft.com/en-

us/library/system.threading.tasks.task.factory.aspx

Figure 3: Top figure shows CPU performance in sequential mode and bottom figure shows in par-
allel mode

25

Blog- Intelligence Extension with SAP HANA

Patrick Hennig
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam

patrick.hennig@student.hpi.uni-potsdam.de

Philipp Berger
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam

philipp.berger@student.hpi.uni-potsdam.de

Patrick Schilf
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam

patrick.schilf@student.hpi.uni-potsdam.de

Christoph Meinel
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam

office-meinel@hpi.uni-potsdam.de

Abstract

Blog-Intelligence is a blog analysis framework, inte-
grated into a web portal, with the objective to leverage
content- and context-related structures and dynamics
residing in the blogosphere and to make these findings
available in an appropriate format to anyone inter-
ested. The portal has by now reached a mature func-
tionality, however, requires ongoing optimization ef-
forts in any of its three layers: data extraction, data
analysis and data provision.

1 Introduction

With a wide circulation of 180 million weblogs world-
wide, weblogs with good reason are one of the killer
applications of the worldwide web. For users it is still
too complicated to analyze the heavily linked blogo-
sphere as a whole. Therefore, mining, analyzing, mod-
eling and presenting this immense data collection is
of central interest. This could enable the user to de-
tect technical trends, political atmospheric pictures or
news articles about a specific topic.
The basis of the Blog-Intelligence project is the big
amount of data provided by all weblogs in the world.
These data is gathered in the past and in the future by
an intelligent crawler.
Blog-Intelligence already provides some basic analy-
sis functionality for the crawled data. Through the im-
provement of the crawler and the consequent growing
amount of data, the analysis gets into big performance
issues. Since these performance problems, the analy-
ses are only calculated in a weekly manner to reduce
the run time of the analyses algorithms. Therefore the
up-to-dateness of the results is not given any more and
the web portal is only able to show already deprecated

results.

2 Fields of application

With SAP HANA totally new opportunities are com-
ing up. The fast execution of the analysis algorithms
provides completely new and better interaction with
the system for the end-user. Beside the advantage of
exploring the blogosphere in real time, it is possible to
provide analyses for the end-user calculated separately
for each user with his interests. Furthermore, former
time-consuming text and graph analysis algorithm can
now get integrated into our framework because SAP
HANA offers fast variants of these algorithms. This
opens new perspectives onto the data and the blogo-
sphere for the user.
For example, it is now possible to figure out, how
and what is discussed about products or companies in-
side the blogosphere. Traditional providers limit these
analyses to the biggest blogs worldwide. With Blog-
Intelligence and SAP HANA it gets possible to calcu-
late analyses over all weblogs worldwide.
In addition to the personalized illustration of the bl-
ogosphere, companies can figure out how their own
weblogs perform and influence the blogosphere. Even
the monitoring of competitors’ social media influence
is imaginable.

3 Used Future SOC Resources

Currently, we are running a small test machine that
is embedded into the Future SOC network. This ma-
chine runs a SAP HANA instance that is used as test
database for our current crawler developement. The
development state of the crawler becomes a stable ver-
sion and the current version is able to crawl fast and
more enriched data. Therefore, we observed the SAP

27

Concept

1

Blog Crawler

60 TB Storage

Crawler Database

HANA

8 GBit

Analysis

High
Performance
Database

0.8 TB – 1.3 TB
analytical data

per year

~20 TB per year

~20 TB per year

Figure 1. Technical Concept of Blog-Intelligence

HANA instance on our test machine to run out of re-
sources. Hence, we revise our current setup and come
up with a new Blog-Intelligence deployment described
in the following section.

4 Blog-Intelligence deployment

Our overall technical setup is shown in figure 1. In
order to increase the amount of data and to keep the
data up-to-date, the weblogs are visited and revisited
with the help of a crawler. The crawler is based on
the MapReduce framework from Apache. The first
structural analyses are done at crawling time like the
language detection. The overall detection whether the
web site is a blog, a news portal or a regular HTML
page is also done by the crawler.
This crawler is executed in parallel and distributed on a
Hadoop Cluster and saves the data directly into a SAP
HANA instance. The complete extracted data, espe-
cially large objects like the original HTML content, is
stored as well. Nevertheless, the large data objects get
outsourced to a data storage provided by EMC with an
overall capacity of 60TB. Although large objects get
outsourced, an huge amount of data stays in-memory
for the analytics component.

5 Computational Effort Estimation

In the worldwide web approximately 10 million highly
active blogs exists with more than one post each week.
An important part of these blogs is the news portal
blogs, like ”theguardian” with several new posts each
day. Of the widespread 180 million weblogs these
10 million weblogs are the most important weblogs.
Therefore, we want to store these weblogs inside a
SAP HANA database to provide up-to-date real time

analyses. As a result, we expect 0.8TB to 1.3 TB of
compressed data for our analyses.

6 Next Steps

As mentioned before, the crawler implementation is
nearly stable. Hence, we will start a permanent run
using the Future SOC resources and create an ade-
quate set of crawled weblog sites. Given this dataset
in a running SAP HANA instance, we get able to the
test in-memory data analysis algorithms of HANA. We
expect to measure a significant performance improve-
ment for the analytics. Thereby, we get able to evalu-
ate real-time and user-centric analysis approaches for
the blogosphere. Based on our findings about the blo-
gosphere, we will adapt, develop and re-engineer our
existing exploration interfaces for this new level of an-
alytics.

References

[1] P. Berger, P. Hennig, J. Bross, and C. Meinel. Mapping
the blogosphere–towards a universal and scalable blog-
crawler. In Privacy, Security, Risk and Trust (PASSAT),
2011 IEEE Third International Conference on and 2011
IEEE Third International Confernece on Social Com-
puting (SocialCom), pages 672–677. IEEE, 2011.

[2] J. Bross, P. Hennig, P. Berger, and C. Meinel.
Rss-crawler enhancement for blogosphere-mapping.
IJACSA Editorial, page 51, 2010.

[3] J. Bross, M. Quasthoff, P. Berger, P. Hennig, and
C. Meinel. Mapping the blogosphere with rss-feeds. In
Proceedings of the 2010 24th IEEE International Con-
ference on Advanced Information Networking and Ap-
plications, AINA ’10, pages 453–460, Washington, DC,
USA, 2010. IEEE Computer Society.

28

Accurate Mutlicore Processor Power Models for Power-Aware Resource
Management

Christoph Meinel, Ibrahim Takouna, and Wesam Dawoud
Hasso-Plattner-Institut (HPI)

University of Potsdam
Potsdam, Germany

{christoph.meinel, ibrahim.takouna, wesam.dawoud}@hpi.uni-potsdam.de

Abstract

In this project, we develop three statistical CPU-
Power models based on number of active cores and av-
erage running frequency using a multiple liner regres-
sion. Our models were built upon a virtualized server.
The models are validated statistically and experimen-
tally. Statistically, our models cover 97% of system
variations. Furthermore, we test our models with dif-
ferent workloads and different benchmarks. The re-
sults show that our models achieve better performance
compared to the recently proposed model for power
management in virtualized environments. Our mod-
els provide highly accurate predictions for un-sampled
combinations of frequency and cores; 95% of the pre-
dicted values have less than 7% error.

1 Introduction and Project Idea

There are several proposed approaches for power man-
agement. Mostly, these approaches consider the CPU
frequency and CPU utilization to build power models.
For instance, Urgaonkar et al. [1] and Gandhi et al. [2]
have adopted non-liner quadric models of power con-
sumption for power management in virtualized envi-
ronments. The relationship between power consump-
tion of multicore processor and frequency cannot be
covered with one fitting curve, as we will see in Sec-
tion II. For instance, the curve of power consumption
of 1 core slightly increases with cores frequency com-
pared to 4 cores and 8 cores. Moreover, Fan et al. [4]
have included CPU utilization in their proposed power
model. However, using utilization to build a power
model for a multicore processor could be not accurate,
because the power consumed by a multicore proces-
sor with one active core with 100% utilization is more
than the power consumed by two active cores each of
them 50% utilized for the same workload. We found
this result by conducting an experiment using a virtual
machine (VM) with a mutlithreaded application. This
VM ran with 1 virtual CPU and had 100% utilization

and only ran on one physical core. In this scenario, the
power consumed by the physical CPU was 26 watts.
On the other hand, when the same VM ran with 2
virtual CPU and the VM had the same total CPU uti-
lization 100%. In this scenario, the physical CPU just
consumed 17 watts, and each core was 50% utilized.
Importantly, both of the configuration gave the same
performance. Indeed, the latter could be better due to
exploiting the multithreading. Thus, we conclude that
only using CPU frequency and CPU utilization only as
inputs for power modeling could be inefficient in par-
ticular for power estimation of mutlicore processors.

The purpose of this work is to build CPU-Power con-
sumption models that accurately estimate the power
consumption of virtualized servers with multicore pro-
cessor. These models could be employed into power-
aware resource management to achieve better power
savings. Our work is distinct from others as follows.
This project phase presents CPU-Power consumption
models taking into account number of the actual active
cores N and average running clock frequency F at each
sample. It analyzes and evaluates the performance of
our proposed models statistically and experimentally.
The statistical analysis using the regression R2 indi-
cates that our models could cover more than 97% of
system variations. Experimentally, our proposed mod-
els achieve better performance compared to the model
adopted by [1][2]. We evaluate models using three dif-
ferent applications with different characteristics (i.e.,
CPU-intensive, Memory-intensive, and IO-intensive).
The results show that 95% of the predicted values have
less than 7% error. Furthermore, the maximum predic-
tion error is less than 4% error for Memory-intensive
and IO-intensive applications. As future work, we will
use these models to build a dynamic optimizer that op-
timizes number of cores and their frequency settings
and dynamically configures a VM to cope with work-
load and meet power consumption constrains.

29

2 Used Lab Resources and Experimental
setup

The evaluation experiments were performed on Fujitsu
PRIMERGY RX300 S5 server that has a CPU-Power
measurement capability. It has a processor of Intel(R)
Xeon(R) CPU E5540 with 4-cores. The frequency
range is 2.53GHz to 1.59GHz. Each core enables 2-
logical cores. The server is equipped with 12GB phys-
ical memory. The experiments were run on a virtual-
ized server using Xen-4.1 hypervisor.
To build our models, we used a CPU-intensive bench-
mark EP Embarrassing Parallel which is one of NAS
Parallel Benchmarks (NPB) [5]. However, more de-
tails about the characteristics of NPB benchmarks is
found in [6].
Finally, we used xenpm tool to measure average run-
ning frequency and number of active cores. We used
the CPU-Power measurement capability of our server
to measure the power consumption of the CPU. In
our experiments, the percentile average was consid-
ered to get accurate power readings. Fig. 1 summa-
rizes the system overview and the procedures of CPU-
Power models development. Fig. 1 shows the out-
put of xenpm tool; it illustrates the change of average
frequency, performance states (P0-P8), and sleeping
states (C0-C3). Furthermore, the output demonstrates
the percentage of time for each core and for each state.

3 Findings

Several works have used linear models to represent
the power consumption of a system or just a proces-
sor. These models are based on CPU utilization or
other concerned resources such as memory. As cur-
rent processors have multicores which could operate
at different frequency levels at runtime using DVFS,
in this section we discuss the relationship between the
CPU-Power consumption and CPU-frequency from
one side, and the CPU-Power consumption and num-
ber of active cores from the other side.

3.1 CPU-Power and frequency rela-
tionship

CPU-Power consumption is composed of dynamic and
static power. The dynamic power is the important fac-
tor for reducing power consumption using DVFS tech-
nique. The dynamic consumed power by a CPU with
a capacitance c, frequency f, and supplied voltage v is
computed by equation P = c.f.v2dd. However, Kim
et al. [7] have considered power proportional to the
cubic of frequency because the frequency is usually in
proportion to the supplied voltage.

P(F) = Pmin + θ(F − Fmin)
2 (1)

Virtualized
Server
(Xen)

Multiple
Linear

Regression

Measured CPU-Power

Number of active cores

Average Frequency

Generated
CPU-Power

Model

VM-1

VM-2

V
M

-3

Predict CPU-Power
for non-measured

Configurations

Start sampling, waiting for CTRL-C or SIGINT or SIGALARM signal ...
^CElapsed time (ms): 6956
CPU0: Residency(ms) Avg Res(ms)
C0 319 (4.59%) 0.35
C1 18 (0.27%) 0.44
C2 6619 (95.14%) 7.71
P0 206 (71.48%)
P1 0 (0.00%)
P2 0 (0.00%)
P3 0 (0.00%)
P4 0 (0.00%)
P5 0 (0.00%)
P6 0 (0.00%)
P7 0 (0.00%)
P8 82 (28.52%)
Avg freq 2477440 KHz

CPU1: Residency(ms) Avg Res(ms)
C0 36 (0.53%) 0.11
C1 63 (0.92%) 1.18
C2 6856 (98.56%) 23.32

P0 0 (0.00%)
P1 0 (0.00%)
P2 0 (0.00%)
P3 0 (0.00%)
P4 0 (0.00%)
P5 0 (0.00%)
P6 0 (0.00%)
P7 0 (0.00%)
P8 32 (100.00%)
Avg freq 1921280 KHz

Figure 1: Overview of the system and CPU-Power
models development.

y = 0.6607x2 - 0.5393x + 36.7
R² = 0.9987

y = 0.1607x2 + 0.0464x + 18.9
R² = 0.9796

0

10

20

30

40

50

60

70

1.6 1.72 1.86 1.99 2.2 2.4

C
P

U
-P

o
w

e
r

(W
a

tt
)

Frequency (GHz)

8 cores 4 cores 1 core Poly. (8 cores) Poly. (1 core)

(a)

y = 2.4167x + 18.5
R² = 0.9662

y = 4.7857x + 21.214
R² = 0.9548

0

10

20

30

40

50

60

70

1 2 3 4 5 6 7 8

C
P

U
-P

o
w

e
r

(W
a

tt
)

Number of Active Cores

Freq 1.6 Freq 1.99 Freq 2.4 Linear (Freq 1.6) Linear (Freq 2.4)

(b)

Figure 2: CPU-Power consumption relationship with
frequency and number of active cores.

To obtain the relationship between CPU-Power con-
sumption and frequency, we ran EP-NPB CPU-
intensive benchmark on a virtual machine at different
CPU frequencies. We measured the power consump-
tion only for the CPU. Thus, we obtained the curves
in Fig. 2-(a). Then, by applying the multiple linear
regression, we found that the best relationship could
be fit in polynomial linear with regression R2 = 0.99.
we could generalize it as a quadric model in equation
1 which resembles the proposed model by [1][2] to es-
timate the power consumption of a server. Although
Fig. 2-(a) shows perfect fitting for each curve of a
number of cores, the total system variations cannot be
covered with considering only frequency.

Table 1: The determined values of CPU-Power models
coefficients and statistics.

Model θ2 θ1 α C Std.Err. R2

0.Eq.2 6.3 -7.2 0 24.6 7.9 0.29
1.Eq.3 6.3 -7.2 3.3 9.7 1.4 0.97
2.Eq.4 3.8 2.6 3.3 0 1.4 0.99

Hence, we need different values of θ and Pmin at
each number of active cores. For example, to esti-
mate CPU-Power at frequency 1.72 GHz when 8 ac-
tive cores using equation 1 the best values for θ and
Pmin are 37 watts and 37 Watt/GHz2 respectively.
The estimated power is 37.6 watts which is approxi-

30

mately equal to the measured value 38 watts. Never-
theless, The values of θ and Pmin should be adapted
again to predicted the power when just 4 cores are ac-
tive. Accordingly, we study the relationship between
the power consumption and number of active cores in
next section.

3.2 CPU-Power and number of active
cores relationship

To estimate the power consumption of multicore pro-
cessors, we found that it is important to study the re-
lationship between CPU-Power and number of active
cores. To this end, we obtained the curves in Fig.
2-(b). The curves have a linear trendline. The rela-
tionship is well approximated by a linear model with
regression R20.95, which means that the power con-
sumption and number of active cores have a strong
linear association and can be represented by Equation
P(N) = Pmin + α.N . N is number of active cores,
and Pmin is the power consumed by one core running
at frequency F. αF is the slope of the power-to-active
cores curve at frequency F. Importantly, each curve has
two different slopes. The first one is when the number
of active cores is less than 4 cores and the other one is
when the number of active cores is more than 4 cores.
Moreover, the first slope is greater than the second one.
The main reason of this case was that we had a proces-
sor with 4 physical cores. Each physical core has two
logic cores, and the power consumed by a logical core
is less than the power consumed by a physical core.

3.3 CPU-Power estimation models

From previous sections, we found a strong relationship
between CPU-Power consumption and both frequency
and number of active cores. In this section, we refer
to the model adopted by [1][2] as Model-0. Model-0
which is represented by equation 2 does not include
number of active cores. Our first model is denoted by
Model-1. Model-1 presented in equation 3 is a mul-
tiple linear regression with the intercept constant C.
Equation 4 represents Model-2. Model-2’s intercept
constant C is zero. Finally, we removed the first de-
gree term of frequency of Model-2. However, we will
study the predication accuracy of these models show-
ing the worst and the best cases for each model.

P(F,N) = θ2.F
2 + θ1.F + C (2)

P(F,N) = θ2.F
2 + θ1.F + α.N + C (3)

P(F,N) = θ2.F
2 + θ1.F + α.N (4)

3.4 Statistical analysis

This section discusses some statistical analysis of our
CPU-Power estimation models focusing on Model-1

to show its efficiency to predict the power consump-
tion of a processor.
Table 1 summarizes the determined values of CPU-
Power models coefficients and statistics. However,
Model-2 is a regression with zero constant. Further-
more, the regression statistics in Table 1 show that the
regression R2 of our models is higher than R2 of the
Model-0. For instance, Model-2 has regression R2

0.99 which means that these two models could explain
99% of the power variations. The power variations
were determined by variations in the independent vari-
ables (i.e., frequency and active cores). In contrast,
Model-0, which only considers frequency, has regres-
sion R2 0.259. Model-0 explained only 25% of power
variations using frequency.

3.5 Performance evaluation

As we discussed models performance statistically, in
this section we show and compare the performance of
the models experimentally. To achieve this, we con-
ducted three experiments using three different bench-
marks of NPB benchmark namely EP, CG, and BT.
These benchmarks represent CPU-Intensive, Memory-
Intensive, and IO-Intensive applications respectively.

3.5.1 CPU-intensive applications

To evaluate our models against CPU-Intensive applica-
tions, we used EP benchmark to generate a workload
which was changed with time. As shown in Fig. 3, we
started with a low workload which increased with time
until it reached its maximum approximately at time
205 sec. Then, it started to decrease after time 250 sec.
During the experiment, we measured the CPU-Power
consumption every 5 seconds. Then, we computed the
estimated power using the four different models. Ob-
viously, the curve shows that Model-0 has a big differ-
ence between its estimation and the measured power
when low-workload and few of cores are actives (i.e.,
1-3 active cores). However, it shows a good perfor-
mance in high-workload when all the cores are active.
This case is similar to estimation power consumption
of a processor as a unit regardless of active cores num-
ber.
As our models include the number of active cores and
the average frequency, they accurately estimated the
power in both areas of workload (i.e., low-workload
and high-workload). Furthermore, although Model-2
statistically (i.e., regression R2) is better than Model-
1, the experiment demonstrated that Model-1 with
constant C achieved better performance than the other
models. Finally, slight percentage of error could be
observed in our models due to the fact that we con-
sidered each logical core as physical core, but as we
mentioned before in section II-B the power consumed
by a logical core is less than the power consumed by a
physical core.

31

0

50

100

150

200

250

300

350

400

450

500

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340

C
P

U
-P

o
w

e
r

(W
a

tt
)

Time (sec.)

Model-0 Model-1 Model-2 Model-3 Measured Power Workload

W
o
rk

lo
a
d
 (

M
F

lo
p
s
/s

e
c
)

F=1.6-1.82GHz
N= 1-3 cores

F=2.4GHz
N= 3-5 cores

F=1.6-1.7GHz
N= 4-7 cores

F=1.7-1.82GHz
N= 1-3 cores

Figure 3: Trace of measured consumed CPU-Power and predicted CPU-Power for the four models.

0 10 20 30 40 50 60
0

0.2

0.4

0.6

0.8

0.9

0.95

1

Percentage of Error (PoE) -Model-0

C
D

F
(P

o
E

)

0 1 2 3 4 5 6 7 8
0

0.2

0.4

0.6

0.8

0.9
0.95

1

Percentage of Error (PoE) - Model-1

C
D

F
(P

o
E

)

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9
0.95

1

Percentage of Error (PoE)- Model-2

C
D

F
(P

o
E

)

Figure 4: Prediction accuracy of the CPU-Power models.

Now, we discuss the prediction accuracy by computing
the percentage of error using the following formula.

PoE = |(Estimiated−Measured)/Measured|∗100%

Furthermore, we obtained the Empirical Cumula-
tive Distribution Function of Percentage of Error
CDF(PoE). The plot of CDF(PoE) for each model is
depicted in fig.4. The x-axis represents the Percent-
age of Error (PoE), and y-axis shows the percentage of
data points (i.e., predicted power values) that achieve
error less than each value of x. For instance, 90%
of the predicted values using Model-0 have less than
40%, and this error could increase to 50%. On the
other hand, our models show that 90% of values were
predicted with less than 9% error. Although R2 value
of Model-1 is less than R2 value of Model-2, Model-
1 showed the best results where 95% of the predicted
values had error less than 7% error. Generally, the pre-
diction accuracy of Model-1 empirically outperforms
the prediction accuracy of Model-2.
Significantly, our proposed models achieve high pre-
diction accuracy due to considering both number of
active cores and the average running frequency. Ad-
ditionally, the accurate readings of CPU-Power that
was realized using CPU-Power measurement capabil-
ity of our server assisted us to build these accurate
models. To test our models’ ability to predict those

un-sampled combinations of frequency and number of
cores, we conducted some experiments with differ-
ent un-sampled combinations frequency 2.53GHz and
number of cores. Table 2 presents the results of these
experiments. The results proved that our models are
capable to predict with high accuracy even un-sampled
combinations of frequency and number of cores.

3.5.2 Memory-intensive applications

In this section, we evaluated performance of the
models for applications that are considered memory-
intensive using CG benchmark. Fig. 5 shows the esti-
mated power versus the measured power. The diagonal
line represents the perfect predication line which illus-
trates the deviation of the estimated values from the
measured values. In other words, the predicted value
is equal or close to the measured value if it is one of

Table 2: The predicted CPU-Power for un-sampled
combination of frequency 2.53GHz and number of
cores.

Cores Measured Model-0 Model-1 Model-2
3 42 47.09 42.27 41.23
4 45 47.09 45.57 44.53
8 58 47.09 58.77 57.73

32

the perfect predication line points or close to this line.
From Fig. 5, the data points that represent our models
are either on or close to perfect predication line. Fur-
thermore, we computed the maximum prediction error
of each Model. We found that Model-1 and Model-
2 had less maximum prediction error compared to the
other two models. However, with less than 6% maxi-
mum prediction error for Model-1 and Model-2, these
two models are still accurate. The maximum predic-
tion error of Model-0 was 14.4%.

20

25

30

35

40

45

50

55

20 25 30 35 40 45 50 55

P
re

d
ic

te
d
 P

o
w

e
r

(W
a
tt
)

Measured Power (Watt)

Model-0 Model-1 Model-2 Model-3 Perfect Prediction Line

Max Error of Model-0: 5.6 , 14.4% error
Max Error of Model-1: 1.7, 5.9 % error
Max Error of Model-2: 1.04, 5.07 % error
Max Error of Model-3: 3.76, 12.12 % error

Figure 5: CPU-Power models fit for CG-Memory-
Intensive: measured vs. estimated.

3.5.3 IO-intensive applications

As we presented the performance of our models for
CPU-intensive and Memory-intensive applications in
the previous sections, this section presents perfor-
mance of the models for IO-intensive applications. We
repeated the experiments procedure of the previous
section using BT benchmark. Fig. 6 also shows the
estimated power versus the measured power. We can
see that the predicted values of Model-1 are on perfect
predication line or very close to it. In contrast, Model-
0 shows large deviation of the perfect line. Moreover,
we found that Model-1 and Model-2 had less maxi-
mum prediction error compared to the other two mod-
els. Model-1 and Model-2 achieved less than 5% max-
imum prediction error. Finally, the maximum predic-
tion error of Model-0 became worse with 22.07% er-
ror.

4 Conclusions and Next Steps

we developed models to estimate the power consump-
tion of multicore processors. Our work is distin-
guished from previous works in combining number of
active cores with P-state of multicore processor. We
validated our proposed models using statistical analy-
sis and experimental approach using varied workloads.
The results of the experiment showed that our model
achieved high accuracy of CPU-Power estimation. As
a future work, we will apply our proposed models to

20

25

30

35

40

45

50

55

20 25 30 35 40 45 50 55

P
re

d
ic

te
d
 P

o
w

e
r

(W
a
tt
)

Measured Power (Watt)

Model-0 Model-1 Model-2 Model-3 Perfect Prediction Line

Max Error of Model-0: 11.03, 22.07% error
Max Error of Model-1: 1.14, 4.23 % error
Max Error of Model-2: 1.12, 3.63 % error
Max Error of Model-3: 3.16, 11.70 % error

Figure 6: CPU-Power models fit for BT-IO-Intensive:
measured vs. estimated.

dynamic power-aware configuration for a virtual ma-
chine in terms of number of cores and frequency. This
enables new adaptive power management solution for
virtualized servers.

References

[1] R. Urgaonkar, U.C. Kozat, K. Igarashi, and
M.J. Neely. Dynamic resource allocation and
power management in virtualized data centers.
2010 IEEE Network Operations and Manage-
ment Symposium (NOMS), IEEE, 2010, pp. 479-
486.

[2] A. Gandhi, M. Harchol-Balter, R. Das, and
C. Lefurgy. Optimal power allocation in server
farms. In Proceedings of SIGMETRICS, June
2009.

[3] S. Chatterjee and A. S. Hadi, Regression analysis
by example. John Wiley and Sons, 2006.

[4] X. Fan, W.-D. Weber, and L.A. Barroso. Power
provisioning for a warehouse-sized computer.
In Proceedings of the 34th annual interna-
tional symposium on Computer architecture, San
Diego, California, USA: ACM, 2007, pp. 13-23.

[5] R. V. der Wijngaart. NAS Parallel Benchmarks v.
2.4. NAS Technical Report NAS-02-007, October
2002.

[6] J. Subhlok, S. Venkataramaiah, and A. Singh.
Characterizing NAS Benchmark Performance on
Shared Heterogeneous Networks. International
Parallel and Distributed Processing Symposium:
IPDPS 2002 Workshops, vol. 2, 2002, pp. 0086.

[7] K. H. Kim, A. Beloglazov, and R. Buyya. Power-
aware provisioning of virtual machines for real-
time Cloud services. Concurrency and Compu-
tation: Practice and Experience. John Wiley and
Sons, 2011.

33

VMs Core-allocation scheduling Policy for Energy and Performance
Management

Christoph Meinel, Ibrahim Takouna, and Wesam Dawoud
Hasso-Plattner-Institut (HPI)

University of Potsdam
Potsdam, Germany

{christoph.meinel, ibrahim.takouna, wesam.dawoud}@hpi.uni-potsdam.de

Abstract

In this phase of the project, we investigate the sensi-
tivity of a VM performance running scientific multi-
threading applications to changes in clock frequency
and VM performance dependency on Domain-0 for
IO-intensive applications. Then, using sensitivity
analysis to schedule VM to suitable core with suitable
frequency settings. Currently, our work is built on a
static heterogenous system, next we are going to in-
vestigate building a dynamic heterogenous system to
realize power consumption proportional to a service
requirements. However, our test environment showed
that we can gain power savings up to 17%.

1 Project Idea

Merging between multi-core processors and virtual-
ization technologies has prompted us to investigate the
possibility of achieving power saving for such com-
bination for scientific multithreading applications. In
this project, we investigated the advantages of virtu-
alizing heterogeneous multicore systems where they
could provide better performance per watt compared
to homogeneous processors [1,2,3]. A single proces-
sor will contain hundreds of cores that vary in some
micro-architecture features such as clock frequency,
cache size, power consumption, and others [4], but
these cores exploit the same instruction-set architec-
ture. A single chip might have several complex cores
and many simple cores. The simple cores are charac-
terized as low-speed clock frequency, cache size, and
low power consumption while fast cores are equipped
with high-performance features such as high-speed
clock frequency, cache size, and high power consump-
tion. Consequently, their potential to achieve differ-
ent levels of performance that meet applications het-
erogeneity has prompted researchers in the operating
systems domain to implement heterogeneous aware
schedulers [5,6,7].
With heterogeneity of applications’ characteristics, a

Hypervisors’ scheduler is efficient if it assigns a vir-
tual CPU (vCPU) to run on the appropriate cores based
on the application characteristics in terms of CPU-
intensive, Memory-intensive, or IO-intensive. Fur-
ther, it should have knowledge of the physical pro-
cessors’ architecture and their characteristics such as
cores’ clock frequency. By this knowledge, VMs
with CPU-intensive applications should be assigned
to complex fast cores to be executed faster. Gener-
ally, scientific applications are CPU-intensive, multi-
threaded, and fewer CPU stalls due to infrequent mem-
ory accesses or I/O operations. On the other hand, I/O-
intensive could be assigned to simple slow cores with-
out losing significant performance and achieving the
power savings. However, Hypervisors’ scheduling-
policy is based on the round-robin algorithm to ensure
fairness among VMs. Emerging heterogeneous sys-
tem and virtualization bring more power savings and
better resources utilization. This combination needs a
new scheduler, which schedules each VM to an appro-
priate core based on its characteristics.
we used NAS Parallel Benchmarks [8] as CPU-
intensive application and netperf benchmark [9] as
I/O-intensive application. We denoted performance
sensitivity to CPU clock frequency as ”performance-
frequency sensitivity” and performance dependency
on Domain-0 as ”performance-Domain-0 depen-
dency”. Our scheduling-policy based on these
two categories: ”performance-frequency sensitivity”
and ”performance-Domain-0 dependency” to assign
a vCPU to the appropriate core. Consequently,
the results showed good performance improvements
for VMs with CPU-intensive applications and for
VMs with IO-intensive applications as well. Finally,
our heterogeneous experimental environment achieves
promising power savings reach to 17% which theoret-
ically could reach to 45% . The power savings are
gained from this architecture, which runs on two cores
with high frequency and other two cores with low fre-
quency.

35

2 Used SOC Lab resources

The evaluation tests were performed on Fujitsu
PRIMERGY RX300 S5 server. It has a processor of
Intel(R) Xeon(R) CPU E5540 with 4-cores and the fre-
quency range is 2.53GHz to 1.59GHz. the server is
equipped with 12GB physical memory. Additionally,
We used ServerView Remote Management to monitor
power consumption for CPU.

3 Findings

In this section, we analyzed sensitivity of VMs’ per-
formance to changes in CPU clock frequency for VMs
that run CPU-intensive and IO-intensive applications.
Then, we illustrated dependency of VMs’ on Domian-
0 for VMs with IO-intensive applications.

3.1 VMs with NBP Analysis

To analyze VMs performance-frequency sensitivity,
we used NBP-SER and NPB-OMP benchmarks as
CPU-intensive programs. In this experiment, we
pinned vCPUs of Domain-0 to cores (0,1) and vCPUs
of VMs were pinned to the another two cores (2,3)
to avoid Domain-0’s influence on the VMs; in other
words, to prevent Domain-0 from being queued with
the VMs in the same queue. First, the experiment was
run while the cores (2,3) were set to run with high fre-
quency FF =2.53GHz as fast cores. Then, it was run
again after changing frequency settings of the cores
(2,3) to low frequency FS=1.59GHz as slow cores.
Finally, we used the price elasticity of demand eco-
nomics formula to determine program’s completion
time and throughput sensitivity of clock frequency. We
considered T the completion time and Th the through-
put as the demand, and F clock frequency as the price.
ET,F is the completion time sensitivity of clock fre-
quency, and ETh,F is throughput sensitivity of clock
frequency.

ET,F =
TF − TS

FF − FS
∗ FF + FS

TF + TS
(1)

ETh,F =
ThF − ThS

FF − FS
∗ FF + FS

ThF + ThS
(2)

Due to the inverse relationship between CPU fre-
quency and completion time, ET,F values are nega-
tive, so completion time increases as CPU frequency
decreases and vice versa. On the other hand, ETh,F

values are positive because of the direct relation-
ship between CPU frequency and throughput. Pro-
gram speedup depends on program characteristics, so
it does not have a liner relationship with CPU fre-
quency. However, CPU-intensive programs might
have a semi-liner relation with frequency because of
either infrequent memory accesses or I/O operations.

(a) (b)

Figure 1: Performance-frequency sensitivity for NPB-
OMP and NPB-SER versions run on a VM with two
vCPUs. (a)sensitivity of completion time to frequency,
and (b)sensitivity of throughput to frequency.

Figure 1 shows NPB-OMP and NPB-SER bench-
marks performance-frequency sensitivity (i.e., com-
pletion time and throughput). NPB benchmark each
program has different memory access behavior and
various inter-process communication patterns. These
characteristics determine sensitivity of a program to
frequency changes. For example, the completion time
of EP-OMP and EP-SER programs had the same sen-
sitivity and they gained the highest sensitivity. The
similarity between these two programs is that EP-
OMP a multithreaded program but has negligible inter-
process communication and EP-SER is a single thread
program without inter-process communication. Fur-
ther, EP-OMP is seldom memory access compared
with CG-OMP and LU-OMP. Generally, NPB-SER
programs sensitivity to frequency changes was higher
than NBP-OMP due to the sequential execution of
instructions in NPB-SER and inter-process commu-
nication patterns or IO operations in some of NBP-
OMP programs such as CG and BT respectively. On
the other hand, NBP-OMP programs with intensive
inter-process communication were less sensitive to fre-
quency such as CG-OMP and LU-OMP. FT, a mixed
type program, almost had the same sensitivity in NPB-
SER and NPB-OMP. Unlike LU-OMP, BT-OMP in-
cludes a number of I/O operations that do not need
synchronization among its threads.

3.2 VMs with I/O Analysis

We analyzed sensitivity of VMs performance with I/O-
intensive to CPU frequency. Then, as I/O operations
depend on Domain-0, we tested VMs performance-
Domain-0 dependency.

3.2.1 CPU Frequency Sensitivity

In this experiment, we ran netperf with TCP-STREAM
and UDP-STRAEM options to test I/O performance-
frequency sensitivity using formula 2. The setting of
this experiment was the same setting when we tested
VM with NBP sensitivity. As shown in figure 2-(a),
TCP test is more sensitive to core frequency than UDP
due to the nature of TCP-packet; UDP does neither
message fragmentation nor reassembly. Further, the

36

(a) (b)

Figure 2: Performance-frequency sensitivity and
Domain-0 dependency for NPB-OMP and NPB-
SER versions run on a VM with two vCPUs.
(a) performance-frequency sensitivity, and (b)
performance-Domain-0 dependency.

aggregate costs of non-data touching overheads con-
sume majority of the total software processing time.
The non-data touching overheads come from as net-
work buffer manipulation, protocol-specific process-
ing, operating system functions, data structure manip-
ulations (other than network buffers), and error check-
ing[16]. To validate our test, we used SCP application
TCP-based to transfer a 500 MB file between two
VMs and we found the same results obtained using
netperf-TCP.

3.2.2 VMs with I/O Domain-0 Dependency

In this experiment, we ran netperf benchmark with
TCP-STREAM and UDP-STRAEM options to test
I/O performance-Domain-0 dependency. For this
end, we reversed the scenario of VM performance-
frequency sensitivity, so the cores (2,3) settings
were not changed and were set to high frequency
FF =2.53GHz where VMs were pinned in cores (2,3).
On the other hand, The cores (0,1) were set to high fre-
quency FF =2.53 GHz where Domain-0 was pinned.
Then, we ran it again while the frequency of cores
(0,1) is low FS=1.59GHz. Finally, we computed
the performance-Domain-0 dependency using formula
(2). The result of this experiment is shown in figure
2-(b). It illustrates that both netperf-TCP and netperf-
UDP depend on Domain-0 for commutation between
to VMs, but netperf-TCP depends on Domain-0 more
than netperf-UDP.
The conclusion is that applications based on TCP pro-
tocol are frequency sensitive and they are Domain-0
dependant as depicted in figure 2-(a) and figure 2-(b)
respectively.

4 PERFORMANCE EVALUATIONS

In this section, we evaluated our improved scheduling-
policy with the following rules:

• The weight of VM is proportional to the number
of vCPUs.

• CPU-intensive vCPU should not being queued
with I/O-intensive vCPU. Further CPU-intensive
vCPU should be placed in the fast pCPU’s queue
and I/O-intensive vCPU in the slow pCPU’s
queue.

• A virtual machine with CPU-intensive applica-
tion and a single vCPU should be placed in fast
pCPU’s queue to accelerate the sequential execu-
tion.

• The time-slice for the fast pCPU’s queue is 30ms
and time-slice for slow cores is 10ms as show in
figure 3. We chose the value 10ms for the short
slice as one tick to avoid high context switching
and to keep consistent credit accounting.

• The settings of cores in the experiments are the
fast cores (0,1) with FF =2.53GHz and the slow
cores (2,3) with FS=1.59GHz.

(a) (b)

Figure 3: Scheduling time-slice modifications.
(a) time-slice = 30ms for fast cores, and (b) time-
slice = 10ms for slow cores. The accounting period
of vCPU is 30ms for both fast and slow cores.

4.0.3 I/O and CPU-intensive Isolation

In this experiment, we created three VMs one with
two vCPUs and the other two each has one vCPUs.
We ran netperf on the two VMs with one vCPU for
testing TCP and UDP bandwidth channels between
them. The VM with two vCPUs used to run NPB-
SER, then NBP-OMP. We ran the three VMs with our
new scheduling-policy. First, we used EP and CG pro-
grams in NPB-SER with netperf, then EP and CG of
NPB-OMP were used. We pinned the VMs with I/O to
the slow cores (2,3) and the VM with CPU-intensive
was pinned to the fast cores (0,1). Performance im-
provement for both I/O and CPU-intensive VMs com-
pared to the default scheduler is illustrated in figure
4. Figure 4-(c) shows that the performance gain of
CG.C is better than EP.C. Indeed, EP.C has negligi-
ble inter-process communication compared to CG.C
which has also memory accesses. On the other hand,
netperf-TCP throughput when co-hosted with VM that
ran NBP-SER is better than when co-hosted with VM
that ran NBP-OMP. As seen in figure 3-(b), netperf de-
pends on Domain-0 and NPB-SER is a single thread
test that gave Domain-0 chance to be scheduled in
fast cores and improve I/O operations for netperf-TCP.
The aggregate average gain is depicted in figure 4-(c).

37

Obviously, isolating CPU-intensive vCPUs from IO-
intensive vCPUs was the main reason for performance
improvement. Using isolation eliminated the sources
of delay that effect on CPU-intensive vCPUs perfor-
mance.

(a) (b) (c)

Figure 4: I/O and CPU-intensive Isolation Perfor-
mance improvements; netperf-TCP run on a VM with
one vCPU,and NPB-OMP run on a VM with two vC-
PUs. (a) Throughput gain for NPB-OMP and netperf-
TCP benchmark, (b) throughput gain for NPB-OMP
and netperf-TCP benchmark, and (c) the average im-
provement of the overall system.

4.1 VMs with sensitive Inter-process
Comm.

In this experiment, we tested the performance gain
for inter-process communication intensive such as CG
and LU of NPB-OMP version. The performance of
NPB-OMP benchmark in VM is near to the perfor-
mance in physical server as long as the vCPUs are
less than pCPUs, and LU-OMP is the most sensitive
program to communication delay [10]. For testing
inter-process communication intensive program per-
formance improvement, we created one VM with one
vCPU and another VM with four vCPU. Neverthe-
less, we had five vCPUs in addition to four vCPUs for
Domain-0. The performance gain is illustrated in fig-
ure 5 where figure 5-(a) shows Throughput gain and
completion time speedup for NPB-OMP while figure
5-(b)illustrates Throughput gain and completion time
speedup for NPB-SER. Figure 5-(c) shows the average
aggregated performance gain for NPB programs with
two versions. Nevertheless, LU-OMP gained about
70% performance improvement. This improvement
due to changing the time-slice of the slow pCPUs’
to 10ms which increases scheduling frequency. In-
creasing scheduling frequency gave chance for inter-
process communication and synchronization. Further,
decreasing time-slice decreases holding time when
vCPU status ”busy blocking” holds pCPU [11]. A lot
of ”busy blocking” wastes pCPU cycles and degrades
the overall system performance.

5 Next Steps

The next steps of our project will be as follows:

(a) (b) (c)

Figure 5: CPU-intensive with inter-process commu-
nication intensive performance improvements; NPB-
OMP run on a VM with four vCPUs and NPB-SER
run on a VM with one vCPU. (a) Throughput gain and
completion time speedup for NPB-OMP, (b) through-
put gain and completion time for NPB-SER, and (c)
the average improvement of the overall system.

• Analyzing energy characteristics of scientific
mutlithreading applications executed on VM with
multi-Virtual-CPU to provide a dynamic mecha-
nism for saving energy while satisfying perfor-
mance requirements. As we studied the NPB
benchmarks performance sensitivity of changing
in CPU frequency, Our method is to determine
number of virtual-CPUs for a virtual machine and
cores frequency settings in order to minimize en-
ergy consumption.

• We would like to use SOC LAB resource that has
64-cores which enable many configuring com-
binations of Frequency, Voltage, and number of
cores where the used machine only has 4 cores.
Using 64-cores machine also could be useful to
apply our idea of cores clustering based on CPU
clock frequency and other features.

References

[1] K. Asanovic, R. Bodik, B. Catanzaro, J. Gebis,
and P. Husbands, ”The Landscape of Parallel
Computing Research: A View From Berke-
ley,” UC Berkeley Technical Report UCB/EECS-
2006-183, 2006.

[2] T. Y. Morad, U. C. Weiser, A. Kolodny, M.
Valero, and E. Ayguade, ”Performance, Power
Efficiency and Scalability of Asymmetric Clus-
ter Chip Multiprocessors,” IEEE Computer Ar-
chitecture Letters 5(1):4, 2006.

[3] R. Kumar, K. I. Farkas, and N. Jouppi et al,
”Single-ISA Heterogeneous Multi-Core Archi-
tectures: The Potential for Processor Power Re-
duction,” In Proc. of MICRO 36, 2003.

[4] S. Borkar, ”Thousand Core Chips-A Technology
Perspective,” in Proc. of the DAC, 2007.

38

[5] R. Kumar, Dean M. Tullsen, P. Ranganathan, N.
Jouppi, and K. Farkas, ”Single-ISA Heteroge-
neous Multicore Architectures for Multithreaded
Workload Performance,” in Proc. of the 31st An-
nual International Symposium on Computer Ar-
chitecture, 2004.

[6] R. Kumar, D. M. Tullsen, and P. Ranganathan et
al, ”Single-ISA Heterogeneous Multi-Core Ar-
chitectures for Multithreaded Workload Perfor-
mance,” in Proc. of ISCA, 2004.

[7] M. Becchi and P. Crowley, ”Dynamic Thread As-
signment on Heterogeneous Multiprocessor Ar-
chitectures,” in Proc. of the Conference on Com-
puting Frontiers, 2006.

[8] R. V. der Wijngaart, ”NAS Parallel Benchmarks
v. 2.4”, NAS Technical Report NAS-02-007, Oc-
tober 2002.

[9] R Jones, ”NetPerf:a Network performance
benchmark,” http://www.netperf.org.

[10] C. Xu, Y. Bai, and C. Luo, ”Performance Eval-
uation of Parallel Programming in Virtual Ma-
chine Environment,” In Proc. of Sixth IFIP In-
ternational Conference on Network and Parallel
Computing, pp. 140-147, 2009.

[11] H. Chen, H. Jin, K. Hu, and J. Huang, ”Dy-
namic Switching-Frequency Scaling: Schedul-
ing pinned Domains in Xen VMM,” in Proc. of
39th International Conference on Parallel Pro-
cessing,pp. 287-296, 2010.

[12] D. Shelepov and A. Fedorova, ”Scheduling on
Heterogeneous Multicore Processors Using Ar-
chitectural Signatures,” in Proc. of the Workshop
on the Interaction between Operating Systems
and Computer Architecture, in conjunction with
the 35th International Symposium on Computer
Architecture (Beijing, China, June 21-25, 2008).
WIOSCA ’08.

39

Parallelization of Elementary Flux Mode Enumeration for Large-scale

Metabolic Networks

Fahad Khalid
Hasso-Plattner-Institut,
University of Potsdam

14482 Potsdam, Germany
fahad.khalid@hpi.uni-potsdam.de

Abstract

Elementary Flux Modes (EFM) is a concept from

Systems Biology, describing a set of minimal path-

ways in the metabolic network of an organism. Under

steady-state conditions, the problem of finding EFMs

in a metabolic network is mathematically equivalent

to the enumeration of extreme rays of a polyhedral

cone. This problem is computationally challenging

and currently mostly solved with sequential algo-

rithms, which are inappropriate for the analysis of

large-scale metabolic networks.

In this project we aim to implement a parallel solu-

tion to the problem that is targeted towards hybrid

many-core architectures. So far, we have utilized the

hardware available in the FutureSOC Lab to under-

stand the memory consumption behavior of the algo-

rithm on shared-memory architectures. We have

identified memory consumption as a priority issue,

and are currently working towards designing a better

solution.

1 Introduction

This project is aimed at solving a computational
problem from the field of Systems Biology. It is a
collaborative effort between the Max Planck Institute
of Molecular Plant Physiology and the Hasso-
Plattner-Insitute at the Universtiy of Potsdam.
The following sections provide a brief introduction to
the problem, the computational challenge that it pos-
es and also findings from the experiments conducted
so far.

1.1 Metabolism

The metabolism is a collection of chemical reactions
responsible for supporting life in a living organism.
They include reactions that breakdown organic mat-
ter in order to harvest energy; as well as those that
utilize energy to construct the required chemicals e.g.
proteins and nucleic acids. When considered at the
scale of the whole organism, these chemical reactions

form networks that consist of a very large number of
chemicals interacting with each other.

1.2 The study of Metabolic Networks

Analysis of metabolic networks serves an important
tool in Systems Biology research. Following are two
examples of how a thorough understanding of the
structure and function of metabolic networks can be
useful:
Diseases such as cancer cause significant alterations
in the intracellular metabolism [1, 2]. This is due to
the fact that metabolic activities in tumor cells are
different from healthy cells. Therefore, understanding
the metabolic pathway flux of tumor cells can help
identify drug targets that may help develop improved
therapies for cancer patients.
There exist in nature several organisms that on an
intracellular level produce chemicals useful for hu-
man consumption. However, the rate of production of
these chemicals is optimized by evolution for objec-
tives such as growth and reproduction of the organ-
ism [3]. In order to optimize the metabolism of these
chemicals for human needs, the rate of production
has to be altered. In metabolic engineering, a promis-
ing method to achieve this is the mathematical pre-
diction of metabolic fluxes.

1.3 Elementary Flux Modes

Elementary Flux Modes (EFMs) describe a set of
minimal pathways in the metabolic network of an
organism. A system can have multiple steady states,
and each of these unique states can be expressed as a
nonnegative linear combination of elementary flux
modes.

1.4 Enumeration of EFMs

This project deals with the problem of enumerating
all EFMs of a given metabolic network, for a given
steady state. The following major steps are involved
in the enumeration process:

1. The metabolic network under consideration
is represented as a node weighted directed
hypergraph. The chemical reactions in-

41

volved in the network are represented by the
edges of the hypergraph, while the vertices
represent the chemical compounds involved
in those reactions. These chemical com-
pounds are referred to as metabolites.

2. The incidence matrix of this hypergraph is
created. This matrix shows the relationship
between the metabolites and reactions in-
volved in the network. This matrix is known
as the Stoichiometric matrix. Throughout the
rest of this document, we shall represent the
stoichiometric matrix as S.

3. Under steady state conditions, the following
relationship holds:

S = 0
where S is the stoichiometric matrix, and
is flux vector.

4. The EFMs that we are looking for, reside in
the nullspace matrix corresponding to this
system of linear equations.

5. An algorithm is used to get the nullspace
matrix, and then systematically search for
solution vectors that qualify as EFMs. The
algorithm used in this project is the Null-
space algorithm [4].

1.5 The Computational Challenge

The core computational challenge presented by the
problem of EFM enumeration is that of combinatorial
explosion. The number of EFMs grows very rapidly
with the size of the network, and therefore puts very
high demands on both computation and memory.
A parallelization based approach to the solution ena-
bles us to exploit the inherently parallel architecture
of modern processors, thereby reducing the time that
it takes to enumerate EFMs. However, the attempts
so far have only marginally increased the capacity to
compute EFMs, and it is still not possible to enumer-
ate EFMs for genome scale networks.

2 Our Approach

The traditional algorithmic model in HPC is aiming
at parallelized shared-nothing architectures with deep
memory hierarchies, as with the IBM BlueGene ar-
chitecture and MPI as programming model. This is
contrary to one of the most recent trends, where CPU
and GPU hardware is mixed for speeding up specific
steps in the algorithmic processing. Also, the current
trend in multi-core and many-core architectures pro-
vides the opportunity to exploit shared-memory ar-
chitectures with multiple cores.
Considering the above mentioned trends, our ap-
proach is to tailor the algorithm and implementation
in such a way, that not only can we take advantage of
distributed memory cluster like environments, but

also hybrid shared-memory parallel architectures
within a single box.

2.1 Current Status

The progress so far is in line with the proposed pro-
ject plan. A state-of-the-art algorithm has been se-
lected for parallelization [5]. While adapting the al-
gorithm to shared-memory architectures, a major
memory consumption bottleneck was identified.
Work is currently in progress on optimizing memory
consumption, as well as further adapting the algo-
rithm for efficient execution on shared-memory ar-
chitectures.
The challenge now is to optimize memory consump-
tion for shared-memory architectures. This requires
efforts both on the algorithmic and implementation
levels. The use of FutureSOC machines is vital for
the verification and validation of the required im-
provements. This is due to the fact that the memory
bottleneck is only apparent for a large number of
processes running in parallel, which requires the use
of high-end hardware available in the FutureSOC lab.

3 Results

The results are presented in tabular form in the at-
tached Appendix.
The experiments were conducted using two of the
machines available in the FutureSOC Lab. Hyper-
threading was enabled on both machines, which
means that total number of hardware threads availa-
ble on each machine is 128.
Table 1 presents the execution times of networks of
different sizes, executed using different number of
processes. The most important message here is that
memory consumption increases almost linearly with
the number of processes. The consequences are ap-
parent in row 7. The maximum number of processors
that can compute this Yeast network is 16. If we in-
crease the number of processes to 32, the amount of
memory consumption increases as well, and the pro-
gram eventually runs out of memory. The Yeast net-
work in the last row could not be computed at all. It
consumes all the memory even if executed using just
2 processes. Therefore, parallel execution of the last
network is not possible on this machine due to the
inept memory consumption behavior.
Table 2 presents the results of execution on a similar
machine, but this time with 2 terabytes of memory
(which is considerably larger than was available on
the first machine). As can be seen here, the Yeast
network that could only be computed with a maxi-
mum of 16 processes on the first machine, can be
computed with even 128 processes. This results in a
significant reduction in execution time. Fort the last
network, however, we again have an upper bound on
the number of processes. In this case, with even 2

42

terabytes of memory, not more than 32 processes can
be used in parallel.

3.1 Conclusions

As can be inferred from the results presented above,
parallel computing is indeed as suitable approach to
solve this problem in two ways:

1. Minimizing execution time for currently
computable network sizes.

2. Extending the computable network size to
more than that computable with serial pro-
cessing alone.

However, considerable work is required in order to
make the computation feasible for genome-scale
networks. The major bottleneck at the moment is that
of memory consumption, which is what we would
like to improve upon in the near future.

References

[1] R. J. DeBerardinis, J. J. Lum, G. Hatzivassiliou,
and C. B. Thompson, "The Biology of Cancer:
Metabolic Reprogramming Fuels Cell Growth
and Proliferation," Cell Metabolism, vol. 7, pp.
11-20, 2008.

[2] L. G. Boros, N. J. Serkova, M. S. Cascante, and
W.-N. P. Lee, "Use of metabolic pathway flux
information in targeted cancer drug design,"
Drug Discovery Today: Therapeutic Strategies,

vol. 1, pp. 435-443, 2004.
[3] H. U. Kim, T. Y. Kim, and S. Y. Lee, "Metabolic

flux analysis and metabolic engineering of
microorganisms," Molecular BioSystems, vol. 4,
pp. 113-120, 2008.

[4] C. Wagner, "Nullspace Approach to Determine
the Elementary Modes of Chemical Reaction
Systems," The Journal of Physical Chemistry B,

vol. 108, pp. 2425-2431, 2004.
[5] D. Jevremović, C. T. Trinh, F. Srienc, C. P. Sosa,

and D. Boley, "Parallelization of Nullspace
Algorithm for the computation of metabolic
pathways," Parallel Computing, vol. 37, pp. 261-
278, 2011.

43

4 Appendix

Hewlett Packard DL980 G7 – 2, 8 x Xeon X6550, 128 GB RAM

Network Size (Original)
Network Size
(Compressed)

of Processes Time taken # of EFMs

1 E. coli 47 × 59(21) 26 × 38(13)

128 1s

44354 16 0.6s

1 3s

2 E. coli 41 × 61(19) 26 × 40(12)

128 0.9s

38002 16 0.62s

1 2.5s

3 E. coli 49 × 64(19) 26 × 41(12) 128 < 2s 92594

4 E. coli 50 × 66(19) 27 × 43(13) 128 3.1s 188729

5 E. coli 50 × 66(28) 29 × 45(19)

128 41s

1224785 64 53s

32 57s

6 S. cerevisiae 62 × 78(31) 35 × 54(17)

128 42s

1515314 64 48s

32 63s

7 S. cerevisiae 62 × 80(31) 38 × 57(19)

16
1 hour 45
minutes

13322463

32 and >
could not be

computed

8 S. cerevisiae 63 × 83(34) 40 × 61(23) - - -

Table 1 Execution results with 128 Gigabytes of RAM

44

Hewlett Packard DL980 G7 – 1, 8 x Xeon X7560, 2048 GB RAM

Network Size (original)
Network Size
(Compressed)

of Processes Time taken # of EFMs

1 S. cerevisiae 62 × 80(31) 38 × 57(19) 128 ~ 32 minutes 13322463

2 S. cerevisiae 63 × 83(34) 40 × 61(23)

32 ~ 5.2 hours

68874836
64 and >

could not be
computed

Table 2 Execution results with 2 Terabytes of RAM

45

Early Anomaly Detection in SAP Business ByDesign
Report March 2012

Felix Salfner
SAP Innovation Center

Prof.-Dr.-Helmert-Straße 2-3
14482 Potsdam

Peter Tröger, Eyk Kny
Hasso-Plattner-Institut

Prof.-Dr.-Helmert-Straße 2-3
14482 Potsdam

Abstract

The management of cloud computing infrastructures
on operator side is a true challenge. An ever-growing
number of servers, the heterogeneity of software, nec-
essary elastic load handling, energy consumption and
other non-functional aspects have to be taken into ac-
count – continuously and in an adaptive fashion.
In this report we discuss one specific idea for smart
cloud operation. Anomaly detection triggers preven-
tive maintenance activities when some part of the sys-
tem is about to enter an erroneous state. Examples for
such activities are administrator alarming and auto-
mated load migration. We combine this approach with
the idea of semi-automated root cause analysis to re-
duce time-to-repair and improved availability. Proto-
typical experiments for this approach were conducted
with SAP’s enterprise cloud infrastructure called Busi-
ness ByDesign. All measurements and prototypical im-
plementations were performed in the HPI FutureSOC
lab.

1 Introduction

Cloud computing is currently one of the predominant
trends in computer science and IT industry. Its po-
tential impact on IT infrastructures and software plat-
forms cannot be underestimated: The cloud paradigm
will change the way how IT companies make business
as well as how end-users (private and corporate) per-
ceive software and IT. It moves the burden of IT infras-
tructure management and operation away from users,
and shifts it to specialized providers that can guarantee
fast, reliable, and secure operation of the cloud infras-
tructure.
Satisfying the users’ expectations turns the manage-
ment of cloud computing infrastructures into a true
challenge. An ever-growing number of servers, the
heterogeneity of software, multiple interacting mech-
anisms to elastically react on changing load, the
consideration of energy consumption and other non-
functional aspects have to be taken into account. Op-
erating such systems requires intelligent management
tools to deliver the guaranteed service-level to the user
in a profitable way.

One of the key features of system monitoring at the
scale of a cloud computing center is to aggregate low-
level monitoring events in order to present only critical
events to the operation personnel. To achieve this goal,
current monitoring systems rely on temporal as well
as spatial correlation mechanisms and infrastructure-
centric rule-based aggregation. These techniques usu-
ally have a snapshot-like view on the system and ig-
nore problems that evolve in the system over a long
period of time. In our project, we focus on such evolv-
ing phenomena and explore a new monitoring tech-
nique that is based on computing correlations between
monitoring signals in order to identify the spreading of
problems within the system.
This report summarizes the first project phase and doc-
uments our project results. In summary we have:

• created a general monitoring and computation in-
frastructure for anomaly detection,

• implemented the necessary signal correlation
algorithm using SAP’s in-memory database
HANA,

• identified potential anomaly signal data sources
in SAP Business ByDesign, and have

• collected data from other use cases, i.e., from
the Python BuildBot infrastructure and the TACC
Ranger High-Performance Computing System.

2 Approach

In 2010, Oliner et al. [3] have presented an algorithm
to infer shared influence in complex production sys-
tems. The algorithm is based on anomaly signals,
which are real values between zero and one indicat-
ing how much a measurement signal deviates from
“normal behavior”. By computing the correlation be-
tween any pair of anomaly signals, the “spreading” of
anomalies across the system can be quantified. More
precisely, if there is a high correlation between the
anomaly signals of two components, we can specu-
late that the abnormal states of both components are
related.
The time lag at which the correlation reaches its max-
imum can be used to determine the temporal interde-

47

pendency between the two components, i.e., to iden-
tify, which component is the source (or initiator) and
which one is the target of the problem (suffering from
the anomaly of the source component). For further
analysis, the interdependencies can be visualized in a
so-called structure of influence graph (SIG). A simple
exemplary graph is depicted in Figure 1. The thick-
ness of each edge represents the strength of influence
above some threshold. If the edge is directed, there
is a significant time lag between the anomaly signals
at both components. More specifically, Component A
shares some influence with Component B (no signif-
icant time lag between anomaly signals) and a strong
influence with Component C (in this case the anomaly
of Component A precedes the one of C). This can help
to detect anomalies early and can help administrators
to troubleshoot the problem more quickly.

Figure 1. Influence graph example

In a follow-up paper [2], Oliner and Aiken have pre-
sented an improved online version of their approach,
in which dependent signals are compressed using prin-
cipal component analysis and special algorithms are
used to compute correlations efficiently during run-
time. The same authors also introduced a query lan-
guage and graphical representation for SIGs [1], which
will serve as a basis for representing SIGs in the man-
agement console.

3 Application to SAP Business ByDesign

SAP Business ByDesign (ByD) is a complex enter-
prise software that provides business cloud services in
a scalable and multi-tentant enabled fashion. In our
research, we use ByD as an example for a complex
cloud operation infrastructure that can benefit from au-
tomated anomaly detection and handling. In order to
apply the original concepts from Oliner et al. in such a
business framework, we identified several mandatory
extensions to the original approach:

• True complex cloud operation environments have
heterogeneity as default. We must consider the
heterogeneous multi-layer structure of modern

systems as basic foundation of the targeted solu-
tions. This includes differing virtualization solu-
tions, operating systems, application servers and
application monitoring interfaces. Specifically,
we need to target multi-layer anomaly signal gen-
eration and normalization as foundational con-
cepts.

• The computation of anomaly correlations and
their translation to management actions must be
realized in adherence to the overall system struc-
ture. Reporting, incident generation and compu-
tationally intensive analysis tasks must be per-
formed as part of the overall system operation.
For this reason, we decided to realize the corre-
lation computation and storage in the In-Memory
HANA database environment. A second reason
for this choice is that the task of monitoring data
analysis resembles the tasks that are typically per-
formed in business data exploration.

• In order to achieve true proactive behavior,
we need to apply prediction techniques for the
anomaly signal correlation result. This would
allow to early identify specific patterns in the
anomaly spreading through the system. The In-
Memory HANA database technology provides
the necessary computational and data access per-
formance to accomplish that.

Figure 2 shows the system design of our current pro-
totype. Different ByD components are expected to
feed anomaly signal generators with information about
their current health condition. The signals of the multi-
layer and multi-component generators are summarized
to one signal and sent to the central storage and cor-
relation engine. While Oliner et al. originally pro-
posed a principal component analysis (PCA) for this,
we focus on the collection and transmission of time-
synchronized generator values. An according techni-
cal approach is described in the next section.

4 Anomaly signal collection

In order to collect a number of anomaly signals from
heterogeneous system components, we designed an in-
teroperable monitoring environment. All anomaly sig-
nals are transported to a central data storage facility,
which is assumed to be performant enough for han-
dling the incoming request load. This is a reasonable
assumption for the ByD environment since the number
of servers is significantly smaller than in the scenarios
investigated by Oliner et al.
Our framework focusses on easy setup and implemen-
tation overhead for the signal generators, since the
overall solution shall not add much development over-
head to the product teams. We also needed to bridge
the gap between non-synchronized monitoring data

48

Figure 2. Computing structure of influence graphs using SAP’s in-memory database HANA

fetching and synchronous data availability assumed by
the correlation framework.

The monitoring code for signal generation must exe-
cute under truly diverse conditions. One example are
operating system sensors, which are typically devel-
oped in native C language. On the other hand, high-
level software sensors may be developed in Java or
ABAP. Anomaly signal generators also encode very
domain-specific knowledge. They will in many cases
be programmed by domain experts. The monitoring
framework should hence allow maximum flexibility in
order to put a minimum burden on anomaly signal gen-
erator programmers.

Figure 3 shows our resulting infrastructure for a multi-
server environment.

Figure 3. Monitoring infrastructure for
anomaly signal collection.

Our typical client-server architecture consists of the
ByDAY server and one ByDAY client per server. The
data between both entities is exchanged via JAXB se-
rialization of Java objects. The setup procedure per-
forms time synchronization (or appropriate time shift
determination) between the two parties, in order to get
a consistent time mapping of sensor values.
The support for heterogeneous generator implementa-
tions is ensured by the usage of XML-RPC as proto-
col between the ByDAY client and the domain-specific
generator instances. While the wire encoding of XML-
RPC truly adds some overhead, it must be noted that
this kind of communication only happens locally be-
tween the ByDAY client and the generator instances.
All generators acting as XML-RPC server have to im-
plement two methods:

<boolean> setup(<struct> config)
<double> pullSignal(<int> signalID,

<dateTime> timestamp)

The ByDAY client starts all anomaly signal genera-
tors (on the same machine) and calls their setup()
procedure to configure generator-specific parameters.
This enables to configure all anomaly signal genera-
tors of one machine to be configured using just one
configuration file (the one of the ByDAY client).
Our approach to bridge the gap between asyn-
chronously available (raw) monitoring signals and
the need to collect anomaly signals for one system-
wide synchronized timestamp is the following: Each
anomaly signal generator acquires its raw monitoring
data asynchronously. Synchronization is achieved by
the ByDAY client asking for the anomaly signal value
at some given timestamp in the past. It is generator’s

49

duty to store enough history so that this request can
be answered. If there is no value for the exact times-
tamp requested, it is the generator’s duty to provide an
approximate value for the requested timestamp, as the
according approximation, rounding and logging activ-
ities are signal-specific. To request an anomaly sig-
nal, the ByD client - in coordination with the ByDAY
server - will periodically call the pullSignal()
method to ask for the anomaly value of the given sig-
nal at the given timestamp.
In order to limit the need for monitoring data stor-
age, the ByDAY client sets a config parameter
maxTimeLag along with the setup() call, which
determines the maximum time delta into the past for
which the ByDAY client can request a value. In order
to enable an anomaly signal generator to serve multi-
ple signals, setup() also requires a config parameter
signalID.
After having collected the anomaly signals of all lo-
cal anomaly signal generators, the ByD server sends
back the data as timestamp-based tuple to the By-
DAY server, which persists it for later processing in
the HANA database.

5 HANA-based correlation engine

Investigating the root cause of a problem that has oc-
curred in a cloud environment frequently requires to
analyze monitoring data and to compare the system
behavior of the current faulty case to system behav-
ior at other fault-free times. In order to do this, an
efficient analysis framework has to enable the opera-
tor to quickly move forth and back in the monitoring
data, to drill down at specific points in time or to get
an overview on higher levels of granularity. These re-
quirements make root cause analysis similar to busi-
ness data exploration. In-memory database technol-
ogy is a key enabling technology to perform on-the-fly
data analysis — and we believe that it has the poten-
tial to also boost efficiency for root cause analysis. For
this reason, we implemented the correlation algorithm
with on-the-fly data aggregation on the database level.
Our approach builds on the tight integration of the
SAP HANA in-memory database and the statistical
computing framework R. Figure 4 shows the setup.
The implementation of the ByDAY server was possible
through the usage of the HPI FutureSOC Lab HANA
installation.

6 Collecting Test and Real-world Data

In order to test the described prototypical implemen-
tation, we started to collect historical execution and
failure logs from different clue infrastructures.

6.1 ByDesign execution traces

SAP Business ByDesign is a complex cloud enterprise
software platform that is built on top of a cloud in-
frastructure. The system is operated and maintained
by multiple groups and we first focused on getting an
overview of the monitoring data that is available. The
various data sources reach from infrastructure-level
monitors, e.g., from network switches, up to incidents
reported by external users of Business ByDesign. We
also have talked to experts that integrate monitoring
data from various sources and architectural levels to
perform impact analysis and event correlation. We
have identified data sources that can be used once we
have finished and tested our monitoring data collection
framework.

6.2 Buildbot execution traces

Buildbot is a continuous integration system designed
to automate the build/test cycle. By automatically re-
building and testing the tree each time something has
changed, build problems are pinpointed quickly, be-
fore other developers are inconvenienced by the fail-
ure. The Python interpreter development is using
a Buildbot infrastructure1 for continuous integration
purposes. Based on personal contact with Dr. Martin
v. Löwis, we were able to gather a set of log files for
the Python Buildbot infrastructure. We are currently
developing an anomaly generator implementation that
can replay the logs and generate anomaly signals.

6.3 TACC Ranger execution traces

The Texas Advanced Computing Center (TACC) op-
erates their largest HPC supercomputer, Ranger, with
different software and hardware facilities at a large
scale. Ranger can perform 579.4 trillion operations
per second (or teraflops), and is nearly 30,000 faster
than today’s desktop computers. Based on personal
contact with Edward Chuah, we were able to gain fail-
ure logs from the Ranger operation over a time period
of 24 months. We are currently preparing a log replay
anomaly signal generator similar to the Buildbot case
in order to test our framework also with this data set.

7 Initial Results

We have performed experiments using artificial data
generators to test our monitoring and computation in-
frastructure and to see how the approach scales. Fig-
ure 5 plots the computation time needed to compute
the correlation between all signals as a function of the
number of signals. The family of curves in the plot
show computation time if the correlation is computed
for a maximum time lag of 50, 240, and 1500 samples,

1http://bit.ly/zrjRec

50

Figure 4. Overview of the HANA-based correlation engine.

i.e., for each pair of signals, the correlation is com-
puted with an offset of [0 . . . 50] samples.

Figure 5. Computation time for a vary-
ing number of signals with 50000 sample
points each.

8 Conclusions and Next Steps

Operating a cloud computing infrastructure at mini-
mum cost while at the same time offering service at a
guaranteed level is a challenge. This project attempts
to adapt a new correlation-based monitoring data anal-
ysis method to the cloud context. One major new as-
pect is to include in-memory databases in the picture
to facilitate on-the-fly data analysis and exploration.
In this first phase of the project we have built the in-
frastructure and have collected several datasets that we
are going to analyze in the next phase. Further top-
ics will include sophisticated methods for structure-of-
influence graph analysis and visualization.

References

[1] Adam Oliner and Alex Aiken. A query language
for understanding component interactions in pro-
duction systems. In 24th ACM International Con-
ference on Supercomputing, pages 201–210, New
York, NY, USA, 2010. ACM.

[2] Adam Oliner and Alex Aiken. Online Detection of
Multi-Component Interactions in Production Sys-
tems. In Dependable Systems and Networks, pages
49–60. IEEE, 2011.

[3] Adam J. Oliner, Ashutosh V. Kulkarni, and Alex
Aiken. Using Correlated Surprise to Infer Shared
Influence. In Dependable Systems and Networks,
pages 191–200, Los Alamitos, CA, USA, 2010.
IEEE Computer Society.

51

ECRAM (Elastic Cooperative Random-Access Memory)
HPI Future SOC Lab Project Report March 2012

Kim-Thomas Rehmann, Kevin Beineke, Michael Schöttner
Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,

Universitätsstraße 1, 40225 Düsseldorf, Germany
E-Mail: Kim-Thomas.Rehmann@uni-duesseldorf.de

Abstract

The ECRAM storage implements in-memory objects
for data-centric cloud applications. In order to
make objects availe on shared-nothing architectures,
ECRAM replicates objects. An adaptive replication
mechanism analyses object access patterns to switch
dynamically between update and invalidate protocol.
We have evaluated the impact of different replica-
tion strategies on performance using HPI Future SOC
Lab’s resources. The experiments demonstrate that
adaptive replication scales better than update and in-
validate replication for the applications under exami-
nation.

1 Project Idea

The ECRAM project addresses current research top-
ics related to storage for cloud applications. ECRAM
simulates a shared in-memory storage on shared-
nothing clusters. The object-based storage provided
by ECRAM is comparable to a key-value store, where
the keys are object identifiers and the values contain
binary object data. In contrast to most existing key-
value stores, ECRAM increases availability by repli-
cating data. It synchronizes objects optimistically in
order to allow atomic multi-object operations.
ECRAM does not restrict the format of objects it
stores. It neither associates any semantics with object
content. Applications can therefore implement row-
based or column-based tables, or they can define a
flexible data format, such as graph structures.
Cloud applications often have read-optimized object
access patterns. Access patterns with prevailing reads
are a benign workload for optimistic concurrency
control. Therefore, ECRAM implements optimistic
multi-version concurrency control using the concept of
memory transactions. In contrast to traditional DBMS
transactions, memory transactions operate on repli-
cated rather than partitioned data. Replication relieves
ECRAM from the need to handle distributed transac-

tions. Transactions can access distributed storage, but
they always execute on a single node. The coloca-
tion of in-memory storage and application code allows
ECRAM to restart transactions transparently for appli-
cations.
By caching replicas in the application address space,
ECRAM achieves zero-latency object accesses at the
best. Transparent access detection using virtual
memory hardware simplifies application development.
ECRAM’s adaptive caching mechanism is able to
switch dynamically between update and invalidate se-
mantics and to prefetch objects to reduce access la-
tency. Adaptive caching monitors and analyses access
patterns to predict future accesses.
Our experiments on HPI Future SOC Lab resources in-
vestigate the performance of ECRAM’s adaptive repli-
cation on a multicore machine with huge main mem-
ory. ECRAM can run on conventional compute clus-
ters over TCP/IP networking as well as on a single ma-
chine over the loopback network interface.

2 Future SOC Lab Resources

We are executing our experiments on a Hewlett
Packard ProLiant DL980 G7 Server. The server is
equipped with 8 Xeon Nehalem X7560 CPUs, each
having 8 hyper-threaded cores. The CPU clock rates
are 2,27 GHz, the L3 caches 24 MB large, and Turbo
Boost is enabled. The DL980 has 128 GB of RAM.
Given that our experiments run in main memory of
the single machine, they do not use the hard disks,
neither the Fibre Channel network card. The DL980
boots Ubuntu Server 10.10 from a local harddisk and
mounts the home file-system from a NAS device.

3 Findings

Our previous project report from October 2011 has
documented the initial results of running ECRAM on
Future SOC Lab. In the Winter 2011/2012 period, we
have assessed ECRAM’s performance more in detail
with a special focus on adaptive replication.

53

Figure 1. Execution time of raytracer
using ECRAM on DL980, image size
1800x2400 pixels

Figure 1 shows the runtime of the raytracer applica-
tion with an image size of 1800x2400 pixels and 228
objects in the scene graph. The raytracer application
is implemented using ECRAM’s framework for in-
memory MapReduce [1]. In the map phase, the worker
nodes calculate the pixels in disjoint regions, and in
the reduce phase, the output image is produced. The
raytracer’s map phase is an embarrassingly parallel
workload, because each pixel in the output image is
traced independent of any other pixel. The raytracer’s
reduce phase simply collates all regions computed by
different nodes into the final output image. The invali-
date protocol causes the reduce jobs to pull the output
from the map jobs, which increases the amount of syn-
chronous network messages and thereby the overall la-
tency. The update protocol distributes all data gener-
ated to all other nodes, most of which do not access
the data lateron. The bandwidth required to tranfer
the huge amount of data limits scalability. The adap-
tive replication protocol notices that the output of the
map jobs is afterwards accessed by the reduce jobs.
It sends updates directly from map workers to reduce
workers, which keeps the required bandwidth low and
at the same time avoids synchronous requests to pull
replicas.
Figure 2 shows the runtime of the KMeans applica-
tion with 100,000 points in the 3D space, which are
grouped into 16 clusters. The KMeans algorithm is
generally not so well parallelizable, because the it-
erative execution often updates data. However, the
adaptive replication protocol often successfully pre-
dicts where data is required in the next round, so it
scales better than the invalidate or update protocol.

4 Next Steps

In the context of cloud computing, network and ma-
chine failures are common. Therefore, the reliability

Figure 2. Execution time of KMeans us-
ing ECRAM on DL980, 100,000 points in
3D space with 16 cluster centers

of distributed storage is an important research topic.
Until now, ECRAM provides reliability by means of
replication in volatile memory. We are currently work-
ing on providing persistency within ECRAM by log-
ging and storing objects to durable storage such as
harddisks, flash memory, solid state drives and phase-
change memory. Each of these storage technologies
has its own characteristics, such that persistent storage
should implement different policies for different tech-
nologies. If time and resources permit, we intend to
evaluate our distributed in-memory file-system, which
is based on ECRAM and FUSE, on Future SOC Lab.
ECRAM enhances fault tolerance of parallel appli-
cations by executing each thread in a private protec-
tion domain. However, using this approach, different
threads executing on the same machine cannot bene-
fit from their colocation. OS-level IPC mechanisms
could allow them to access shared data directly. Direct
sharing can potentially boost the performance of appli-
cations on powerful multicore machines like the ones
in HPI Future SOC Lab. We plan to implement direct
sharing techniques in ECRAM and evaluate them on
Future SOC Lab.

References

[1] Kim-Thomas Rehmann and Michael Schöttner.
An in-memory framework for extended MapRe-
duce. In Proceedings of the Seventeenth IEEE
International Conference on Parallel and Dis-
tributed Systems 2011 (ICPADS 2011), Tainan,
Taiwan, 12 2011.

54

KONECT Cloud – Large Scale Network Mining in the Cloud
Report, Winter 2011/2012

Dr. Jérôme Kunegis
WeST – Institute for Web Science and Technologies

University of Koblenz–Landau
kunegis@uni-koblenz.de

Abstract

In the Winter 2011/2012 run at the Future SOC Lab,
we used the KONECT framework (Koblenz Network
Collection) to compute ten different network statistics
on a large collection of downsampled versions of a
large network dataset, with the goal of determining
whether sampling of a large network can be used to
reduce the computational effort needed to compute a
network statistic. Preliminary results show that this is
indeed the case.

1. Introduction

Networks are everywhere. Whenever we look at the
interactions between things, a network is formed im-
plicitly. In the areas of data mining, machine learning,
information retrieval and others, networks are modeled
as graphs. Many, if not most problem types can be ap-
plied to graphs: clustering, classification, prediction,
pattern recognition, and others. Networks arise in al-
most all areas of research, commerce and daily life in
the form of social networks, road networks, communi-
cation networks, trust networks, hyperlink networks,
chemical interaction networks, neural networks, col-
laboration networks and lexical networks. The content
of text documents is routinely modeled as document-
word networks, taste as person-item networks and trust
as person-person networks. Databases, the data stor-
age method par excellence, are essentially complex
network storage engines.
In fact, a majority of research projects in the areas
of Web Mining, Web Science and related areas uses
datasets that can be understood as networks. Exam-
ples are social networks, hyperlink networks, bipar-
tite rating graphs, and many more. Unfortunately, re-
sults from different papers cannot be compared easily
if they use different datasets. Therefore, the goal of
the KONECT project is to provide a consistent access
to network datasets. To achieve this goal, KONECT
contains a large number of network datasets (about
150) of all different types. This also has the advan-
tage that a typical study may use several networks for

their research, since all networks offered by KONECT
are provided in the same data format, which is cho-
sen to be easily usable from a large number of pro-
gramming language and environments. The KONECT
project also provides the code for the computation of
the ten network statistics which we investigated in this
project.
In the run of the Winter 2011/2012 Future SOC Lab
Call, KONECT was used to compute statistics on a
large collection of downsampled versions of a sin-
gle large social network, in order to test the feasibil-
ity of sampling as a strategy to reduce the comput-
ing overhead of analysing very large networks. Our
preliminary results indicate that sampling can indeed
be used effectively to significantly reduce the compu-
tational overhead when calculating many diverse net-
work statistics.

2. KONECT

KONECT, the Koblenz Network Collection, is a
framework for the analysis of large network datasets,
as well as a collection of such datasets. KONECT
currently contains 147 network datasets. In addition
to these datasets, KONECT also consists of code to
generate statistics and plots about them, which can be
viewed on the KONECT website1. Of the 147 datasets,
the largest is the Twitter social network with 42 mil-
lion nodes and 1.5 billion edges [2], and the smallest
dataset is the metabolic network of C. elegans, with
453 nodes and 4,596 edges [1]. Figure 1 shows a scat-
ter plot of all network by the number of nodes and the
network’s density, i.e. the average degree of nodes.

3 Architecture

KONECT is both a collection of datasets and code
to generate statistics and plots, as well as a website
showing all these. Starting with datasets publically
available on the World Wide Web, the different com-
ponents of KONECT generate the standard network
format files, compute all network statistics, generate

1konect.uni-koblenz.de

55

10
0

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

Nc

SI

PM

Shf

A@Rpa

Na

Shf

AS

Sh

PS
PG

PW

HA

Pi

ADRro

Ff

IN

GC

CI

GN

M1

DGMti

Mui

Mut

RL

EL

ST

YG

TO

THc

CN

nfr

GE

AP

bfr

th

TM

PHc

GH

EU

Rer
SZ

ht

nds

JE

Ws

Rda

qen

bn

R2

oc
br

BX

cy
EIEP

nen

lv

M2

Ow

RM

W3Vut
EN Sf

mde CS

Vti

ben
Vui

Fc

Ol

gleuel

EX
AM

WC

sk

vi

eo

Wti

But WK

Sc

Cut

GO

Bui

sr

CtiBti

Cui

WU

Pa

RO

Sd

DB

FG

ar

BS

Wut

ca
WT

SK

mfrmen

Sc

MUM3

sv

LI

TH

zh PC

PH

Pc

ER

Wui

Wa

pt

Lb

pl

Ls

nl

Fr

jaYT

ru
it

es

RE

FL

WP

LJ

fr

de

Size (|V|) [vertices]

D
e

n
s
it
y
 (

d
)

[e
d

g
e

s
 /
 v

e
rt

e
x
]

Figure 1. An overview of the size of all
datasets: all networks of KONECT ar-
ranged by the size (the number of nodes)
and the density (the average number
of neighbors of all nodes). Each net-
work is represented by a code whose
color corresponds to the network cate-
gory (e.g., social network or hyperlink
network). The complete list of networks
and their codes is available online at
konect.uni-koblenz.de/networks.

graphical analyses, evaluate link-prediction methods
and finally generate the KONECT website on which
all results are browsable. All code is available under
the GNU GPL on konect.uni-koblenz.de. The archi-
tecture of the KONECT system consists of the follow-
ing components:

• Extraction code that reads out publically avail-
able network datasets from the Web and gener-
ates standard-format files. The extraction code is
specific to each network extracted, and generates
dataset files in a simple, unified file format. This
file format is designed to be usable from within
as many programming languages as possible, and
therefore uses only text which is easy to parse,
but still is flexible enough to allow for the variety
of structural properties in all network datasets.

• Analysis code to generate network statistics, in-
cluding network statistics over time and various
matrix decompositions. This code is written in
Matlab and in the C++ programming language,
and is optimized for scalability to very large net-
works.

• Code to generate plots from the computed num-
bers. This code is written in Matlab. There are
currently more than 23,000 plots in KONECT.
These include plots generated for each individual
network (e.g., the degree distribution) and plots
comparing all networks in this paper).

• Code that implements various link prediction al-
gorithms. In different types of networks, the gen-
eralized link prediction problem is known by dif-
ferent names, for instance friend recommenda-
tion in social networks, rating prediction in bi-
partite rating graphs or trust prediction in trust
networks. This code implements a large selec-
tion of basic and advanced link prediction algo-
rithms, and an evaluation of these. This allows
link prediction algorithms to be compared across
a large number of networks, something which is
done only in a small number of studies.

• The website konect.uni-koblenz.de is finally gen-
erated from the generated plots and numerical
statistics.

4 Graph Sampling

In the Winter 2011/2012 run, we used a single node
in the Future SOC Lab with 1 TiB of RAM to inves-
tigate graph sampling in the following way. Sampling
is the operation on a graph that consists in finding a
subset of a graph such that the resulting graph can be
used instead of the original graph to greatly reduce the
runtime when computing network statistics such as the
network diameter or spectral norm.
Taking a very large graph dataset containing 200 mil-
lion edges, we computed samplings of it containing
from 5% to 100% of all edges, in steps of 5%. For
each sample size, we generated twenty different sam-
plings randomly, and computed all KONECT network
statistics for them. As a result, we can observe by
what amount the individual statistics are changed by
the sampling, and thus whether sampling will affect
the statistics, and if it does, in what way.
Preliminary results are given in Figure 2. As prelimi-
nary observations, we can cite the following:

• The effective diameter is not affected by a sam-
pling of at least 60% of all edges.

• The spectral norm is affected in a linear fashion
with respect to the sampling coefficient.

• The size of the largest connected component, the
controllability, the (normalized) degree distribu-
tion entropy and the power-law exponent are af-
fected by sampling, but in a very predictable way.

We plan to publish these and other results in order to
give network researchers tools to analyse very large
networks with computing ressource smaller than those
available at the Future SOC Lab.

5. Conclusion

We thus conjecture that graph sampling can be used
to make the computation of certain network statistics

56

0 20 40 60 80 100
Sampling

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

cl
us

co

ibm-flat -- clusco

E
E+3sigma
E-3sigma
Max
Min

(a) Clustering coefficient

0 20 40 60 80 100
Sampling

485000

490000

495000

500000

505000

510000

co
co

ibm-flat -- coco

E
E+3sigma
E-3sigma
Max
Min

(b) Largest connected component

0 20 40 60 80 100
Sampling

0

5000

10000

15000

20000

25000

30000

35000

co
nt

ro
lla

bi
lit

y

ibm-flat -- controllability

E
E+3sigma
E-3sigma
Max
Min

(c) Controllability

0 20 40 60 80 100
Sampling

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

de
nt
ro
py

+1.267e1 ibm-flat -- dentropy

E
E+3sigma
E-3sigma
Max
Min

(d) Degree distribution entropy

0 20 40 60 80 100
Sampling

0.9670

0.9675

0.9680

0.9685

0.9690

0.9695

de
nt
ro
py

n

ibm-flat -- dentropyn

E
E+3sigma
E-3sigma
Max
Min

(e) Normalized degree distribution entropy

0 20 40 60 80 100
Sampling

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

di
am

et
er

ibm-flat -- diameter

E
E+3sigma
E-3sigma
Max
Min

(f) Effective diameter (90 percentile)

0 20 40 60 80 100
Sampling

0.634

0.635

0.636

0.637

0.638

0.639

0.640

gi
ni

ibm-flat -- gini

E
E+3sigma
E-3sigma
Max
Min

(g) Gini coefficient of degree distribution

0 20 40 60 80 100
Sampling

0.260

0.261

0.262

0.263

0.264

0.265

0.266

ow
n

ibm-flat -- own

E
E+3sigma
E-3sigma
Max
Min

(h) Balanced inequality ratio

0 20 40 60 80 100
Sampling

1.20

1.22

1.24

1.26

1.28

1.30

1.32

1.34

1.36

1.38

po
w

er

ibm-flat -- power

E
E+3sigma
E-3sigma
Max
Min

(i) Estimated power-law exponent

0 20 40 60 80 100
Sampling

0

5000

10000

15000

20000

25000

30000

35000

40000

sn
or

m

ibm-flat -- snorm

E
E+3sigma
E-3sigma
Max
Min

(j) Spectral norm

Figure 2. The results of graph sampling. Each plot represents one network statistic, and
shows the sampling coefficient (i.e., the amount of retained edges) on the X axis, and the
measured network statistic on the Y axis.

57

more efficient, especially those for which no closed-
form expression in the sampled graph exists, such as
the effective network diameter.
In the next semester at the Future SOC Lab, we plan
to used the KONECT framework to integrate more
very large networks into the KONECT system, such
as those from Wikipedia, the Semantic Web, Twitter
and other sources, where the number of edges in the
networks exceeds one billion. Other planned tasks, all
using the KONECT framework, include the evaluation
of link prediction algorithms and other machine learn-
ing tasks on these very large graphs.

6 Acknowledgments

First of all, we thank the Future SOC Lab for provid-
ing the intruments to run KONECT. Furthermore, we
thank everyone who has released network datasets to
the public, in particular Jure Leskovec, Alan Mislove,
Chris Bizer, Munmun De Choudhury, Christian Thu-
rau, Andreas Hotho, Alan Said, Robert Wetzker, Nico-
las Neubauer, Pan Hui, Eiko Yoneki and the Wiki-
media Foundation. Thomas Gottron, Daniel Dünker
and Martina Sekulla have assembled several network
datasets in KONECT. The research leading to these re-
sults has received funding from the European Com-
munity’s Seventh Framework Programme under grant
agreement no 257859, ROBUST, as well as from the
German Research Foundation (DFG) under the MUL-
TIPLA project (grant 38457858).

References

[1] J. Duch and A. Arenas. Community detection in com-
plex networks using extremal optimization. Phys. Rev.
E, 72(2):027104, 2005.

[2] H. Kwak, C. Lee, H. Park, and S. Moon. What is Twit-
ter, a social network or a news media? In Proc. Int.
World Wide Web Conf., pages 591–600, 2010.

58

Integrated Management Support with Forward Business Recommendations

Prof. Dr. Rainer Thome
Dipl.-Kff. Patricia Kraft

Chair in Business administration
and business computing
Joseph-Stangl Platz 2

97070 Würzburg
thome@wiinf.uni-wuerzburg.de
pkraft@wiinf.uni-wuerzburg.de

Dr. Andreas Hufgard
Dipl.-Kff. Stefanie Krüger

IBIS Labs
Mergentheimer Str. 76a

97082 Würzburg
Hufgard@ibis-thome.de

skrueger@wiinf.uni-wuerzburg.de

Abstract

Data provisioning plays an increasingly

pivotal role in business today. Decision-

makers need relevant information at their

fingertips in time to make well-informed,

sustainable decisions. The Forward Busi-

ness Recommendations approach attempts

to provide just this. The team at IBIS Labs

would use a project extension to analyze

various scenarios to find an optimum bal-

ance between user benefit and practicabil-

ity.

1 Rule based Business Matrix Pro-

cessing and Forward Business Rec-

ommendations

The primary object at project launch was to
create a rule base that could be used to ex-
tract relevant information from the ERP
system. This original idea formed the foun-
dation of Rule based Business Matrix Pro-
cessing, which defined processes whose
sequence and results were monitored with
the aid of these rules.

The next phase consisted in applying For-
ward Business Recommendations to forecast
potential problems and future business op-
portunities. One example is the order-to-
cash process. It analyzes opportunities and
their impact on future stock and liquidity
levels, and on project deadlines, to deliver

vital information early on, so decision-
makers have ample time to respond. For
instance, if FBR forecast a liquidity squeeze,
management could trigger redeployment of
capital or arrange for loan negotiations with
the bank before liquidity levels plummeted.
The organization would gain flexibility,
which would enable decision-makers to
avert critical situations. Processes are simi-
lar in every business, but companies’ dis-
similarities must also be modeled in a rule
base. For this reason, the project team ex-
plored customization options and integrated
them into the prototype, where appropriate.

The FBR prototype contains a model of the
opportunity-to-production process. It was
conceived using tools from the SAP Busi-
ness ByDesign solution and implemented
externally, because in the beginning stages,
direct integration into ByDesign was not
possible. Team members therefore utilized
the vast capabilities offered by SAP
ByDesign Excel Add-in’s integrated data
export to deposit corresponding rule logic
outside of ByDesign.

The upshot: the prototype furnishes a con-
crete recommendation for each opportunity
already contained in ByDesign and each
new one entered. It suggests how decision-
makers should best handle this specific op-
portunity and reveals effects on the compa-
ny’s future development. For example, if
decision-makers receive an opportunity and

59

the organization has all components for it in
stock, the prototype will recommend offer-
ing a discount as an incentive and so, in-
crease the probability of implementing this
opportunity. When sales reps meet with a
client, they cannot know current and future
stock levels for all products. Often sales reps
are not even authorized to view this infor-
mation. In this way, reps receive the vital
information in the form of a recommenda-
tion, without having to search through data
from other user departments.

2 Status quo

The prototype was recently upgraded to be
compatible with the new SAP ByDesign
release FP 3.0. This enabled the project team
to test new options available in the current
release and their relevance to the prototype.
Furthermore, team members examined the
possibilities in the ByDesign Studio devel-
opment environment, Software Developer
Kit (SDK). They also gained valuable in-
struction and project experience by develop-
ing enhancements in SAP Business
ByDesign.

3 Current developments

The project team is currently working to
design an integrated solution for the FBR
prototype. Creating a solution that can work
within ByDesign would afford a great num-
ber of advantages but would also have a few
disadvantages.

3.1 Advantages

One advantage of development using SAP
ByDesign Studio is that the solution is inte-
grated into the original product. The user
would not notice a difference between the
core ByDesign system and the app, because
everything would have the same look and
feel.

Besides being more user-friendly, integra-
tion with ByDesign would be a huge ad-

vantage. It would shorten communication
channels and vastly increase possibilities for
data exchange between user departments.
Whereas an external solution requires that
data be made available to it, an internal solu-
tion could independently trigger a targeted
revaluation whenever a change was made to
the data pool (as an extreme example), and
so, deliver up-to-the-minute data. This de-
gree of currency is a decisive factor in day-
to-day business.

3.2 Disadvantages

While the advantages mentioned are great, it
is important to remember that the conditions
for internal ByDesign solutions are very
strict. In some cases, users have access to a
larger body of data when the solution is ex-
ternal, rather than integrated. The Public
Solution Model (PSM) includes data sources
accessible to the public and SAP has re-
leased only these data sources for use in
apps.

In addition, the ERP system’s rigid division
into work center views makes it more diffi-
cult to integrate FBR. The team will address
this problem and implement a workable so-
lution in the next project phase (see Section
4).

3.3 Evolving the new app

In summary, the project team has completed
the design of the prototype, revision of the
first set of rules and definition of possibili-
ties in ByDesign Studio. The team can now
move to the next phase, in which it evolves
the prototype into an app.

4 Next steps and required resources

The following project phase is divided into
two stages. The first stage consists in evalu-
ating each of the scenarios and weighing
costs and benefits. This includes analyzing
usage in the scenarios for each user group
and comparing practicability of the scenari-
os.

60

4.1 Scenario 1: Integrated alarm function

The first scenario offers the greatest poten-
tial for integration. The developers will try
to generate alarms, warnings and notifica-
tions in the background. A notification will
appear on the screen only when a significant
incident occurs. However, this solution can-
not be employed using ByDesign Studio in
its current release, because ByDesign Studio
has no back-end access, and background
operations require deliberate user interac-
tion. This solution would be the most con-
venient for the user, since s/he would re-
ceive the recommendation and a concrete
reference without having to actively search
for the data.
For example, if during a specific period a
very high-volume opportunity generated a
critical liquidity level as a result of related
purchase orders, the manager could be alert-
ed to this as soon as the opportunity was
created, so that s/he could take appropriate
action. This would greatly increase the com-
pany’s flexibility and ensure certainty with
respect to company resources.

4.2 Scenario 2: Work center-oriented

This scenario addresses the work centers. A
monitoring function would be deployed in a
specific location in the system and used
equally by all employees. A new work cen-
ter view would appear within an existing
one. For example, the New Business work
center view might appear with reference to
opportunities. Alternatively, the Purchase
Orders and Purchase Requisitions work cen-
ter view might pop up when purchase orders
needed to be executed ASAP in order to
implement a last-minute opportunity that
promises high probability.

4.3 Scenario 3: User-oriented

The third scenario addresses individual us-
ers. If a change were made in their applica-
tion area that could influence their actions,
they would be notified of the change. This
could be done by inserting an activity over-
view (Figure 1) on the start screen. In this
scenario, as in the first, back-end processing
presents a problem. If these obstacles were
not present, it would be possible for the sys-
tem to send a message to the user when, for
example, s/he needs to deal with a certain
opportunity that cannot be implemented.

Figure 1: ByDesign Work Center Home - Inbox

61

4.4 Scenario 4: Central work center-

oriented

The fourth and final scenario is the easiest to
implement. It consists in creating a separate,
centralized work center in which all data is
grouped as in the Corporate Performance
work center (Figure 2). However, this view
would be developed for management, who
would then pass on the necessary recom-
mendations and instructions to the respec-
tive employees. One drawback is that execu-
tives would be the only ones furnished with
an overview of the entire organization.
Business processes would not be supported
directly at transaction level.

4.5 Required resources

Finally, the question of necessary resources
remains. To deploy the prototype in
ByDesign, the project team requires a
ByDesign system with a connection to SDK.
It would be best to use the latest version of
ByDesign Studio (FP 3.5) because of
marked programming improvements. Up to
now the team has had access to a ByDesign
Studio based on release FP 3.0. But because
of the Public Solution Model, far fewer de-
velopment options are possible.

Figure 2: ByDesign Corporate Performance work center

62

Service-Based 3D Rendering and Interactive 3D Visualization

Benjamin Hagedorn
Hasso Plattner Institute for

Software Systems Engineering
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

benjamin.hagedorn@hpi.uni-potsdam.de

Jürgen Döllner
Hasso Plattner Institute for

Software Systems Engineering
Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

doellner@hpi.uni-potsdam.de

Abstract

This short report describes our work in the context of
the HPI Future SOC Lab. This work generally aims
on exploiting high performance computing (HPC)
capabilities for service-based 3D rendering and
service-based, interactive 3D visualization. A major
focus is on the application of HPC technologies for
the creation, management, analysis, and visualization
of and interaction with virtual 3D environments,
especially with complex 3D city and landscape mod-
els.

1 Latest Work and Results

During the last project phase, the Computer Graphics
Systems group at the HPI did continue its research
and development on fundamental concepts and tech-
niques in the area of service-based 3D rendering and
service‐based, interactive 3D visualization. The tech-
niques developed so far rely on and take advantage of
multi‐core/multi‐threading processing capabilities,
the availability of large memory, and GPGPU sys-
tems as provided by the HPI Future SOC Lab.

1.1 Massive Texture Processing
We successfully continued our research on the pro-
cessing of very large 3D city model data (including
massive 3D geometries and 2D texture data) and its
service-based and image-based visualization and
distribution [1]. Especially, we experimented on the
optimization of workflows and tools for the prepro-
cessing of large sets of raster data by parallel compu-
tation and usage of massive main memory. Based on
earlier work on generally reducing processing times,
we have been able to enhance our algorithms for the
preprocessing and optimization of massive texture
data, which forms a major input for high-quality 3D
rendering techniques. Through this, we could dramat-
ically increase the visual quality of the rendering
output leaving the texture data footprint nearly the
same.

1.2 Web View Services
Also, the Future SOC system forms part of the im-
plementation of an experimental web view service
currently developed within an ongoing international
initiative at the Open Geospatial Consortium OGC.
As one milestone in that context, the so called OGC
3D Portrayal Interoperability Experiment has been
finished in September 2012 and results have been
published as an OGC Public Engineering Report [2].

2 Next Steps

To continue our research in the area of ser-
vice‐based 3D rendering and service‐based, interac-
tive 3D visualization, we would like to continue our
scientific work using the Future SOC Lab.
In particular, we will continue our research on server-
based 3D rendering techniques as well as on design
and construction of service‐based, cloud-enabled
systems for interactive real‐time 3D visualization.
For example, we are planning to continue our work to
research and development on service-based technol-
ogies for assisted interaction and camera control in
massive virtual 3D city models. Based on previous
work in exploiting the Future SOC Lab capabilities
for processing massive 3D point cloud data (such as
generated through laser scanning), we are planning to
design and implement a fast technique and system for
automatically classifying large 3D point clouds. Also,
we also planning to extend our work on processing
spatially related data to the preprocessing, and on-
demand exploration and analysis of 3D trajectory
information (such as flight information data).

References
[1] J. Döllner, B. Hagedorn, J. Klimke: Server-Based

Rendering of Large 3D Scenes for Mobile Devices
Using G-Buffer Cube Maps. 17th Int. Conference on
3D Web Technology, 2012.

[2] B. Hagedorn, Ed.: “Web View Service Discussion
Paper, Version 0.3.0, OGC 09-166r2.” Open Geospa-
tial Consortium Inc., 2010.

63

Smart Wind Farm Control

Patrick Böwe
University of Oldenburg

Department of Computing Science
Uhlhornsweg 84

D-26129 Oldenburg
patrick.boewe@uni-oldenburg.de

Ronja Queck
University of Oldenburg

Department of Computing Science
Uhlhornsweg 84

D-26129 Oldenburg
ronja.queck@uni-oldenburg.de

Michael Schumann
University of Oldenburg

Department of Computing Science
Uhlhornsweg 84

D-26129 Oldenburg
michael.schumann@uni-oldenburg.de

Deyan Stoyanov
University of Oldenburg

Department of Computing Science
Uhlhornsweg 84

D-26129 Oldenburg
deyan.stoyanov@uni-oldenburg.de

Benjamin Wagner vom Berg
University of Oldenburg

Department of Computing Science
Uhlhornsweg 84

D-26129 Oldenburg
benjamin.wagnervomberg@uni-oldenburg.de

Abstract

The occurrences of fossil sources of energy are re-
stricted and the energy extraction gets more and
more expensive. In order to meet the energy demand
in the long term, renewable energy technologies are
promoted. Most notably, wind energy plays a central
role in this context. The number of installed and
operating wind turbines has risen rapidly over the
past years. There are two types of wind farms – on-
shore and offshore. One of the biggest cost-factors of
both types is maintenance. While onshore wind farms
are relatively easy to maintain, offshore wind farms
cause high maintenance costs. There are a variety of
reasons for this: restricted means of transportation,
dependency on meteorological conditions and a more
complex supply chain.
The project Smart Wind Farm deals with the identifi-
cation of average lifetimes of the individual compo-
nents of wind turbines in order to optimize the
maintenance work for the offshore sector. By using
different analyses, the current condition and approx-
imate remaining lifetime of the wind turbine compo-
nents shall be identified. This knowledge can be used
to replace components with a short remaining life-
time proactively in a routine maintenance. This way,
unscheduled repairs can be minimized.

SAP HANA will be used in a different context to
realize these goals. Normally, in-memory technology
(and Business intelligence in general) is used in the
business domain. In this project, SAP HANA is ap-
plied by engineers.

1 Wind Farms

Against the backdrop of global challenges like cli-
mate change, growing energy demand, constantly
rising prices for primary fossil fuels as well as the
Fukushima nuclear disaster, renewable energies are
providing an increasingly important contribution to
the energy sector [1]. In the Federal Republic of
Germany, the last nuclear power plants will be de-
commissioned by the end of 2022. Until then, the
renewable energies will become the supporting pillar
of the future energy supply, making up at least 35
percent of the energy mix. In the year 2050, 50 per-
cent of the energy mix will be created by renewable
energies [2]. Energy scenarios have shown that wind
energy will play a central role in generating electrici-
ty in 2050. This requires a massive expansion of
wind energy plants, and offshore wind parks in par-
ticular. Wind energy offers the most economic and
effective potential for expanding renewable energies
in the short and medium term [3]. Hence, the number

65

of wind turbines has risen rapidly over the past years
(see Figure 1).
Generally, the capacity of a wind turbine (WT) is
defined by its rotor diameter. The rotor diameter
determines the proportion of the wind flow which is
available to the WT for conversion into electric ener-
gy. The energy of the wind flow rises to the third
power to the wind speed, which increases with the
height above ground level. By building higher tow-
ers, the turbines can use increased wind speed and
thus realize a higher return.
In order to evaluate and compare wind turbines, the
annual energy supply is related to the rated output.
This number is called full load hours and depends on
the local conditions [5].

Figure 1: Annual onshore and offshore installa-
tions in MW [4]

A distinction is made between offshore and onshore
wind farms. Onshore wind farms are located on the
main land and can be subdivided into landscape cate-
gories. A normal onshore wind turbine produces 2 to
3 MW. The German average for a new WT is be-
tween 1552 and 1667 full load hours. All German
WTs which were built before 2002 are qualified for
repowering. Repowering means the replacement of
older wind turbines with more modern multi-
megawatt machines.
Offshore wind farms are located at sea. Modern off-
shore wind turbines produce around 5 MW. Because
of increased average wind speed, the revenues are a
lot higher than on the main land. Offshore wind
farms can generate between 3000 to 4500 full load
hours [5].

2 Maintenance of Wind Turbines

Wind turbines have a planned lifespan of 20 years.
During this period, many main components have to
be maintained or replaced.
The maintenance of offshore WTs is a lot more prob-
lematic than onshore WTs, because they can only be
reached by ship and helicopter. Therefore, offshore
maintenance causes costs which are six times higher
than those on the mainland [1].

For ships, the wave height determines significantly
the access of an offshore wind turbine. Usually,
weather conditions with a wave height above 1.5 m
are called “weather days”, because the WTs cannot
be reached hazard-free. The annual number of
“weather days” for different German offshore wind
farms is shown in Figure 2 [5].

Figure 2: Accessibility of offshore wind farms [5]

In addition to the above-mentioned difficulties (re-
stricted means of transportation and dependency on
meteorological conditions), offshore maintenance
also has a more complex supply chain. It is very
important to ensure a reliable and cost-efficient parts
supply. Since the topic of offshore wind farming is
still very new, it has not been possible to standardize
any maintenance concepts yet. The long-term relia-
bility of wind turbines is still unknown. Hence, no
spare part storage concept from other industries may
be adopted [1].

3 Objective Target

The main objective target is to develop a wind farm
management maintenance system based on new tech-
nologies and scientific approaches. The principal
objective targets of this system can be separated into
the following topics:
Proactive management system
The proactive management system intends to evalu-
ate all relevant physical values, which are provided
by the offshore wind park. Real-time monitoring and
reporting should be based on a dataset containing 400
records per second per turbine. Particularly, the use
of any averages for faster calculations as well as the
reduction of storage space like in other systems has
to be avoided. Furthermore, the system should pro-
vide an automated error detection and error classifi-
cation unit.
Realistic forecasts for the cost/income ratio
Based on the large amount of physical values and
supplementary data, like historical data or mainte-
nance efforts, a more realistic cost/income ratio fore-
cast should be developed.

66

Exact forecasts for maintenance periods
Focusing on the turbine maintenance, the target is to
forecast lifetime estimation and breakdowns. Fore-
cast reports and pre-alerting for all turbine compo-
nents should be created automatically by the system.
Based on different researches in this area, it is possi-
ble to develop algorithms which make the system
able to generate these reports and alerting using
weather data, resource data, operational data and
maintenance history data.
On demand statistic functions for physical re-
search
Resting on new database technologies, more complex
analyses can be executed on a larger dataset. Finally,
the period of computation is shorter. Thus, faster
responses are possible to improve the workflow in
research, like developing algorithms or analyzing
complex diagrams.

4 Reasons to Use SAP HANA for this
Project

The main task of the proactive maintenance of off-
shore turbines is to calculate the average remaining
life expectancy. As mentioned in chapter 3, the cur-
rent analyses are performed on aggregated data, alt-
hough more granular data could lead to more precise
calculations. An advantage is that the 400 sensors of
the wind turbine are already delivering data on a per
second basis. In order to analyze this data set, which
is increased by a factor of 600 compared to aggregat-
ed data on a 10 minute basis, SAP HANA has to be
used.
By using SAP HANA, the creation of OLAP cubes
can be omitted. Hence, more data can be analyzed
and new analyses can be performed directly on the
data. SAP HANA offers the possibility for the engi-
neers to create new analyses, test them directly and
subsequently continue their work with new findings.

SAP HANA and Business Intelligence Tools will be
used to achieve the objective targets of the Smart
Wind Farm Control project. The use of these infor-
mation technologies for optimization and support of
science/engineer researches makes this project
unique.

5 New Insights

One of the first insights gained from working with
SAP HANA is the easy handling as well as the clean
and organized layout. It offers many interfaces to
integrate its in-memory technology into almost any
IT landscape. The project group has developed a
virtual wind farm in order to simulate sensor data.
This data source can be connected to SAP HANA via
JDBC. Consequently, it is possible to simulate work-
flow conditions, like real-time data transfer process-
es. Besides storing this operational data, it is also
used as a source for analytical processes. This way,
one of the most important features of the product
SAP HANA can be used – one database containing
transactional and analytical processes.
However, there are some features which are not sup-
ported by SAP HANA at the moment. A crucial
aspect of the maintenance of wind farms is alerting.
This feature is only possible when using worka-
rounds with 3rd party software. Hopefully, SAP
HANA will integrate this feature in future releases.
SAP HANA should not be used for simple reporting
or data storage but instead for complex workflows,
calculations and evaluations. Otherwise, the in-
memory technology just leads to resource waste
because there are no actual added values. SAP
HANA offers benefits when the amount of data to be
processed is very large and it is used for both transac-
tional and analytical processes. Furthermore, in-
memory technology enables real-time reporting [6].

6 Further Steps and Outlook

Currently, the project group has only limited access
to real data and has to use a virtual wind farm to
simulate the data sets instead. The project group is
conducting negotiations with the companies ForWind
and ENBW in order to receive larger data sets.
Once the larger data sets are inserted into SAP
HANA, different analyses can be tested. As men-
tioned in chapter 5, HANA offers no alerting func-
tion. Therefore, the project group is implementing a
workaround in a Java environment.
The proactive maintenance can only be fully tested
on real data sets. As soon as those are given, these
analyses will have to be refined. If the data sets con-
tain information on the repair and replacement of the
individual components, the results can be checked.
The project group could then calculate the improve-
ment rate of their analyses compared to currently
applied procedures.

67

References
[1] J. Westerholt: Entwicklung eines Ersatzteilbevorra-

tungskonzeptes für die Instandhaltung von Offshore
Windenergieanlagen. Diplomarbeit. Bremen, 2012.

[2] D. Böhme, W. Dürrschmidt, M. van Mark, F. Musiol,
T. Nieder, T. Rüther, M. Walker, U. Zimmer, M.
Memmler, S. Rother, S. Schneider, K. Merkel: Erneu-
erbare Energien in Zahlen - Nationale und internatio-
nale Entwicklung. Bundesministerium für Umwelt,
Naturschutz und Reaktorsicherheit. 1. Auflage, Berlin,
2012.

[3] Bundesministerium für Wirtschaft und Technologie:
Energiekonzept für eine umweltschonende, zuverlässi-
ge und bezahlbare Energieversorgung. Niestetal,
2010.

[4] J. Wilkes, J. Moccia, M. Dragan: Wind in power –
2011 European statistics. European wind energy asso-
ciation. 2012

[5] S. Pfaffel, V. Berkhout, S. Faulstich, P. Kühn, K.
Linke, P. Lyding, R. Rothkegel: Windenergie Report
Deutschland 2011. Fraunhofer Institut für Windener-
gie und Energiesystemtechnik. Kassel, 2012.

[6] SAP HANA
http://www.sap.com/solutions/technology/in-memory-
computing-platform/hana/overview/index.epx

68

Measurement of Execution Times and Resource Requirements for single us-
er requests

Alexandru Danciu
Technische Universität München
Chair for Information Systems

Boltzmannstr. 3,
85748 Garching, Germany

danciu@in.tum.de

Helmut Krcmar
Technische Universität München
Chair for Information Systems

Boltzmannstr. 3,
85748 Garching, Germany

krcmar@in.tum.de

Abstract

In an ERP environment with limited resources and
imposed service levels, user requests have to be
scheduled according to their priority and expected
response time. For predicting the response time of
an incoming user request, the impact of the request
on the resource consumption has to be known.
Measuring the impact of single user requests on the
hardware resource consumption represents a diffi-
cult challenge, especially in a production ERP envi-
ronment. The reason is that a large amount of re-
quests are processed at any time. Therefore only the
impact of the whole set can be observed. The se-
quential execution and measurement of single user
requests in an experimental ERP environment would
be very time consuming. This research proposes an
approach for measuring the execution times and
resource requirements of single user requests in an
ERP environment.

1 Introduction

Enterprise resource planning (ERP) systems support
the execution of business processes within large
companies. Because their performance, availability
and scalability are very critical for companies, these
systems are often implemented as distributed systems
[5]. A prerequisite for exploiting the advantages of
distributed computing is the allocation of resources
based on the system load [1]. Scheduling algorithms
require information on the execution time of each
incoming request [4]. Information on the resource
requirements of requests is desired for load balanc-
ing purposes [2].
The goal of this research is the development of an
approach for measuring the execution times and
resource requirements of single user requests.

2 HPI Future SOC Lab resources

During this research the hardware and software re-
sources of the HPI Future SOC Lab were not used at
all. Instead, several interviews were conducted with
performance management experts from SAP AG.
The interviews first aimed at the elicitation of func-
tional and non-functional requirements for measur-
ing the response times and resource requirements of
requests in productive ERP environments. Based on
the identified requirements, existing means for
measuring these performance metrics in the context
of SAP ERP systems were evaluated.

3 Conclusions

This research identified the tools for measuring re-
sponse times and resource requirements supported by
SAP ERP systems which are most suitable for pro-
ductive environments.
Using distributed statistical records, performance
measurements such as executions time and resource
utilization can be collected across multiple heteroge-
neous systems for each request. This type of moni-
toring is a standard functionality even in productive
system and does not influence the measured values.
The main challenge identified during this research is
the operationalization of the term request and the
mapping of requests to user activities. To overcome
this challenge, we will focus on user interactions via
external RFC and web service calls. This way, a
function or web service call can be mapped directly
to a user activity.
An important limitation of the proposed approach is
the lack of a measurement for the I/O caused by sin-
gle requests. Using distributed statistical records it is
possible to measure the database calls, but not the
file and network I/O.

69

4 Further work

Further research is based on the assumption that
resource requirements and execution times of activi-
ties depend on the context, e.g. the input parameters
and environmental factors like tasks executed in
parallel. We will focus on the development of an
approach for estimating the response times and re-
source demands for incoming user requests. Tech-
niques for identifying correlations between the input
parameters and the performance of single requests
will be identified in literature. The proposed ap-
proach will be instantiated in a SAP landscape. Fi-
nally, the approach will be evaluated. The evaluation
will be performed using multiple methods based on [3].
First an analytical evaluation - an architecture
analysis - will be performed to evaluate the ability
of integrating the approach in system landscapes.
Second, a controlled experiment will be used to evalu-
ate the prototypical implementation of the approach.
The feedback provided by the evaluation will be used
to improve the approach.

References

[1] Casavant, T.L.; Kuhl, J.G. (1988): A taxonomy of
scheduling in general-purpose distributed computing
systems. In: IEEE Transactions on Software Engi-
neering, Vol. 14 (1988) No. 2, pp. 141-154.

[2] Devarakonda, M.V.; Iyer, R.K. (1989): Predictability
of process resource usage: a measurement-based
study on UNIX. In: IEEE Transactions on Software
Engineering, Vol. 15 (1989) No. 12, pp. 1579-1586.

[3] Hevner, A.R.; March, S.T.; Park, J.; Ram, S. (2004):
Design science in information systems research. In:
MIS Quarterly, Vol. 28 (2004) No. 1, pp. 75-105.

[4] Iverson, M.A.; Ozguner, F.; Potter, L. (1999): Statis-
tical prediction of task execution times through ana-
lytic benchmarking for scheduling in a heterogeneous
environment. In: IEEE Transactions on Computers,
Vol. 48 (1999) No. 12, pp. 1374-1379.

[5] Yung-Terng, W.; Morris, R.J.T. (1985): Load Sharing
in Distributed Systems. In: IEEE Transactions on
Computers, Vol. C-34 (1985) No. 3, pp. 204-217.

70

Future SOC Lab Spring Term Project Activities Report:

Benchmarking for Efficient Cloud Operations

Multitenancy Project Team
SAP Innovation Center Potsdam

Prof.-Dr.-Helmert-Str. 2-3
14482 Potsdam, Germany

Abstract

This project’s main focus in the now-ending lab term

was on the efficiency of cloud services provided in a

multitenant environment. Several approaches to

multitenancy have been implemented and evaluated

using a multitenant-variant of the CBTR (Composite

Benchmark for Transactions and Reporting) bench-

mark. Tenant workloads were varied in intensity and

composition (analytical and transactional shares)

and the effects on throughput and response time were

measured. The results allowed interesting insights

into the behavior of the approach implementations,

but have been classified as company confidential and

therefore must not be presented in this report. A

proposal for continuation of this project in the com-

ing lab term concludes this short report.

1 Report

The idea behind the cloud is to offer computing as
a service with seemingly endless capacity that can be
added or removed on demand [1]. The cloud custom-
er keeps the data inside the cloud infrastructure and
has access to the performance of a data center to
execute complex operations on it. Through the net-
work, data can be accessed in an easy way with vari-
ous devices.

Cloud computing turns the IT investments of
companies that move into the cloud into operational
expenditures that they pay for the consumed services
to a cloud provider. Consequently, the risk of correct-
ly dimensioning the infrastructure as well as the need
to keep capital expenditures as well as administrative
costs at viable levels is transferred to the cloud pro-
vider. Multitenancy, i.e. consolidating several cus-
tomers onto the same infrastructure, is one method to
achieve higher utilization and therefore a more effi-
cient cloud operation. [2]

In the now-ending lab term this project investigat-
ed several ways of accomodating several customers
on one server, such as shared machine, shared data-
base process, and shared table [2]. These approaches
were compared with respect to their effect on
throughput and on response time using two server
machines of the Future SOC Lab. One served as
database server (32 cores) and the second one as
client machine (64 cores) from which the client re-
quests were submitted and where the performance
were measured.

The experiments employed CBTRmt, our mul-
titenancy extension of CBTR, which is a mixed-
workload benchmark based on SAP’s Order-to-Cash
process [3] comprising four analytical-type queries
and nine transactional-type queries. Our extension
allowed us to simulate a larger number of client or-
ganizations (for most experiments we selected 20
tenants) with various data sizes and request behavior
in a highly concurrent manner.

In a first batch of experiments, we used analytical
load, then added transactional load (20% and 80%
share) and finally simulated time zone-diverse tenant
localizations, i.e. not all tenants were active at all
times, but followed an overlapping diurnal load pat-
tern with one group entering night time while the
other group woke up.

The results that we gathered allowed interesting
insights into the approach implementations and their
effect on system performance, but have been classi-
fied as company confidential and therefore must not
be detailed in this public report.

2 Project Proposal for Next Lab Term

In the coming lab term we would like to continue our
investigations for a further approach to realize mul-
titenancy based on the virtualization platform Xen.

3 Acknowledgements

The project members wish to thank Bernhard Rabe of
Future SOC Lab/HPI for his invaluable administra-
tive support to setup and run the numerous experi-
ments that were conducted as part of the project.

4 References

[1] Peter Mell, Timothy Grance: The NIST Definition of

the Cloud Computing. NIST Special Publication 800-
145. 2011.

[2] Dean Jacobs, Stefan Aulbach: Ruminations on Multi-

Tenant Databases. BTW 2007: 514-521

[3] Anja Bog, Hasso Plattner, Alexander Zeier: A mixed

transaction processing and operational reporting

benchmark. Springer Science + Business Media, LLC
2010.

71

Instant Intrusion Detection using Live Attack Graphs and Event Correlation

Amir Azodi, David Jaeger, Feng Cheng, Christoph Meinel

Hasso Plattner Institute
University of Potsdam

14482, Potsdam, Germany

{amir.azodi, david.jaeger, feng.cheng, meinel}
@hpi.uni-potsdam.de

Abstract—Today, with the growing complexity of computer
networks and companies dependence on such networks, se-
curing them is more important than ever. Intrusion Detection
systems have become a necessary tool to protect networks and
privileged data from falling into the wrong hands. However
IDS systems are limited by the amount of environmental
information they process; including network and host infor-
mation. Additionally the speed at which they receive such
information can have a tremendous effect in the time needed
to detect attacks. We have pinpointed three areas of Event
Normalization, Alert Gathering and Event Correlation, where
improvements can lead to better and faster results produced
by the IDS.

I. INTRODUCTION

The current state of IDS systems does have some weak-
nesses. One of the biggest problems is the inability to detect
some of the more complex attacks; due to lack of access
to the information which would have led to a successful
detection. An underlying reason for this problem is the
limitations of the viewpoint of any single sensor in the
network. An example of such a scenario is the access to
log files. Log files can contain large amounts of information
regarding any attempts to breach security of a system.
This problem becomes more evident when application logs
are considered. The possibility to correlate between events
gathered from different logs and systems, provides a unique
level of access to information needed to detect the more
advanced and well hidden attacks [3].

The rest of this report is organized as follows.
• Review of HPI Security Analytics Lab: In this section

an overview of the legacy Security Analytics Lab (SAL)
is given as background information.

• Updates - Design and Architecture: This section out-
lines the changes that were made to the legacy SAL
system in order to incorporate new features and possi-
bilities for detecting attacks.

• Leveraging Live Environment Information for Instant
Attack Detection: This section describes the gathering
of information in order to generate a sound and com-
plete network graph to be used in conjunction with a

comprehensive vulnerability database for the generation
of a live attack graph.

• Extracting Attack Activities from Logging Information:
Discusses the methods behind extracting all possible
log information and to normalize them into one single
format.

• Results and Achievements: In this section particular
attention is given to the deliverables and completed
objectives of the new phase, so far.

II. REVIEW OF HPI SECURITY ANALYTICS LAB

The SAL represents a system to encounter the challenges
and provide a high level of security in a network. Different
Log Gatherers and IDS Sensors provide a variety of data
sources for the complex analysis on the In-Memory based
platform. A multi-core-supporting architecture is the foun-
dation for high performance as well as real-time and forensic
analysis. Using efficient algorithms and various visualization
techniques supports security operators with the challenging
task of defending the network by identifying and preventing
attacks [2].

The present deployment of SAL on the FutureSOC Lab
has the following features listed below. This is a feature
freeze instance and excludes the latest changes implemented
into SAL. The latest changes will be added as part of the
next deployment phase throughout the next six months.

• Detection of complex attack scenarios
• In-Memory based platform with up to 2 TB of main

memory
• Multi-Core support with thousands of cores
• Correlation of events from a variety of data sources
• Utilization of environment information represented by

attacks graphs
• Ranking of complex alert dependency graphs
• Visualization of attack scenarios and complex alert

relations

III. UPDATES: DESIGN AND ARCHITECTURE

The new design follows the 3 level architecture or chain
of command system. First there is a component named

73

Enforcer/Gatherer, which is in charge of gathering and
sending information relating to the host it is installed on.
This information includes log files, system data such as
installed software, available hardware and system status.
At the second level a component named Agent receives
the information from the Enforcer and normalizes it into
CEE[5] events or control messages before sending them to
the Server. Finally the Server will make the information
persistent and continues on to generating an attack graph and
correlating events received in order to find attacks. Figure 1
illustrates this workflow.

Enforcer /
Gatherer Agent

Log Data,
Installed Software,

Network Info,
...

System Logs,
Application Logs

Server

Network Info

System Information,
Installed Software, ...

Enforced
Commands

Events,
Installed Software,

Network Info,
...

Enforced
Commands

Figure 1. Message workflow in the SAL

IV. LEVERAGING LIVE ENVIRONMENT INFORMATION
FOR INSTANT ATTACK DETECTION

The design proposed in this report allows for complete
access to the host information of every host on which the
Gatherer is deployed. This information includes, but is not
limited to, log files (e.g. syslog), memory information, pro-
cessor information, network information (e.g. hostname, IP
addresses and MAC addresses) and application information
(e.g. their CPE [6], which allows SAL to compile a list
of current vulnerabilities present on any host).

Having imported all the information into SAL, a network
graph can be created. Using a vulnerability database we can
then construct a comprehensive attack graph to be used by
SAL. In order to always have the most up-to-date attack
graph, the SAL system continuously updates its underlying
data structures, i.e. the network graph and the vulnerability
database. Therefore at any moment an up-to-date attack
graph can be compiled from the live information present
in the underlying data structures.

V. SUPPORTING INTRUSION DETECTION WITH EVENT
LOG INFORMATION

A common way for reporting intrusions are security
alerts, which are generated by so called intrusion detection
systems. Generally, these alerts are generated as a result
of observed activities in an environment that are poten-
tially harmful. However, an alert is not a guarantee that
an actual intrusion has taken place. In addition, alerts are
only limited to detected malicious activity, but they do
not give information about the attackers activities before
and after his intrusion attempt. An approach to solve the

shortcomings of an intrusion detection with alerts only is
the consideration of additional details about the attacker
activities. One type of such information are event logs. They
are produced by applications, monitoring systems, operating
systems, etc. and are give an insight into all observed events
in an environment. The next subsections show how these
event logs can be gathered from different locations in an
environment, how they are normalized into an automatically
processable format [4].

A. Information Gathering

Event logs usually originate from a multitude of sources,
such as IDSs, firewalls or applications, where each source
produces a different log representation and output format.
Examples for log representations are Syslog or the IDMEF
specification and typical output formats are binary, CSV and
XML. In order to read events from the log sources, the
previously mentioned gatherers are employed. They can be
attached to the log files on their host and are able to send
the file content to their centrally connected agent.

B. Normalization

The received event logs are interpreted event by event,
which makes it necessary to split the sequential event stream
into single events. The SAL realizes this splitting with the
help of regular expressions that are on the matching of
event separators. Once the events have been extracted from
the event stream, they are still in a format being specific
to the generating event source. Therefore, each event is
further transformed into a common and easily processable
representation. In the concrete SAL implementation, the
Common Event Expression (CEE)[5] has been chosen as the
common representation of events, to which all custom event
are normalized to. The CEE makes use of event containers
that contains the properties of the event as key-value-pairs.

In order to normalize events to the CEE format, informa-
tion from the raw events have to be extracted and put into
the corresponding fields. This extraction of event properties
from the raw events is performed with the support of regular
expression, or more specifically with the group mechanisms
in regular expressions. The idea is to first define the format
of a single raw event in the expression and then surround
structured information with regular expression groups, so
that they can be matched and finally used as the properties
of the event.

VI. RESULTS AND ACHIEVEMENTS

The mechanisms that have been described in the last
two sections allow the SAL to react on live changes in
the network, verify intrusions and uncover intrusions that
could not be detected with the legacy SAL. In addition, it is
possible to correlate the discovered intrusion attempts to the
nodes in an attack graph. The described changes are mainly
realized by interpreting dynamic and static environment

74

information as well as using event logs instead of only alert
logs.

VII. CONCLUSION

As we work to secure networks from ever more sophisti-
cated attacks, it is clear that the industry is in need of more
intelligent protection mechanisms that actively protect our
networks. As part of this project we aim to design intelligent
solutions that consider a wide array of information relating
a network and are therefore better able to detect intrusions.
The initial results of our method show considerable promise.
In the next phases of the project, we will focus finishing a
POC implementation of our design principles and functional
requirements. We also look to publish the results of our
POC implementation and the effectiveness of the system as
a whole in subsequent reports aimed at the Future SOC Lab.

REFERENCES

[1] Sebastian Roschke, Feng Cheng, Robert Schuppenies, and
Christoph Meinel: Towards Unifying Vulnerability Informa-
tion for Attack Graph Construction , in Proceedings of 12th
Information Security Conference (ISC’09), Springer LNCS,
Pisa, Italy, pp. 218-233 (September 2009).

[2] Christoph Meinel, Andreas Polze, Alexander Zeier,Gerhard
Oswald, Dieter Herzog, Volker Smid, Doc DErrico and Zahid
Hussain (Eds.): Proceedings of the Fall 2010 Future SOC Lab
Day , Technical Report of Hasso-Plattner-Institute, Heft 42
(2011).

[3] Sebastian Roschke: Towards High Quality Security Event
Correlation Using In-Memory and Multi-Core Processing ,
PhD Thesis, Hasso Plattner Institute at University Potsdam
(May 2012).

[4] David Jaeger: Monitoring in Scenario-based Security Exper-
iments , Master Thesis, Hasso Plattner Institute at University
Potsdam (August 2012).

[5] The CEE Board: CEE Overview. Available from:
http://cee.mitre.org/docs/overview.html.

[6] Common Platform Enumeration:. Available from:
http://cpe.mitre.org/.

75

Exploiting Heterogeneous Architectures for Algorithms with Low Arithme-

tic Intensity

Fahad Khalid
Hasso-Plattner-Institute, University of

Potsdam
14482 Potsdam, Germany

fahad.khalid@hpi.uni-potsdam.de

Andreas Polze
Hasso-Plattner-Institute, University of

Potsdam
14482 Potsdam, Germany

andreas.polze@hpi.uni-potsdam.de

Abstract

The Scientific Computing community has witnessed a

significant increase in applications that utilize GPUs

as accelerators; complementing CPU based pro-

cessing. However, the feasibility of porting an algo-

rithm to the GPU is dependent on a complex combi-

nation of factors that include arithmetic intensity,

data access patterns and data reuse. E.g. algorithms

with very low arithmetic intensity are less likely to

gain performance if implemented on a GPU.

In this report, a problem from Systems Biology is

taken as a case study for utilizing heterogeneous

computing to improve the performance of an algo-

rithm with low arithmetic intensity. It is shown that

the Map-Reduce structural pattern for parallel appli-

cations can be used to split the algorithm into two

phases; where the Map phase can be optimized for a

GPU implementation, while the Reduce phase can be

efficiently implemented on the CPU. The result is a

significant performance gain over a serial CPU-only

implementation. The results presented were obtained

by running the algorithms on the FutureSOC hard-

ware.

In addition, the idea of Constraint-based Adaptive

Memory Management is introduced; targeted to-

wards combinatorial algorithms.

1 Motivation

In recent years, research community in the High Per-
formance Computing (HPC) and Scientific Compu-
ting sectors has witnessed an increasing application
of Heterogeneous Computing [1]. The term Hetero-
geneous Computing (as used in this document) refers
to the design of applications that can harness the
power of both the CPU and the GPU for problems
amenable to massive parallelism.

The rapid adaption of the scientific community to
Heterogeneous Computing is often attributed to the
GPUs’ capability to perform massive amounts of
arithmetic operations, at very high speeds. Majority

of the silicon chip area in a GPU is dedicated to a
number of arithmetic processing units. This makes it
possible for the GPU to execute a very large number
of arithmetic instructions in parallel. However, since
most of the chip area is committed to arithmetic pro-
cessing, only small amounts of low latency memory
resides on-chip. Therefore, a memory hierarchy (sim-
ilar to the traditional CPU based systems) is em-
ployed, but with very small sizes for low latency
memory as compared to the CPU.
A significant number of algorithms have been suc-
cessfully ported to GPUs, attaining up to 100x
speedup over serial execution on a CPU [2]. Howev-
er, due to the aforementioned architectural limitations
(w.r.t. low latency memory size), this success holds
only for a certain set of algorithms that can take full
advantage of the GPU architecture. This set of algo-
rithms typically shows one important execution char-
acteristic; i.e. high arithmetic/numerical intensity
(compute-to-memory access ratio). The most com-
mon example for such an algorithm is matrix-matrix
multiplication [3].
Nevertheless, even for algorithms with high arithme-
tic intensity, porting and optimizing the algorithm is
a tedious task that requires investing a significant
amount of time and effort. Moreover, several im-
portant algorithms have low arithmetic intensity e.g.
Sparse Matrix-Vector Multiplication [4]. With the
advent of Big Data revolution, the significance of
such algorithms is further amplified; since this in-
volves algorithms associated with processing of very
large datasets. For such algorithms, CPU-only archi-
tectures (equipped with the much larger low latency
memory) would appear more suitable.
In the context of Heterogeneous Computing, the
above considerations raise the following important
question:
Is it possible to effectively utilize Heterogeneous

Computing for algorithms with low arithmetic inten-

sity? Or must such algorithms be executed on CPU-

only systems?

In the sections to follow, the above posed question is
approached by looking at a low arithmetic intensity
algorithm from the domain of Systems Biology. The

77

algorithm has already been successfully parallelized
on both shared-memory [5] and distributed-memory
[6] CPU based architectures. Here, a heterogeneous
architecture based parallelization is presented.

2 Heterogeneous Computing for

Enumeration of Elementary Flux

Modes

The set of all Elementary Flux Modes (EFM) repre-
sents the complete set of minimal pathways in the
metabolic network of an organism [7]. Under steady-
state conditions, the problem of enumerating EFMs is
mathematically equivalent to the enumeration of ex-
treme rays of polyhedral cone [8]. The Nullspace
algorithm [9] is known to be the most efficient algo-
rithm for EFM enumeration. It consists of the follow-
ing steps:
1. Solve a system of linear equations to get the

Kernel matrix
2. Process the Kernel matrix to remove redundan-

cies and permute it so that it is feasible for fur-
ther processing

3. For each row in the Kernel matrix (EM Matrix):
a. Generate Candidate EM vectors
b. Verify elementarity using Rank tests
c. Update the EM matrix

The most compute intensive part of the algorithm is
Candidate Generation. Following is the pseudocode
for the serial candidate generation algorithm [6]:

The core of the algorithm is based on an element-
wise binary operation (bitwise OR) between the two
input matrices. The function is imple-
mented as a lookup operation that computes the
Hamming weight i.e. the number of set/on bits in the
vector. Let the size of Matrix A be , and size of
Matrix B be n, then the total number of binary opera-
tions is . In the worst case, this leads to a re-
sult matrix that grows quadratically as a function of
input size.
As can be inferred from the above description, the
serial Nullspace algorithm has very low arithmetic
intensity. In the sections to follow, the experience of

parallelizing the Nullspace algorithm for execution
on NVIDIA GPUs is presented.

2.1 Parallel Candidate Generation Model

for GPU

Since the generation of each candidate vector is inde-
pendent of the others, the parallelization strategy
used is one where each thread computes a single can-
didate vector. This is a data parallel model that re-
sults in a massively parallel GPU application.

2.2 A Naïve Kernel

Following is the pseudocode for the kernel based on
memory partitioning with the given index algebra:

Given the massively parallel nature of the GPU, it
would appear that the above kernel would perform
magnitudes faster than the serial CPU-only algo-
rithm. The results, however, show that the GPU per-
forms even worse than the serial CPU-only code.
Figure 1 shows that the GPU performance degrades
with the increase in the input size. Overall, the serial
CPU-only implementation outperforms the naïve
GPU implementation.

Figure 1: Performance comparison between the serial CPU-only im-

plementation (blue) and the naïve GPU code (red). X-axis represents

iterations of the Nullspace algorithm, which correspond to the growing

input size. Y-axis represents the time taken in seconds.

An analysis of the GPU kernel shows that every col-
umn pair results in a write to the result matrix; which
translates to a total of global memory write
operations. Given that each result value is a 64-bit
integer, this results in a very large result array. There-
fore, most of the time is spent in transferring the re-
sult data structure between the device and the host.

78

2.3 Employing the Map-Reduce Structural

Pattern for Parallel Applications

In the aforementioned pseudocode for the GPU ker-
nel, the final step is a comparison that results in a
Boolean value i.e. ‘0’ or ‘1’. However, as per the
serial version of the algorithm, this is just an inter-
mediate step that eventually leads to fetching and
storing the index pair corresponding to the input ele-
ments. The kernel has been designed in a way so that
only the Boolean value is computed on the GPU, and
the index pair computation is left as a post-processing
step to be performed on the CPU. This division of
work between the GPU and the CPU corresponds to
the Map-Reduce structural pattern [11] with the fol-
lowing two phases:
 Map  The GPU kernel. Generates candidates

and stores Boolean values as the result. Each re-
sult value represents the decision whether the
pair of input vectors should be stored.

 Reduce  A post-processing step performed on
the CPU. Parses the result data structure popu-
lated by the GPU. For all values where the deci-
sion is positive, the corresponding pair of indices
is fetched and stored in a dynamic data structure.
This phase is implemented as a shared-memory
parallel procedure.

One of the benefits of implementing a heterogeneous
Map-Reduce pattern is that the GPU kernel is re-
lieved from executing further memory intensive in-
dex fetch operations. Also, the massively parallel
nature of a GPU application results in concurrency
issues (mutual exclusion) if a dynamic global data
structure is used to store the resulting index values.
Therefore, relegating such operations to the CPU,
results in a relatively efficient kernel.

2.4 Introducing the Compression Factor

A significant advantage of employing the Map-
Reduce pattern is the possibility to exploit the Boole-
an nature of the result computed per thread, in order
to reduce the number of global memory write opera-
tions by a constant factor. Since each result value is a
Boolean, instead of storing the result as an integer, it
is stored as a single bit. Therefore, with
 , 64 results can be stored
in one element of the result array (assuming 64-bit
unsigned integers are being used in the result data
structure). This makes it possible to compute
 number of candidates per
thread.
As a result, size of the result data structure for the
Map phase is reduced by a factor of
 . Following are two major ad-
vantages of the reduction in result size:
1. Previously, the time spent in data transfer be-

tween the device and the host overshadowed the
time spent on computation. With the
 scheme, the balance is

shifted in the favor of computation time i.e. time
spent in device-host-device data transfers is neg-
ligible in comparison to the time spent in kernel
execution. This results in better utilization of the
GPU resources.

2. Much more efficient user-managed caching [12]
schemes can now be employed.

The performance results after implementing the Map-
Reduce pattern with are shown
in Figure 2. The heterogeneous algorithm outper-
forms the serial CPU version by achieving a relative
speedup of ~3.5x. Please note that this speedup does
not include all the typical performance optimizations
[13] applied to CUDA1 code. Efforts to further im-
prove the performance by applying such optimiza-
tions are underway. These optimizations are well
known within the CUDA programmers’ community,
and therefore, will not be discussed in detail here.

Figure 2: Performance comparison between serial CPU-only implemen-

tation (blue) and the heterogeneous Map-Reduce based implementation

with (red). X-axis represents iterations of the

Nullspace algorithm, which correspond to the growing input size. Y-axis

represents the time taken in seconds.

2.5 Brief Overview of Planned Optimiza-

tions

Following is a brief discussion of further optimiza-
tions applicable to the heterogeneous implementa-
tion:
 Coalesced Global Memory Access and Result

Caching: Due to the use of
 , access to the global
memory is no longer coalesced from threads in
the same block. An improved index algebra,
coupled with a cooperative caching mechanism
is being implemented to ensure coalesced ac-
cessed to the global memory. This is expected to
result in a significant performance improvement.

 Tiled Input and Caching: Tiling can be used to
implement efficient caching for the input data.
However, it is not clear at the moment if this will
result in a significant performance gain.

 Asynchronous Map-Reduce: The current imple-
mentation executes the Map and Reduce phases

1 NVIDIA CUDA, http://www.nvidia.com/cuda

79

in sequence. A multi-threaded asynchronous im-
plementation may lead to better overall perfor-
mance.

In addition to the above mentioned possible optimi-
zations, several typical CUDA optimizations will be
implemented.

3 Constraint-based Adaptive Memory

Management

The Candidate Generation algorithm (as presented in
the previous Section), is combinatorial in nature.
Such combinatorial algorithms often deal with the
exploration of very large solution spaces. This explo-
ration process can lead to the intermittent generation
of a very large number of combinations, only some of
which might eventually be required by the algorithm.
The intermittent combinatorial explosion results in
excessive memory consumption, which is only tem-
porary. Nevertheless, if the consumption exceeds the
amount of available physical memory, the program
can crash.
A possible approach to control the memory consump-
tion behavior of such an algorithm is to apply an up-
per-bound on the maximum amount of memory that
can be consumed by a process at a given time. In the
case of EFM enumeration, this means that each
thread running in parallel must not process more than
a certain number of candidate vectors per iteration of
the Nullspace algorithm.
We intend to design a constraint definition system,
coupled with a constraint enforcement runtime that
makes it possible to define resource constraints for
individual processes/threads. This requires altera-tion
of the program flow, so that more iterations are
executed with less data per iteration. Formally, it can
be defined as the problem of Optimal Dynamic Parti-

tioning of Program Flow.
At this point, the proposal is in the idea phase. We
intend to develop it further into a prototype imple-
mentation during the next phase of our FutureSOC
Lab project.

4 Conclusions

In order for software designers to take full advantage
of heterogeneous computing, generic patterns in low
arithmetic intensity algorithms need to be identified
that can make it possible to gain significant perfor-
mance gains over multi-threaded shared-memory
CPU-only implementations. A positive result in this
direction is presented by utilizing the Map-Reduce
structural pattern to improve algorithm efficiency for
an algorithm from Systems Biology.
A set of further optimizations will be implemented
for this application, which will provide further insight
into the full potential for utilizing Heterogeneous

Computing for this particular problem. Moreover,
research will be carried out in order to see if the re-
sults can be generalized for a broader class of algo-
rithms.
Moreover, we intend to develop a constraint-based
adaptive memory management system. This is ex-
pected to result in an effective and efficient memory
consumption behavior for combinatorial algorithms.

References

[1] J. D. Owens, D. Luebke, N. Govindaraju, M.
Harris, J. Krüger, A. E. Lefohn, and T. J. Purcell, "A
Survey of General-Purpose Computation on Graphics
Hardware", Computer Graphics Forum, vol. 26, pp.
80-113, 2007.
[2] V. W. Lee, C. Kim, J. Chhugani, M. Deish-er, D.
Kim, A. D. Nguyen, N. Satish, M. Smelyan-skiy, S.
Chennupaty, P. Hammarlund, R. Singhal, and P.
Dubey, "Debunking the 100X GPU vs. CPU myth: an
evaluation of throughput computing on CPU and
GPU", presented at the Proceedings of the 37th annu-
al international symposium on Computer architec-
ture, Saint-Malo, France, 2010.
[3] A. Buluç, J. R. Gilbert, and C. Budak, "Solving
path problems on the GPU", Parallel Com-puting,
vol. 36, pp. 241-253, 2010.
[4] J. D. Davis and E. S. Chung, "SpMV: A Memory-
Bound Application on the GPU Stuck Be-tween a
Rock and a Hard Place", Microsoft Research Silicon
Valley, Technical Report14 September 2012
2012.
[5] M. Terzer and J. Stelling, "Accelerating the
Computation of Elementary Modes Using Pattern
Trees", in Algorithms in Bioinformatics. vol. 4175, P.
Bücher and B. Moret, Eds., ed: Springer Berlin /
Heidelberg, 2006, pp. 333-343.
[6] D. Jevremović, C. T. Trinh, F. Srienc, C. P. Sosa,
and D. Boley, "Parallelization of Nullspace
Algorithm for the computation of metabolic path-
ways", Parallel Computing, vol. 37, pp. 261-278,
2011.
[7] S. Schuster and C. Hilgetag, "On elementary flux
modes in biochemical reaction systems at steady
state", J. Biol. Syst, vol. 2, pp. 165–182, 1994.
[8] J. Gagneur and S. Klamt, "Computation of
elementary modes: a unifying framework and the new
binary approach", BMC Bioinformatics, vol. 5,
p. 175, 2004.
[9] C. Wagner, "Nullspace Approach to Deter-mine
the Elementary Modes of Chemical Reaction
Systems", The Journal of Physical Chemistry B, vol.
108, pp. 2425-2431, 2004.
[10] S. Klamt and J. Stelling, "Combinatorial
Complexity of Pathway Analysis in Metabolic Net-
works", Molecular Biology Reports, vol. 29, pp. 233-
236, 2002.

80

[11] K. Keutzer, B. L. Massingill, T. G. Mattson, and
B. A. Sanders, "A design pattern language for
engineering (parallel) software: merging the PLPP
and OPL projects", presented at the Proceedings of
the 2010 Workshop on Parallel Programming Pat-
terns, Carefree, Arizona, 2010.
[12] M. Silberstein, A. Schuster, D. Geiger, A.
Patney, and J. D. Owens, "Efficient computation of
sum-products on GPUs through software-managed
cache," presented at the Proceedings of the 22nd an-
nual international conference on Supercomputing,
Island of Kos, Greece, 2008.
[13] NVIDIA, "CUDA C BEST PRACTICES
GUIDE," Design GuideJanuary 2012 2012.
[14] J. Mora, "Do Theoretical FLOPS Matter for Real
Application Performance?", presented at the HPC
Advisory Council Spain Workshop, 2012.

81

Using In-Memory Computing for Proactive Cloud Operations
Future SOC Lab Report October 2012

Felix Salfner, Marcus Krug
SAP Innovation Center, Potsdam

Peter Tröger, Eyk Kny
Hasso Plattner Institute, Potsdam

Abstract

The management of cloud computing infrastructures
on operator side is a true challenge. An ever-growing
number of servers, the heterogeneity of software, nec-
essary elastic load handling, energy consumption and
other non-functional aspects have to be taken into ac-
count – continuously and in an adaptive fashion.
Proactive cloud operations tries to trigger preventive
maintenance activities when some part of the system is
about to enter an erroneous state. Examples for such
activities are administrator alarming and automated
load migration. We combine this approach with the
idea of semi-automated root cause analysis to reduce
time-to-repair and improved availability. In-memory
computing provides a well-suited technology for this.
We have implemented a prototype to analyze feasibil-
ity of the approach and analyzed data sets from HPC
clusters.

1 Introduction

Cloud computing is currently one of the predominant
trends in computer science and IT industry. Its po-
tential impact on IT infrastructures and software plat-
forms cannot be underestimated: The cloud paradigm
will change the way how IT companies make business
as well as how end-users (private and corporate) per-
ceive software and IT. It moves the burden of IT infras-
tructure management and operation away from users,
and shifts it to specialized providers that can guarantee
fast, reliable, and secure operation of the cloud infras-
tructure.
Satisfying the users’ expectations turns the manage-
ment of cloud computing infrastructures into a true
challenge. An ever-growing number of servers, the
heterogeneity of software, multiple interacting mech-
anisms to elastically react on changing load, the
consideration of energy consumption and other non-
functional aspects have to be taken into account. Op-
erating such systems requires intelligent management
tools to deliver the guaranteed service-level to the user
in a profitable way.
One of the key features of system monitoring at the
scale of a cloud computing center is to aggregate low-

level monitoring events in order to present only critical
events to the operation personnel. To achieve this goal,
current monitoring systems rely on temporal as well
as spatial correlation mechanisms and infrastructure-
centric rule-based aggregation. These techniques usu-
ally have a snapshot-like view on the system and ig-
nore problems that evolve in the system over a longer
period of time. In our project, we focus on such evolv-
ing phenomena and explore a new monitoring tech-
nique that is based on computing correlations between
monitoring signals in order to identify the spreading of
problems within the system.
This report summarizes the second project phase and
documents our project results. In summary we have:

• optimized the monitoring and computation in-
frastructure for anomaly detection, which was de-
veloped in the first phase

• optimized the computation of signal correlation
using SAP’s in-memory database HANA,

• built a web-based front-end for interaction with
structure-of-influence graphs

• developed a new graphical representation for cor-
relation of hierarchical monitoring signals

• investigated ways how to use structure-of-
influence graphs for the prediction of upcoming
failures

2 Approach

Oliner et al. [4] have presented an algorithm to infer
shared influence in complex production systems. The
algorithm is based on anomaly signals, which are real
values between zero and one indicating how much a
measurement signal deviates from “normal behavior”.
Anomaly signals are obtained from monitoring signals
by applying a transformation function that encodes lo-
cal domain knowledge. By computing the correla-
tion between any pair of anomaly signals, the “spread-
ing” of anomalies across the system can be quantified.
More precisely, if there is a high correlation between

83

A B C D

Correlation

A B

C D

Monitoring signals

f(
A

)

g(
B

)

f(
C

)

g(
D

)

tt

anomaly

t

lag

correlation B,D

lag

correlation A,C

lag

correlation A,D

anomaly anomaly

Figure 1. Creation of structure-of-
influence graphs.

the anomaly signals of two components, we can spec-
ulate that the abnormal states of both components are
related.
The time lag at which the correlation reaches its max-
imum can be used to determine the temporal interde-
pendency between the two components, i.e., to iden-
tify, which component is the source (or initiator) and
which one is the target of the problem (suffering from
the anomaly of the source component). For further
analysis, the interdependencies can be visualized in
a so-called structure of influence graph (SIG). The
nodes of the SIG are monitoring signals and an edge is
added to the graph if there is a significant correlation
between the two signals. The edge is directed, if the
time lag of maximum correlation is larger than some
threshold. Figure 1 depicts the procedure of generat-
ing a SIG.
The primary use case for SIGs is root cause analy-
sis. Given a SIG, which represents how anomalies
have spread throughout the system, the initiating first
anomaly can be detected and the component, to which
the anomaly signal belongs, appears to be a good can-
didate for further inspection. Please note that such
analysis is based on correlation, which can but not nec-
essarily does represent causation.

3 Predicting Failures

SIGs have been used successfully for root cause anal-
ysis in complex systems, such as high-performance
computing centers. As an extension, we propose to
use extended SIGs for an early detection of anomaly
spreading that might eventually turn into a failure. We
accomplish this by checking whether a currently ob-
served SIG might develop into a SIG that is known to
have led to a system failure in the past.
As can be seen in Figure 2, this is not an easy task

IHG

CBA

FED

IHG

CBA

FED

a) b)

Figure 2. Prediction by computing simi-
larity between two structure of influence
graphs: Currently observed (a) which re-
sembles the beginning of a previous fail-
ure occurrence (b).

since two graphs will probably never be equal, i.e.,
there can be missing or additional edges, the spreading
of anomalies might exhibit short “detours” or “short-
cuts”, and even if the edges are the same their weight
tuples will most likely differ. For these reasons, the
comparison of SIGs has to be based on some metric of
similarity. Examples include:

• Gromov–Hausdorff distance, which builds on a
mapping of graphs to metric spaces and measur-
ing how far the two spaces are from being isomet-
ric.

• Sequence-based approaches such as proposed in
[5] that build on the assumption that two graphs
are similar if they share many sequences of ver-
tices and edges.

• Scoring-based approaches that score the exis-
tence (and similarity of the weight tuple) of an
edge in both graphs.

• Graph isomorphism algorithms or their approxi-
mations (see, e.g., [1]).

Computing such similarity metrics is computationally
challenging. Hence, computational complexity will
play a significant role in the evaluation of metrics. The
bi-variate structure of edge weights might put addi-
tional complexity to the evaluation. Additional aspects
to be considered include the efficient storage of SIGs
or their signatures in a database of failure SIGs as well
as efficient ways to search for failure SIGs matching
the currently observed SIG. We also investigate ways
to simplify the graph by, e.g., collapsing cliques of ver-
tices, clustering, etc.
In addition to the search for the best similarity metric,
there are two general approaches to deal with the as-
pect of spreading. In the first approach, we compare
the currently observed SIG to stored SIGs that were
previously saved at system failure time. The second
approach compares the current SIG development, i.e.,
a sequence of several successive SIGs, to stored SIG
developments from previous failure cases.

84

Figure 3. Overview of the HANA-based correlation engine.

4 A Use-case for In-memory Computing

Investigating the root cause of a problem that has oc-
curred in a cloud environment frequently requires to
analyze monitoring data and to compare the system
behavior of the current faulty case to system behav-
ior at other fault-free times. In order to do this, an
efficient analysis framework has to enable the opera-
tor to quickly move forth and back in the monitoring
data, to drill down at specific points in time or to get
an overview on higher levels of granularity. These re-
quirements make root cause analysis similar to busi-
ness data exploration. In-memory database technol-
ogy is a key enabling technology to perform on-the-fly
data analysis — and we believe that it has the poten-
tial to also boost efficiency for root cause analysis. For
this reason, we implemented the correlation algorithm
with on-the-fly data aggregation on the database level.
Our approach builds on SAP’s HANA in-memory
database. This means that all computationally com-
plex and data-intensive operations have been imple-
mented in SAP’s computational database language
SQLScript. Figure 3 shows the setup. The implemen-
tation was supported by hardware of the FutureSOC
lab.

5 Dealing With Complex SIGs

SIGs can very quickly become too large to be un-
derstandable. Even medium-sized systems can have
several thousand monitoring variables. The number

of monitoring variables becomes prohibitive rather
quickly as the number of correlations that need to be
computed grow quadratically. However, in real-world
systems measurement signals (and hence also anomaly
signals) are organized in a hierarchical fashion. For
example, application queue length measurements be-
long to some application, which runs on a specific
server, which resides in some rack in the data center.
One example for such a signal hierarchy is shown in
Figure 4.
The present hierarchy of signals can be leveraged for
four general ways to reduce complexity:

1. Selection of anomaly signals

2. Aggregation of anomaly signals

3. Algorithmic simplification

4. Hierarchical visualization

In the first approach, complexity is reduced simply by
selecting a subset of anomaly signals, for which a SIG
is computed and for which a graph is rendered. For ex-
ample, a SIG can be computed only for anomaly sig-
nals that belong to one specific server. Another exam-
ple is the selection of temperature monitoring signals
across the entire system. In order to facilitate the user
of a SIG-based tool to perform such a selection the tool
needs to provide facilities to navigate and slice the sig-
nal hierarchy.
In the second approach, data of anomaly signal is
condensed via aggregation. Aggregation can be per-
formed either on the time axis, which simplifies com-
putation of each single correlation but does not reduce

85

Figure 4. Example hierarchy of monitoring signals

the number of correlations and it does also not sim-
plify the resulting SIG. A second way of aggregating
anomaly signals again makes use of the hierarchy: For
example, a SIG can be computed on rack level. That
means that for example all temperature anomaly sig-
nals that belong to one rack are combined into one
temperature anomaly signal. The same approach can
also be applied to anomaly signals that do not derive
from the same domain: for example, all anomaly sig-
nals of a rack, i.e., memory, load, and temperature sig-
nals, are aggregated on rack level. This is possible
because anomalies are normalized to the range [0, 1].

Algorithmic simplifications include various machine
learning techniques such as clustering, principal com-
ponent analysis (as has been proposed by [3]), or
stochastic techniques. Another promising candidate
are frequency-based techniques that operate in the
frequency domain rather than the temporal domain,
which would also speed up computation of correla-
tions tremendously. More advanced topics include net-
work exploration, path extraction, etc.

Although not reducing the computational complexity,
visualizations of the SIG play an important role in en-
abling the user to get maximum information out of a
SIG. An example is shown in Figure 5. In Graph (a)
some clusters and shared influence can be identified.
However, it is almost impossible to defer any infor-
mation from Graph (b). This was the motivation for
investigating new ways to visualize SIG data. Fol-
lowing some discussions with the research group by
Prof. Döllner, we had the idea to adapt a hierarchi-
cal edge bundles visualization [2], as it is also used in
software visualization. An example for such a graph
is shown in Figure 6. In such a graph, the hierarchy of
anomaly signals is indicated by rings, where the inner-
most elements are single anomaly signals (leafs in the

tree of Figure 4), and the outer rings combine elements
to larger units. For reasons of confidentiality, the la-
bels in the graph have been blurred. The correlation
itself is indicated by vector bundles in the middle of
the circle. In the figure, we used a color gradient from
green to red to indicate the direction of the arc. Future
versions will feature grading to transparency and line
thickness to indicate strength of a correlation.

6 Conclusions and Next Steps

Operating a cloud computing infrastructure at mini-
mum cost while at the same time offering service at a
guaranteed level is a challenge. This project attempts
to adapt a new correlation-based monitoring data anal-
ysis method to the cloud context. One major aspect is
to include in-memory databases to facilitate on-the-fly
data analysis and exploration. A second major focus
of the work is on reducing computational complexity
using advanced pre-processing techniques and to make
structure-of-influence graphs easier to consume by ex-
ploring new graphical representations. Future work
will focus on the exploration of simplification tech-
niques as well as the usage of structure-of-influence
graphs for predicting upcoming problems.

References

[1] Matthias Dehmer, Frank Emmert-Streib, and
Jürgen Kilian. A similarity measure for graphs
with low computational complexity. Applied
Mathematics and Computation, 182:447–459,
November 2006.

86

cal Data. Transactions on Visualization and Com-
puter Graphics, 12:741–748, 2006.

[3] Adam Oliner and Alex Aiken. Online Detection of
Multi-Component Interactions in Production Sys-
tems. In Dependable Systems and Networks, pages
49–60. IEEE, 2011.

[4] Adam J. Oliner, Ashutosh V. Kulkarni, and Alex
Aiken. Using Correlated Surprise to Infer Shared
Influence. In Dependable Systems and Networks,
pages 191–200. IEEE Computer Society, 2010.

[5] Panagiotis Papadimitriou, Ali Dasdan, and Hec-
tor Garcia-Molina. Web Graph Similarity for
Anomaly Detection. Technical Report 2008-1,
January 2008.

[2] Danny Holten. Hierarchical Edge Bundles: Vi-
sualization of Adjacency Relations in Hierarchi-

87

(a) (b)

Figure 5. Two examples for SIG visualizations.

Figure 6. Sunburst visualization of SIGs

88

Evaluation of Multicore Query Execution Techniques
for Linked Open Data

Ahmed Imad Aziz, Heiko Betz and Kai-Uwe Sattler

Database and Information Systems Group
Ilmenau University of Technology

{first.last}@tu-ilmenau.de

Abstract

LODcache – a project of the Database & Information
Systems Group at Ilmenau University of Technology
– aims at developing an in-memory database system
for managing Linked Data in RDF format and pro-
cessing SPARQL queries. One of the main goals of
this project is to investigate techniques for exploit-
ing modern hardware architectures such as many-core
CPUs, cache hierarchies, large main memory, and co-
processing.
In this context, the specific focus of the project per-
formed at the HPI Future SOC Lab was to evalu-
ate and improve newly developed indexing and par-
allelization techniques. In this paper, we give a brief
report on the main results of this work.

1. LODcache Architecture

The idea of the LODcache system is to build a
Memcached-like system for Linked Open Data which
fetches data from the sources, materializes them in
an in-memory cache database and evaluates queries
on this database only. Furthermore, query process-
ing in LODcache leverages features of modern hard-
ware architectures: it follows the in-memory process-
ing paradigm using hash indexes and stores data in a
compressed and columnar-oriented way. In addition,
it uses the Intel Thread Building Blocks library to ex-
ploit parallel processing techniques on multicore ar-
chitectures.
The architecture of LODcache comprises two main
components: a storage layer and a query engine. At
the storage layer triple data are organized in chunks of
fixed size where they are stored column-wise. Each
triple is stored and indexed three times: using a hash-
based subject index, predicate index, and object index.
Furthermore, all triples on the chunks assigned with
an index are stored in the order of the index. Finally,
the triple components encoded using a dictionary com-
pression scheme.

The query engine provides the standard set of query
operators for implementing a SPARQL algebra in-
cluding different join implementation to evaluate basic
graph patterns (BGP).
As an in-memory database system, LODcache faces
in principle the problems of the memory wall [1] such
as latency, limited memory and bus bandwidth. These
problems become even worse when there is more than
one CPU sharing the same memory, and the solution
applicable to the single processor system is less effec-
tive when considered under multiprocessor or multi-
core assumptions. Therefore, parallelization strategies
for efficient query processing on big datasets need to
deal with various issues such memory architecture ef-
fects, cache obliviousness but also with data skew and
load balancing issues.

2. Parallel LODcache

In database query processing different parallelization
strategies exist on the query level: inter- and intra-
query parallelism. Inter-query parallelism allows mul-
tiple queries to run in parallel, while intra-query par-
allelism considers the parallel execution of a single
query. In our work, we have chosen two different intra-
query strategies. The first approach is based on paral-
lel query branches by duplicating the query execution
tree multiple times and executes all branches in par-
allel. The second strategy is an intra-operator strat-
egy for processing joins called pipeline join. Here, the
available input data is split into partitions and assigned
to join works running in parallel.

2.1. Parallel Query Branches

The idea of parallel query branches is shown in Fig-
ure 1. The right-hand side shows a sequence of
operators which forms an operator tree. The left-
hand side shows the same query but with three par-
allel query branches which are coordinated by the
parallel do operator as the root node. How-
ever, the parallel version is not an exact copy of

89

Figure 1. Parallel query branches vs. se-
rial query execution plan

the original execution plan: the join and scan opera-
tors are replaced by corresponding coop join and
coop scan implementations.
Parallel query branches can be easily derived from se-
rial query execution plans just by replacing the join
and scan operators, replicating the whole plan to mul-
tiple branches, partition the input, and adding a new
root operator parallel do. Finally, each branch is
assigned to a single physical thread.

The coop scan Operator. The coop scan oper-
ator is quite similar to the normal scan operator. Every
coop scan operator receives one part of the avail-
able input chunks for initial load balancing. Due to
possible data skew, the chunks do not all contain the
same number of triples and in the end, the sum of all
triples over all assigned chunks can be different be-
tween different branches. To address this issue, a work
stealing strategy is used.
After processing all available chunks, the coop scan
operator asks his right-hand neighbor from another
branch to share work. If the neighbor has more than
one chunk not processed yet, the asker “steals” some
of these chunks. Otherwise, it keeps the last chunk
and nothing is transfered. In this case, the next branch
is asked until none of the neighbors has any chunk
not processed yet. For synchronization purposes each
chunk contains only a single atomic variable for indi-
cating the processing state.
Using the same physical thread for processing data
reduces the operation system overhead. Only the re-
quested data between the local memory and processing
unit must be transfered.

The coop join Operator. The default
index join processes its outer input relation
by looking up the join value in an index for the inner
relation. Here, a problem is that it is unknown how
many chunks have to be processed from the inner

relation, i.e. the workload per chunk is not known
which makes a direct mapping of input workload to
worker threads unfair. To address this, a strategy like
work stealing would be useful, but a direct application
would result in significant overhead due to the finer
granularity in the join operator.
A solution is the so-called coop join opera-
tor, which implements work sharing between all
coop join operators of the same level in different
branches. When one operator instance has no more
work to do, it asks its siblings for portions of the re-
maining work; full chunks and parts of a single chunk
can be transferred. Here, no explicit synchronization
is required, because only the sibling can decide which
chunk can be accessed and transferred. On the other
hand, the asker has to register in the givers list and the
giver has to check periodically if some asker is avail-
able. Periodical checking the giver list is negligible
compared to the waiting time between sending a re-
quest and receiving a response. The overhead can be
further reduced, when the asker performs busy waiting
instead of thread sleeping.

2.2. Pipelined Join

The pipelined join approach uses the TBB1 par-
allelization approach, which is called task- based load
balancing. This method splits up the available work
into small partitions. Every partition is mapped to a
task and finally the task can be mapped to a physical
thread. Faster threads have to process more tasks than
others. The more tasks and the smaller the partitions,
the higher is the load balancing between threads. It is
a portable approach for almost every application.
Unfortunately, increasing the number of tasks and de-
creasing the partition size is not for free, but results
in an overhead for each created task. The problem
size must be big enough; otherwise the overhead is too
huge and the performance will decrease. The num-
ber and size of task limits the load balancing between
threads if the problem size is too small to be divided
into many smaller tasks. There is also no possibility to
share work between different tasks.
The goal of the pipelined join operator is to find
a way to make use of the task-based load balancing
strategy, without the need for any work sharing or
stealing. The work task should be complex enough
to be parallelized, it needs a dividable nature and fi-
nally it should be applicable to our query execution
tree. A good place for applying this strategy is the in-
dex join operator, which implements an index-based
nested loops strategy. The pipelined join opera-
tor just creates tasks for processing partitions of input
data. However, the challenge is to collect the results
of all tasks in a single result chunk. If all tasks have

1Intel Threading Building Blocks library is a highly optimized
library for implementing parallelized software. It can be found at
http://threadingbuildingblocks.org.

90

to access a single chunk list to store their results, we
would need to pay the cost of concurrency for each re-
sult tuple. If we would allow each task to return its
own chunk of result tuples we would end up with a
large number of result lists. The implementation of the
pipeline join relies on the fact that although we create
many tasks we have no more than C tasks active at any
moment on the C threads. Thus, we need only C con-
tainers to be alternatively mapped to each of the active
tasks.

2.3. TBB Scheduler

Assigning tasks to physical threads is done by the TBB
Scheduler. For small queries and unbalanced operator
trees it is not efficient to use all available processing
units of the system. Therefore, a combination of intra-
and inter-query parallelization is necessary to really
utilize the available cores. We address this issue by
providing our own implementation of a TBB sched-
uler.
The scheduler takes the first query, uses the paral-
lel branches of the operator tree and assigns every
branch to a physical thread. Before the last branch is
started the scheduler is called again in order to sched-
ule the subsequent query. This query is again split
into branches but not started before any free physi-
cal thread is available. The process stops when the
scheduled query has at least one pending task wait-
ing to start executing. This helps to improve CPU uti-
lization, because we have always tasks ready to run
when any thread becomes free when there are enough
queries waiting in the queue.

2.4. Boost Mode

Using the default TBB task-based load balancing ap-
proach has two disadvantages. The first is the logi-
cal creation of tasks by using the TBB scheduler. The
second is the assignment of created tasks to threads,
which is also handled by the TBB scheduler and needs
support from the operating system. The latter one
is more expensive than the first one and should be
avoided. It happens, when the TBB scheduler does
not find any free task to execute. The physical thread
is going to sleep. A solution is to deny sleeping by us-
ing active waiting. Every thread, which has no work,
is waiting active for some given time. If a new query
arrives during the waiting phase, it splits up in tasks,
which are assigned to waiting threads.

3. Evaluation

In this section, we give a brief overview on the main
results of our experimental evaluation. The hardware
platform was a Hewlett Packard DL980 G7-1 server
and was provided by the Future SOC Lab of the Hasso-
Plattner-Institute (HPI). The server contains 8 Xeon

Figure 3. Speedup with respect to differ-
ent number of chunks and threads.

(Nehalem EX) X7560 CPUs, each with 8 physical and
logical cores, and 2048 MB RAM. The total sum of
physical cores is 64, with 64 logical cores. Other
hardware specifications are 2.26 GHz clock frequency,
32 KB data and 32 KB instruction set per core (L1
cache). The L2 cache provides 256 KB per core and
the L3 cache has 24 MB accessible by all cores.
Apart from several micro benchmarks for measuring
memory latencies, NUMA effects etc. we have per-
formed several tests with different queries on differ-
ent data sizes. In the following we present the results
for a single query execution plan where we have var-
ied the number of chunks (input size) and the number
of parallel working threads to determine the possible
speedup. Furthermore, only the join operation is con-
sidered, because executing SPARQL on triple stores
results in very join-intensive query execution plans and
more than 99% of runtime is spent by the join opera-
tor. Thus, the result can be generalized for almost all
queries which uses joins. More results including the
results of the micro benchmarks can be found in [2].

Parallel Query Branches. The parallel query
branch experiment uses the coop scan and
coop join operators. The speedup graph in Fig-
ure 3 shows the speedup variation with respect to
different numbers of chunks at scan level. More
chunks at scan level results in better speedup, be-
cause the distribution among branches is easier.
The 2-chunks series gained a speedup of 21 by
using 40 threads in parallel. Here, the speedup is
achieved mainly by to the coop join operator. The
15-chunks series touches the 30 by using 40 threads.
Both 342 and 6200-chunk series starts with quite lin-
ear behavior and the deviation from the ideal speedup
is not noticeable with less than 32 threads. After 20
respective 28 threads the slope is decreasing. The
maximum achieved speedup is 51 with 57 respective
61 threads.
The load unbalancing in terms of runtime between dif-
ferent branches is shown in Figure 4. In the worst case,
the unbalance is always less than 7%.
Figure 5 shows the ratio between useful work and
overhead on the 342-chunk example. The overhead in-

91

$1 := coop_scan(p-index, "<http://www.w3.org/2000/01/rdf-schema#label>");
$2 := coop_join($1, s-index, _0, =[_1, "<http://...>"]);
$3 := coop_join($2, s-index, _0, =[_1, "<http://...>"]);
$4 := filter($3, >[_8, 845]);
$5 := coop_join($4, s-index, _0, =[_1, "<http://...>"]);
$6 := filter($5, =[_11, "<http://...>"]);
$7 := coop_join($6, s-index, _0, =[_1, "<http://...>"]);
$8 := filter($7, =[_14, "<http://...>"]));
$9 := parallel_do($8, NUM_CORES);
printer($9)

Figure 2. Example query execution plan.

Figure 4. Load unbalancing in terms of
runtime.

cludes the times for accessing the memory and cache
synchronization. The average overhead is about 5%
for the coop join operator, but it reaches 10% for
higher number of threads.

Figure 5. Overhead and useful work dis-
tribution.

In summary, our coop join operator achieves a
good speedup but has some overhead. Work sharing
between different branches with the coop join op-
erator should be used if the number of chunks at the
scan level is small or if no waiting queries exist. In
case of waiting queries, the coop scan paralleliza-
tion is more useful by scheduling additional queries.
In general work stealing has a smaller overhead than

Figure 6. Comparison between both ap-
proaches.

work sharing.

Pipelined Join The pipelined join approach uses the
pipelined join operator for join processing. For
scanning data, a single thread was used to provide the
input data for all pipelined join tasks. A com-
bination of pipelined join and coop scan re-
sults in smaller speedup than shown here.
The speedup of the pipelined join operator is
shown in Figure 6. In all cases, the speedup does
not reach more than 15. Compared to the parallel
query branches approach (maximum speedup of 51)
the pipelined join approach has shown less useful.

4. Conclusions & Outlook

Today, multicore systems are widely available, but de-
veloping software for utilizing these architectures is
still a challenging task. Several hardware details have
to be considered, otherwise the overhead will reduce
the possible speedup of parallelization.
In LODcache we have chosen a parallelization ap-
proach based on the ideas of work stealing and work
sharing for balancing the work between different
threads in case of data skew and keeping the utiliza-
tion of the CPU cores high. These strategies are im-
plemented in different dedicated query operators such
as coop scan, coop join and pipelined join. Further-

92

more, all these operators work in a cache-aware way
by processing larger chunks of triples represented in a
columnar memory layout.
Using the provided hardware at the HPI Future SOC
Lab we were able to evaluate these strategies with big
data sets on a CPU with 64 cores. Our evaluation re-
sults show a linear speedup up to 28 cores. The maxi-
mum achieved speedup is up to 51 by using 60 threads.
We found also only a small overhead for synchroniza-
tion between the threads for work stealing (up to 10%
for coop join) and 7% unbalancing between branches
in terms of runtime.
In future work, we plan to further investigate main
memory layouts taking the characteristics of NUMA
into account. Furthermore, dynamic scheduling of
queries, i.e. assigning cores to incoming queries, to
improve the query throughput is another issue we will
address.

References

[1] Peter A. Boncz, Martin L. Kersten, Stefan Manegold:
Breaking the Memory Wall in MonetDB. Commun.
ACM 51(12): 77-85, 2008.

[2] Ahmed Imad Aziz: Parallelization Techniques for In-
Memory Processing of Linked Data. Master’s Thesis,
Ilmenau University of Technology, Department of Com-
puter Science and Automation, September 2012.

93

Next Generation Sequencing: From Computational Challenges to
Biological Insight

Cornelius Fischer
cfischer@molgen.mpg.de

Annabell Witzke
witzke@molgen.mpg.de

Sascha Sauer
Nutrigenomics and Gene Regulation

Otto-Warburg Laboratory
Max Plank Institut for Molecular Genetics, Ihnestr. 63-73, 14195 Berlin, Germany

sauer@molgen.mpg.de

Abstract

Next generation sequencing (NGS) is changing the
way researchers approach analysis of biological in-
formation. However, one of the main bottlenecks in
NGS applications is the computational analysis of ex-
perimental data. Using the Future SOC Lab resources
we established and used a computational pipeline for
the analysis of sequencing data that we recently gen-
erated. We found that the provided resources worked
very robust and fast. This enabled us to move rapidly
from raw NGS data to initial biological insights.

1. Project idea

Transcription factors are crucial proteins that are in-
volved in controlling gene expression. Thus, activities
of transcription factors determine how cells function
and respond to environmental stimuli. Many transcrip-
tion factors bind directly to DNA close to the genes
they regulate. The determination of the genomic loca-
tion of transcription factor binding sites provides im-
portant insights into the mechanism of regulation that
will potentially be used to develop drugs for preven-
tion and treatment of metabolic disorders. We there-
fore analysed the binding sites of a transcription fac-
tor of interest (TFI) that is involved in metabolic and
inammatory signal integration. Transcription factor
binding is often DNA sequence specific. However, it
becomes clear that features beyond DNA sequences
define where transcription factors bind. It has previ-
ously been shown that transcription factor binding cor-
relates with regions of open chromatin that represent
active regulatory elements [3]. Therefore, we deter-
mined the openness of chromatin that accompanies the
binding of the TFI. Collectively, our studies aimed to
provide an initial framework for understanding and in-
vestigating TFI-dependent gene regulations in human

cells by the use of integrative analysis strategies.

2. Used Future SOC Lab Resources

We used a Hewlett Packard DL980 G7 server that was
equipped with eight 8-core Intel Xeon X6550 pro-
cessors and 128 GB of RAM running Ubuntu Server
12.04 LTS. This powerful system was perfectly suited
for our approach. The only disadvantage regarding
flexibility was the restriction to weekly user time slots.

Figure 1. Dynamic pipeline for computa-
tional analysis of high-throughput NGS
data.

3. Methods and tools

Genomic binding sites of the TFI were determined
by sequencing the DNA that was bound by the TFI,

95

a technique referred to as chromatin immunoprecip-
itation coupled with NGS (ChIP-seq). Open chro-
matin was investigated using formaldehyde-assisted
isolation of regulatory elements coupled with NGS
(FAIRE-seq). The computational pipeline for NGS
data analysis is given in Figure 1. The ChIP-seq and
FAIRE-seq derived unltered 36bp raw reads (about 23
GB) were uniquely aligned to the human reference
genome February 2009 assembly (GRCh37/hg19) us-
ing the fast and memory-efficient short read aligner
Bowtie [4]. Systematic bias was corrected prior
to downstream analysis using the tool BEADS [2].
Post-mapping analysis workflows involved determi-
nation of genomic regions significantly enriched in
aligned tags by the use of the peak calling algorithms
MACS [7] and F-Seq [1]. The defined peak intervals
were further characterized relative to genome features
using Bedtools [5] and R [6].

4. Findings

The Future SOC Lab resources helped us to rapidly
analyse data generated by NGS. Using the multi-core
architecture we were enabled to systematically test
several settings for sequencing tag mapping, filtering
and peak calling. Initially, we used the established
pipeline to generate genome-wide density maps of TFI
binding and chromatin accessibility (Figure 2).

Figure 2. Density profiles generated from
NGS data help to investigate transcrip-
tion factor binding and chromatin states
on a genome-wide scale.

4.1. Genome-wide identication of TFI
binding sites

We applied peak calling using calibrated settings and
dened a high-condence set of genome-wide TFI bind-
ing sites with 5734 peak intervals if TFI was acti-
vated and 1130 peak intervals if TFI was not activated.

These binding regions were integrated with gene ex-
pression data to predict a putative gene regulatory net-
work of the cellular response to TFI activation (Fig-
ure 3).

Figure 3. Network prediction that con-
nects the identified TFI target genes
with the global transcriptional response.
Node colors indicate expression levels
of genes (red: up-regulated, blue: down-
regulated). The node size is proportional
to the relative connectivity to other fac-
tors.

4.2. Quantitative relationship between
TFI binding and open chromatin

To quantify the relation of TFI binding and chromatin
status, genomic regions with high chromatin acces-
sibility over background were delineated with liberal
stringency [3] and 170k sites were identied encom-
passing 60Mb of the human genome (2.2%). Non-
promoter sites of open chromatin (91%) showed dy-
namic activation-dependent changes while promoter-
associated sites (9%) were relatively constant. 72% of
the TFI bound regions were restricted to sites of open
chromatin generating a high-confidence set of puta-
tively functional binding regions.

5. Next steps

Further participation in the HPI Future SOC Lab
would enable us to break new ground in data anal-
ysis and to extract biologically meaningful informa-
tion from the generated NGS data. Using sequencing
data that we recently generated we were not exploiting
the whole potential of the provided resources. Thus,
the provided capacities will enable us to integrate pub-
licly available genome-wide data from other research

96

groups with our own data in future work. Therefore,
the already established computational pipeline shall be
used to help to identify and understand the mechanism
of metabolic pathologies and inflammatory processes.

References

[1] A. P. Boyle, J. Guinney, G. E. Crawford, and T. S. Furey.
F-seq: a feature density estimator for high-throughput
sequence tags. Bioinformatics (Oxford, England),
24(21):2537–2538, Nov. 2008. PMID: 18784119.

[2] M.-S. Cheung, T. A. Down, I. Latorre, and J. Ahringer.
Systematic bias in high-throughput sequencing data and
its correction by BEADS. Nucleic Acids Research,
39(15):e103, Aug. 2011. PMID: 21646344 PMCID:
PMC3159482.

[3] K. J. Gaulton, T. Nammo, L. Pasquali, J. M. Si-
mon, P. G. Giresi, M. P. Fogarty, T. M. Panhuis,
P. Mieczkowski, A. Secchi, D. Bosco, T. Berney,
E. Montanya, K. L. Mohlke, J. D. Lieb, and J. Ferrer.
A map of open chromatin in human pancreatic islets.
Nature genetics, 42(3):255–259, Mar. 2010. PMID:
20118932.

[4] B. Langmead, C. Trapnell, M. Pop, and S. L. Salzberg.
Ultrafast and memory-efficient alignment of short DNA
sequences to the human genome. Genome biology,
10(3):R25, 2009. PMID: 19261174.

[5] A. R. Quinlan and I. M. Hall. BEDTools: a flexible suite
of utilities for comparing genomic features. Bioinfor-
matics (Oxford, England), 26(6):841–842, Mar. 2010.
PMID: 20110278.

[6] R Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Com-
puting, Vienna, Austria, 2012. ISBN 3-900051-07-0.

[7] Y. Zhang, T. Liu, C. A. Meyer, J. Eeckhoute, D. S.
Johnson, B. E. Bernstein, C. Nusbaum, R. M. Myers,
M. Brown, W. Li, and X. S. Liu. Model-based analy-
sis of ChIP-Seq (MACS). Genome Biology, 9(9):R137,
2008. PMID: 18798982 PMCID: PMC2592715.

97

ECRAM (Elastic Cooperative Random-Access Memory)
HPI Future SOC Lab Project Report September 2012

Kim-Thomas Rehmann Kevin Beineke
Michael Schöttner

Institut für Informatik, Heinrich-Heine-Universität Düsseldorf,
Universitätsstraße 1, 40225 Düsseldorf, Germany

E-Mail: Kim-Thomas.Rehmann@uni-duesseldorf.de

Abstract

The ECRAM storage system is an experimental plat-
form for data-centric cloud applications. In con-
trast to a traditional one-copy serializable database,
ECRAM allows highly concurrent accesses to storage
objects. It replicates objects in order to make them
availe on shared-nothing architectures. An adaptive
replication mechanism analyses object access patterns
to switch dynamically between update and invalidate
protocol. We have evaluated the impact of different
replication strategies on performance using HPI Fu-
ture SOC Lab’s resources. The experiments demon-
strate that adaptive replication scales better than up-
date and invalidate replication for the applications un-
der examination.

1 Project Idea

The ECRAM project addresses current research topics
related to storage for cloud applications [6]. ECRAM
simulates a shared in-memory storage [3] on shared-
nothing clusters. The object-based storage provided
by ECRAM is comparable to a key-value store, where
the keys are object identifiers and the values contain
binary object data. In contrast to most existing key-
value stores, ECRAM increases availability by repli-
cating data. It synchronizes objects optimistically in
order to allow atomic multi-object operations.
ECRAM does not restrict the format of objects it
stores. It neither associates any semantics with object
content. Applications can therefore implement row-
based or column-based tables, or they can define a
flexible data format, such as graph structures.
Cloud applications often have read-optimized object
access patterns. Access patterns with prevailing reads
are a benign workload for optimistic concurrency
control. Therefore, ECRAM implements optimistic
multi-version concurrency control using the concept of
memory transactions. In contrast to traditional DBMS
transactions, memory transactions operate on repli-

cated rather than partitioned data. Replication relieves
ECRAM from the need to handle distributed transac-
tions. Transactions can access distributed storage, but
they always execute on a single node. The coloca-
tion of in-memory storage and application code allows
ECRAM to restart transactions transparently for appli-
cations.
By caching replicas in the application address space,
ECRAM achieves zero-latency object accesses at the
best. Transparent access detection using virtual
memory hardware simplifies application development.
ECRAM’s adaptive caching mechanism is able to
switch dynamically between update and invalidate se-
mantics and to prefetch objects to reduce access la-
tency. Adaptive caching monitors and analyses access
patterns to predict future accesses.
ECRAM can run on conventional compute clusters
over TCP/IP networking as well as on a single ma-
chine over the loopback network interface. Our exper-
iments on HPI Future SOC Lab resources investigate
the performance of ECRAM’s adaptive replication on
a multicore machine with huge main memory.
This report is structured as follows. Section 2 sketches
design and implementation of the ECRAM distributed
in-memory storage and of EMR, the in-memory
MapReduce implementation based on ECRAM. Sec-
tion 3 describes the Future SOC Lab resources used
for experiments with EMR, and Section 4 presents the
results of the measurements. Section 5 concludes this
report.

2 Using ECRAM for in-memory MapRe-
duce

The ECRAM in-memory storage implements update-
anywhere objects on shared-nothing clusters. In or-
der to make objects available on all participating
nodes ECRAM replicates objects. Therefore, consis-
tency handling is an important part of its functionality.
ECRAM’s builtin consistency handling enables lock-
free implementation of applications and of program-
ming frameworks such as EMR.

99

2.1 The ECRAM distributed in-
memory storage

ECRAM’s consistency handling bases on memory
transactions in the sense of distributed transactional
memory [2,7]. A memory transaction is a sequence of
read or write accesses by one computing node. If the
transaction’s read and write set does not intersect with
transactions committed in the meantime, the transac-
tion is said to be valid and commits its changes atom-
ically to the shared storage. If ECRAM detects an in-
valid transaction, it transparently rolls back the spec-
ulative transaction’s changes and restarts it. For effi-
cient comparison of read and write sets, ECRAM has
a conflict unit size of 4 KB. In order to ensure the
global serializability of transactions, ECRAM’s cur-
rent implementation uses a central validator node. Ob-
ject content is transferred directly between computing
nodes.
Accessing objects outside transactions is possible with
ECRAM, however read accesses may return out-of-
date content, and changes are not stored permanently.
In the course of optimizing ECRAM for MapReduce
workload, we have developed a relaxed transactional
consistency targeted towards the needs of MapReduce
applications, which we describe in the next subsection.
ECRAM implements three replication modes. The in-
validation mode replicates objects only on demand. To
avoid frequent accesses to outdated object versions,
ECRAM multicasts object invalidations using trans-
action commit notifications. Invalidation mode con-
sumes least bandwidth, but requires synchronous com-
munication when accessing recently modified objects.
The update mode sends the content of each modified
objects along with the commit notifications. Update
replication has a high bandwidth requirements, but en-
sures that replicas are almost always available without
network communication. The third replication mode,
adaptive replication, monitors object accesses to de-
tect object access patterns. In case of regular access
patterns, the adaptive mode replicates objects only to
those nodes that will probably access the version of
the object soon. Besides replicating objects for perfor-
mance, ECRAM creates backup replicas to improve
fault tolerance in case of failures.

2.2 The EMR Framework for In-
memory MapReduce

In order to demonstrate the utility of distributed in-
memory storage for MapReduce, we have devel-
oped the EMR extended MapReduce framework [6].
MapReduce applications running on EMR share in-
formation by means of the ECRAM1 distributed in-
memory storage. The EMR framework implements an

1ECRAM is an acronym for elastic cooperative random-access
memory.

split

master

shuffle

merge

map jobs

reduce jobs

workers

while
iterate

in-memory
storage

input
objects

output
objects

inter-
mediate
objects

Figure 1. Execution model of in-memory
MapReduce

extended MapReduce model comprising one-pass, it-
erative and on-line execution of the MapReduce se-
quence. Figure 1 illustrates the execution model of
in-memory extended MapReduce.
The EMR framework stores application data as repli-
cated objects in the ECRAM in-memory storage. Dur-
ing MapReduce execution, the EMR framework auto-
matically prepares input, intermediate and output ob-
jects according to the application’s specification. Fur-
thermore, worker nodes can create objects on their
own using the function ecram_alloc, which re-
turns zero-initialized objects of the requested size. If
an object is not needed any longer, it must be destroyed
using ecram_free. Objects in ECRAM may con-
tain references to other objects, which allows applica-
tions to implement distributed data structures.
In general, transactional consistency is well-suited for
irregular access patterns with low conflict probability.
However, for applications that conform strictly to iter-
ative MapReduce with alternating, stateless map and
reduce phases, transactional consistency is slightly too
strong because the sequence of map and reduce phases
eliminates concurrent accesses. If the programmer can
preclude access conflicts, validation of transactions is
dispensable. We have implemented a special weak
consistency which encapsulates accesses in transac-
tions but assumes the absence of conflicts and omits
the validation phase. The programmer selects non-
validating transactions when calling ecram_bot.
Like other MapReduce frameworks, EMR comprises
a scheduler for map and reduce jobs [5]. EMR stores
work-queues, jobs and configuration data in ECRAM
to take advantage of automatic replication and consis-
tency. To avoid busy waiting for conditions, EMR uses
the ecram_wait function that blocks until a stor-
age object fulfills a given condition. Each work-queue
has a field specifying the current number of jobs in
the queue, which serves as a condition variable for the
ecram_wait synchronization primitive.
EMR keeps a queue of map and reduce jobs for
each worker with the intention to minimize contention
on the queues. High contention would lead to high
transaction conflict rates and therefore degrade perfor-

100

mance. For a given number of worker nodes n, the
first n jobs are assigned round-robin, and successive
jobs are distributed randomly to the nodes. A more
advanced load leveling policy could be implemented
in a future version of EMR.
In some MapReduce applications, job execution time
has significant outliers [1]. EMR implements a simple
work-stealing approach to counteract workers idling
while others still have jobs in their queue. If a worker
finds that he is about to block on his empty queue, he
scans the work-queues of his peers for jobs to steal
from them. Given that work-queues are stored as
shared objects, there is no danger of deadlocks or lost
jobs.

3 Future SOC Lab Resources

We have executed our experiments on a Hewlett
Packard ProLiant DL980 G7 Server. The server is
equipped with 8 Xeon Nehalem X7560 CPUs, each
having 8 hyper-threaded cores. The CPU clock rates
are 2,27 GHz, the L3 caches 24 MB large, and Turbo
Boost is enabled. The DL980 has 2 TB of RAM. Given
that our experiments run in main memory of the sin-
gle machine, they do not use the hard disks, neither
the Fibre Channel network card. The DL980 boots
Ubuntu Server 10.10 from a local harddisk and mounts
the home file-system from a NAS device.

4 Findings

Our previous project reports from October 2011 and
Mai 2012 have documented the initial results of run-
ning ECRAM on Future SOC Lab. We had con-
firmed that ECRAM runs on HPI Future SOC Lab
and scales comparably, and in some cases significantly
better than on a distributed compute cluster. In the
Spring 2012 period, we have assessed ECRAM’s per-
formance more in detail with a special focus on adap-
tive replication. Considering that ECRAM is a fully
distributed system, running several ECRAM programs
on one multicore machine constitutes a best case test
environment because of the low latency and the high
bandwith.
Figure 2 shows the runtime of the raytracer applica-
tion with an image size of 1800x2400 pixels and 228
objects in the scene graph. The raytracer application
is implemented using ECRAM’s framework for in-
memory MapReduce [6]. In the map phase, the worker
nodes calculate the pixels in disjoint regions, and in
the reduce phase, the output image is produced. The
raytracer’s map phase is an embarrassingly parallel
workload, because each pixel in the output image is
traced independent of any other pixel. The raytracer’s
reduce phase simply collates all regions computed by
different nodes into the final output image. The invali-
date protocol causes the reduce jobs to pull the output

Figure 2. Execution time of raytracer
using ECRAM on DL980, image size
1800x2400 pixels

Figure 3. Execution time of KMeans us-
ing ECRAM on DL980, 100,000 points in
3D space with 16 cluster centers

from the map jobs, which increases the amount of syn-
chronous network messages and thereby the overall la-
tency. The update protocol distributes all data gener-
ated to all other nodes, most of which do not access
the data lateron. The bandwidth required to tranfer
the huge amount of data limits scalability. The adap-
tive replication protocol notices that the output of the
map jobs is afterwards accessed by the reduce jobs.
It sends updates directly from map workers to reduce
workers, which keeps the required bandwidth low and
at the same time avoids synchronous requests to pull
replicas.
Figure 3 shows the runtime of the KMeans applica-
tion with 100,000 points in the 3D space, which are
grouped into 16 clusters. The KMeans algorithm is
generally not so well parallelizable, because the it-
erative execution often updates data. However, the
adaptive replication protocol often successfully pre-
dicts where data is required in the next round, so it

101

scales better than the invalidate or update protocol.

5 Next Steps

In the context of cloud computing, network and ma-
chine failures are common. Therefore, the reliability
of distributed storage is an important research topic.
Until now, ECRAM provides reliability by means of
replication in volatile memory. We are currently work-
ing on providing persistency within ECRAM by log-
ging and storing objects to durable storage such as
harddisks, flash memory, solid state drives and phase-
change memory. Each of these storage technologies
has its own characteristics, such that persistent stor-
age should implement different policies for different
technologies. If time and resources permit, we intend
to evaluate our distributed in-memory file-system [4],
which is based on ECRAM and FUSE, on Future SOC
Lab.
ECRAM enhances fault tolerance of parallel appli-
cations by executing each thread in a private protec-
tion domain. However, using this approach, different
threads executing on the same machine cannot bene-
fit from their colocation. OS-level IPC mechanisms
could allow them to access shared data directly. Direct
sharing can potentially boost the performance of appli-
cations on powerful multicore machines like the ones
in HPI Future SOC Lab. We plan to implement direct
sharing techniques in ECRAM and evaluate them on
Future SOC Lab. Given that ECRAM was designed
for data sharing in shared-nothing compute clusters,
we are also interested in evaluating ECRAM’s perfor-
mance on a cluster of multicore machines.

References

[1] Ganesh Ananthanarayanan, Srikanth Kandula, Al-
bert Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and
Edward Harris. Reining in the outliers in Map-
Reduce clusters using Mantri. In Proceedings of
the 9th USENIX conference on Operating systems
design and implementation, OSDI’10, pages 1–
16, Berkeley, CA, USA, 2010. USENIX Associ-
ation.

[2] Maurice Herlihy and Victor Luchangco. Dis-
tributed computing and the multicore revolution.
SIGACT News, 39(1):62–72, 2008.

[3] Hasso Plattner and Alexander Zeier. In-Memory
Data Management. Springer, Berlin and Heidel-
berg, Germany, 2011.

[4] Kim-Thomas Rehmann and Michael Schöttner.
Adaptive meta-data management and flexible con-
sistency in a distributed in-memory file-system.
In Proceedings of the Twelfth International Con-
ference on Parallel and Distributed Computing,

Applications and Technologies (PDCAT 2011),
Gwangju, Korea, 10 2011.

[5] Kim-Thomas Rehmann and Michael Schöttner.
Applications and evaluation of in-memory mapre-
duce. In Proceedings of the Third International
IEEE Conference on Cloud Computing Technol-
ogy and Science 2011 (CloudCom 2011), Athens,
Greece, 12 2011.

[6] Kim-Thomas Rehmann and Michael Schöttner.
An in-memory framework for extended MapRe-
duce. In Proceedings of the Seventeenth IEEE
International Conference on Parallel and Dis-
tributed Systems 2011 (ICPADS 2011), Tainan,
Taiwan, 12 2011.

[7] Paolo Romano, Luis Rodrigues, Nuno Carvalho,
and Joäo Cachopo. Cloud-TM: harnessing the
cloud with distributed transactional memories.
SIGOPS Oper. Syst. Rev., 44:1–6, April 2010.

102

Analysis of CPU/GPU data transfer bottlenecks in multi-GPU systems for

hard real-time data streams

Uri Verner
Technion IIT

Technion City, 32000
Haifa, Israel

uriv@cs.technion.ac.il

Assaf Schuster
Technion IIT

Technion City, 32000
Haifa, Israel

assaf@cs.technion.ac.il

Avi Mendelson
Technion IIT

Technion City, 32000
Haifa, Israel

mendlson@cs.technion.ac.il

Abstract

This project is a part of our effort to extend the

framework to multi-GPU systems. In this scope, we

focused on the analysis of data transfers between a

host and multiple GPU devices, for streaming work-

loads. We identified important bottlenecks in data

transfers, and showed that data transfers to different

GPUs are interdependent. By changing the configu-

ration of GPU cards in the Tesla machine, we in-

creased the overall bandwidth between the main

memory and the GPUs, and stabilized it.

1 Introduction

Modern real-time data stream processing systems
typically use high-bandwidth connections both inter-
nally and to external sources of data, and have high
computational demands. The increasing amounts of
collected data and the demand for its processing have
far passed the compute capabilities of traditional
CPU-only systems. Compute accelerators, such as
FPGAs, DSPs and GPUs, are a common way to in-
crease a systems’ computing capabilities for specific
tasks. However, processing real-time data on a heter-
ogeneous system poses great challenges in data trans-
fer, scheduling, load balancing, software design, syn-
chronization, and more.
Previously, we have developed a high-throughput
software framework for processing of multiple real-
time streams on a heterogeneous system with a multi-
core CPU and a single GPU [1]. The framework re-
ceives a configuration of the workload – the number
of data streams and their compute and latency re-
quirements – and statically distributes the streams
between the CPU and the GPU in a way that guaran-
tees that their execution will not result in a deadline
miss. Then, each stream is processed on the device it
was assigned.
This project is a part of our effort to extend the
framework to multi-GPU systems. In this scope, we
focused on the analysis of data transfers between a
host and multiple GPU devices, for streaming work-
loads. We identified important bottlenecks in data
transfers, and showed that data transfers to different

GPUs are interdependent. The last observation is
contrary to the basic assumption that each data trans-
fer to a GPU takes a unique path over a separate, per-
GPU, PCI-Express bus.

2 CPU/GPU data transfers

We begin by describing the underlying hardware
architecture of a large multi-GPU system.

Figure 1: System architecture of a multi-GPU
platform

2.1 Architectural description

Figure 1 depicts the high-level architecture of a large
GPU-based system. There are five major types of
components in the CPU/GPU data transfer pipeline:
main memory, multicore CPUs, I/O hubs (IOH), PCI
Express switches (gray boxes in Fig. 1), and GPUs.
An on-chip memory controller connects the multicore
CPUs to the memory bus. The CPUs are linked with
fast interconnects between themselves and to the I/O
hubs. These interconnects communicate directly with
the memory controller. Thus, I/O hubs also have ac-
cess to main memory.
I/O hubs connect to GPUs over a PCI-Express tree-
shaped bus hierarchy. Each I/O hub supports two
links. Each link is multiplexed using a PCI Express
switch to two or more links, and eventually these
links are attached to GPUs.

CPU

CPU

MEM

MEM

IOH

IOH

 GPU

 GPU

 GPU

 GPU

103

2.2 Streaming data transfers

In GPU applications, data is most commonly copied
from main memory to GPU memory, and back. In
this work, in the context of extending our hard real-
time stream processing framework to multi-GPU
systems, we concentrate on transferring data streams
to multiple GPUs and back continuously and simul-
taneously. Therefore, we redirect input streaming
data from main memory to the GPUs over the follow-
ing path: main memory  CPU  IOH  PCIe
switch  GPU memory. Output is redirected over
the same path in the opposite direction.

2.3 Transfer bandwidth and predictability

The workload for our framework is hard real-time
data streams. Hence, it is essential that the latency of
data processing will be predictable. Data transfers are
a major part of processing, so the framework needs to
be able to compute a tight bound on their duration.
Transfer bandwidth to and from the GPUs is also an
issue of great importance to the system, since its
throughput is limited by the effective bandwidth for
data transfers in and out of the GPUs.
In this project, we examine how the latency and
throughput of a data transfer between the main
memory and a GPU are influenced by concurrent
data transfers to different GPUs.

3 Experiments

We ran benchmarks that measure the latency and
throughput of data transfers between the host and the
GPUs. In each experiment, a data chunk of 128MB is
transferred to or from one or more GPUs. The data
transfers are concurrent and are always done in the
same direction (host-to-device or device-to-host).
The results were calculated as an average over 100
transfers.
We used the Tesla machine in the Future SOC lab for
the experiments. The architecture and initial setup of
the machine is illustrated in figure 2. The system has
two Xeon (Nehalem) E5620 processors and supports
8 GPUs, but only has four GPUs of type NVIDIA
Tesla C2050. The main board in use was TYAN
FT72B7015, which has eight x16 PCI Express 2.0
slots. The CPUs and the IOHs are connected with
point-to-point QPI links.

Figure 2: Architecture of the Tesla machine

3.1 Bandwidth maximization by card rear-

rangement

The bandwidth test results for the system were incon-
sistent; repeating executions of the same experiment
gave different results. At its highest value, the band-
width to the four GPUs was limited by twice the
bandwidth of a PCIe link, due to the use of multi-
plexing PCIe switches. Hence, we recommended that
the configuration of GPUs be changed in a way that
no two GPUs share a PCIe switch, as illustrated in
figure 3.

Figure 3: Architecture of the Tesla machine
with altered configuration of GPUs

As a result, the benchmark results stabilized and re-
turned similar values in repeating executions. The
total bandwidth improved as well.

3.2 Latency of data transfers

Predictable and persistent latency of data transfer
operations is critical to our framework, since hard
real-time stream processing requires a priori schedul-
ing. For each data transfer, we measured the time
from issue to completion. We ran experiments that
transfer data from the host to all possible groups of
one or more GPUs.
The results showed that the latencies of data transfers
to different GPUS are inter-dependant. Moreover, in
some cases, the transfers are serialized, and the order
of serialization is arbitrary.

4 Conclusions and discussion

High bandwidth and predictable latency of data trans-
fers between the host and the GPUs are essential to
the hard real-time data stream framework. System
architecture and its configuration have great influ-
ence on these parameters.
We increased the total bandwidth between the main
memory and the GPUs, and made it stable, by rear-
ranging the GPU cards so that no two GPU cards
share a PCI Express switch.
The latency of a data transfer to a GPU depends on
concurrent transfers to other GPUs. Hence, the
stream processing framework cannot schedule data
transfers independently. As a result, we recommend
that the framework perform data transfers to all the

CPU

CPU

MEM

MEM

IOH

IOH

GPU

GPU

GPU

GPU

CPU

CPU

MEM

MEM

IOH

IOH
GPU

GPU

104

GPUs in a single stage. The latency of this stage can
be predicted by dividing the total amount of trans-
ferred data and divide it by the aggregate bandwidth
to all GPUs. Even though it is not known in which
order the transfers are finished, the overall transfer
time is stable and can easily be predicted.
Further research is required to determine the reasons
for the inconsistent latency results and the bottle-
necks for throughput.

References

[1] U. Verner, A. Schuster and M. Silberstein: Processing
data streams with hard real-time constraints on heter-
ogeneous systems. Proceedings of the 2011 ACM In-

ternational Conference on Supercomputing, June
2011.

105

KONECT Cloud – Large Scale Network Mining in the Cloud
Report, Spring 2012

Dr. Jérôme Kunegis
WeST – Institute for Web Science and Technologies

University of Koblenz–Landau
kunegis@uni-koblenz.de

Abstract

In the Spring 2012 run at the Future SOC Lab, we
used the KONECT framework (Koblenz Network Col-
lection) to compute network statistics, distributions,
plots, matrix decompositions and link prediction eval-
uations on the network of KONECT. The results are
used on the project website konect.uni-koblenz.de, and
internally at the University of Koblenz–Landau for
network analysis research.

1 Introduction

KONECT (the Koblenz Network Collection [2],
konect.uni-koblenz.de) is a project to collect network
datasets, provide a framework for the computation net-
work statistics, and display them online. One of the
project’s goals is to include a high number of diverse
network datasets of many different types. Currently,
KONECT holds 186 network datasets from 15 cate-
gories; an overview is given in Figure 1 and Table 1.
Networks in KONECT are also diverse in their struc-
ture – they can be directed, undirected, bipartite, un-
weighted, have multiple edges, signed, have ratings,
and timestamps. At the same time, KONECT strives
to implement and compute many different numerical
network statistics, analysis plots, distributions, ma-
trix decompositions and link prediction algorithms.
This combination leads to a high number of different
network-statistic combinations that must be computed.
In addition to providing a website in which the net-
work statistics are navigable and browsable, the com-
puted statistics are used for network analysis research.
For instance, papers studying measures of diversity
and power law have used the data compute by the
KONECT project [3, 4].

2 Performed Analyses

The analyses computed in KONECT include the fol-
lowing; a detailed definition for each of these is given
in the KONECT Handbook [1].

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
0

10
1

10
2

10
3

10
4

G2

ZA
HT

SW
AN Nc

SI

PM

FWFD

EF

A@

UG

Na

Shf

AS

Sh
Rpa

PS
PG

FB

OF

AF

IF

PW

HY

HA

SBPi

ADRro

AC

UF

Ff

IN
SX

UC

WR
TL

GC

GN

M1

PR

DG
Mti

Mui

Mut

OCRL

EL

LO
ST

GPSD YG

TO

EA

nfrTHc

GE

bfr

thAP
BK

GH

PHc

EU

Rer

CN

TM

SA

SZ
WOW2

JE

Ws

Rda

qen

WN

R2

BX

EP
nen

M2

Ow

RM

ND
W3

Vut

GW
EN

mde

FI

CS

Vti

ben
Vui

Fc

SF

Ol

SO

YD

BAr
EX

R2
AM

WC

Sc

But

R1

Bui
Bti

Wti

Cut

CtiCui

WU

GO

WK
RO

DB

Sd

Pa

FG

BSWut
ZHi

CO

TH

WT

LIc

PH

SK

AR

mfr

HUi

Scd

men

M3

BAiHUr

LI

PC

ER

Wui

Wa

Pc

Lb

Ls

Fr

YT

it
es

Wpl

Ic

RE

Wpt
FL

Wja

ZS

WPWru

LJ

Wde

fr
de

TR
Wit

LG

FSG

Wfr

OR

IF

DL

NX

OG

YS

en

Dui

Dut

Dti

Wen
TWTF

Size (|V|) [vertices]

A
v
e
ra

g
e
 d

e
g
re

e
 (

d
)

[e
d
g
e
s
 /
 v

e
rt

e
x
]

Figure 1. All networks in KONECT ar-
ranged by the size (the number of nodes)
and the average number of neighbors of
all nodes. Each network is represented
by a two- or three-character code. The
color of each code corresponds to the
network category as given in Table 1.

The numerical analyses computed include the con-
nected components, the diameter, the radius, the es-
timated power-law exponent, the Gini coefficient, the
degree distribution entropy, the algebraic connectivity,
the algebraic conflict, the frustration, the bipartivity,
the number of triangles and the clustering coefficient.
The computed plots include the edge weight and de-
gree distributions, the Lorenz curve, spectral plots and
hop plots. A sample of computed plots is shown in
Figure 2, showing a screenshot of the Plots section of
the KONECT website.
Computed matrix distributions include the eigenvalue
decomposition, the singular value decomposition and
DEDICOM-type decompositions (Decomposition into
Directed Components) of various characteristic graph
matrices including the adjacency matrix, the normal-
ized adjacency matrix, the Laplacian matrix, asym-
metric matrices, complex matrix, and other, experi-
mental decompositions.
Computed link prediction algorithms include preferen-
tial attachment, counting connecting paths, graph ker-
nels and solving logistic regression models.

107

Figure 2. Network analysis plots computed in KONECT and shown on the KONECT website.

108

Table 1. The network categories in KONECT. Each category is assigned a color, which is
used in plots, for instance in Figure 1. The given dataset counts are current as of April 2013.

Category Vertices Edges Count

 Affiliation Actors, groups Memberships 8
 Authorship Authors, works Authorships 18
 Co-occurrence Items Co-occurrences 2
 Communication Persons Messages 8
 Contact Persons Interactions 4
 Features Items, features Properties 5
 Folksonomy Users, tags, items Tag assignments 17
 Interaction Persons, items Interactions 14
 Lexical Words Lexical relationships 5
 Physical Various Physical connections 13
 Ratings Users, items Ratings 11
 Reference Documents References 28
 Semantic Entities Relationships 1
 Social Persons Ties 29
 Text Documents, words Occurrences 5

3 Implementation

The KONECT code executed on Future SOC Lab
servers is written in the Matlab programming lan-
guage. The code is available in form of a Matlab tool-
box.1

We used a single server having 2 terabytes of mem-
ory (RAM) and 128 cores. Each computation used be-
tween one and seven CPUs in parallel; with the matrix
decompositions using the most parallelism. To control
the execution, a Makefile-based framework was used,
using the -j option to enable parallelization. In accor-
dance with our previous experiments with KONECT,
the bottleneck for the computation of network statis-
tics is memory, not CPU. Thus, we were able to fully
use the 2 terabytes available.

4 Conclusions and Acknowledgements

The computation of network analyses is not finished.
First, the available runtime was not enough to execute
all analyses for all networks. Furthermore, more net-
work analyses and networks are added to KONECT
constantly, and we are constantly computing new data.
We thank the Future SOC Lab for supporting the
KONECT project through making available hardware.
KONECT was written by Jérôme Kunegis, Daniel
Dünker and Holger Heinz. We also thank every-
one who has made available network datasets; see
http://konect.uni-koblenz.de/about for a full list.

1konect.uni-koblenz.de/toolbox

References

[1] J. Kunegis. Handbook of network analysis [KONECT –
the Koblenz Network Collection], 2013.

[2] J. Kunegis. KONECT – The Koblenz Network Collec-
tion. In Proc. Int. Web Observatory Workshop, 2013.

[3] J. Kunegis and J. Preusse. Fairness on the web: Alter-
natives to the power law. In Proc. Web Science Conf.,
pages 175–184, 2012.

[4] J. Kunegis, S. Sizov, F. Schwagereit, and D. Fay. Di-
versity dynamics in online networks. In Proc. Conf. on
Hypertext and Social Media, pages 255–264, 2012.

109

Adaptive Realtime KPI Analysis of ERP transaction data using In-Memory

technology

Prof. Dr. Rainer Thome
Dipl.-Kff. Patricia Kraft

Chair of Business Administration
and Business Computing

Joseph-Stangl Platz 2
97070 Würzburg

thome@wiinf.uni-wuerzburg.de
pkraft@wiinf.uni-wuerzburg.de

Dr. Andreas Hufgard
Dipl.-Kfm. Fabian Krüger
Dipl.-Kfm. Ralf Knauer

IBIS Labs
Mergentheimer Str. 76a

97082 Würzburg
hufgard@ibis-thome.de
fkrueger@ibis-thome.de
knauer@ibis-thome.de

Abstract

The adaptable real-time analysis provides an answer

to the greater complexity and size of advanced ERP

systems (big data), and increased market demands

for speed and quality of decision-related data. In-

memory storage enables direct access to document or

change data, and allows greater flexibility when se-

lecting by date, organization and many other charac-

teristics. During this project we have been able to

gain some basic knowledge about SAP HANA and

establish a data connection between HANA and SAP

ERP using the SAP Landscape Transformation Serv-

er.

1 Setting up the environment

In the beginning of the project we were given access
to the Windows Terminal Server (WTS) in order to
connect to a SAP HANA instance hosted in Walldorf.

This should bridge the time gap until the system in
Potsdam at HPI is available. Therefore the Walldorf
system was kind of a playground for working through
tutorials, creating the first tables and views.

1.1 Difficulties

The HANA instance accessed via WTS was running
an old release at the beginning (as of November
2011). This led to a lack of functionality, for instance,
it was not possible to upload data to the tables from a
local .csv file. After the first upgrade we still found
some bugs or glitches. Especially importing date-
related data was very complicated due to local set-
tings as well as SAP HANA creating columns of the
type “timestamp” instead of “date” when using the
.csv import. The issues have been reported to our
contact person at HPI and have been fixed in the fol-
lowing revisions.

1.2 Lessons learned

In SAP HANA you can create Attribute Views, Ana-

Figure 1: Creating an analytical view in SAP HANA Studio

111

lytical Views (Figure 1), Graphical Calculation
Views, SQL Script Calculation Views and (stored)
Procedures. Each of these Objects has some capabili-
ties and restrictions and their complexity increases
from the simple graphical Attribute Views to the
complex scripted procedures.
For example, an Attribute View has no measures and
therefore can be used for master data analysis. Ana-
lytical Views are usually used for creating star
schemes when combining a transactional table with
the corresponding master data. When it comes to
time-travel and other special types of Analysis, only
scripted views or procedures provide the necessary
capabilities. Therefore we also had to acquire some
knowledge about SQL Script, the language used to
create procedures.

2 Project related progress

The project aim is to create a fully functional proto-
type of an interactive realtime analysis environment.
There are three separate activities needed to achieve
this goal: You need a user interface or presentation
layer, data to run the analysis on and last but not least
the calculations which turn the data into KPIs to be
displayed.

2.1 Presentation layer

SAP HANA Studio has an integrated analysis client
for data preview (Figure 2). Although it provides a
wide range of different chart types and the ability to
“drag-and-drop” columns into the label axis, the val-
ue axis or filter, it will not be suitable as output medi-
um. First, the preview is limited to a maximum of
5,000 rows, and second, people in the target group
for these reports won’t be running SAP HANA Stu-
dio, which is made for developers. For this project we
intend to use “Analysis for Microsoft Excel”, which

is part of the Business Objects Suite. The connection
from Excel to SAP HANA is working flawless and is
an easy way to present the data. However, the filter-
ing of Data is not as interactive as in the HANA Stu-
dio and organizing a lot of Excel files and sheets can
be very confusing. Drill-Down-Possibilities are lim-
ited, too. Therefore we plan to use some of the other
SAP BusinessObjects tools for presentation. We will
need to evaluate those and find one which fits our
needs. There is a tool called SAP BusinessObjects
Information Steward which looks very promising.

2.2 Connection to SAP ERP

In order to do realtime analysis you need realtime
data. That’s why we connected SAP HANA to an
SAP ERP System by using SAP System Landscape
Transformation (Figure 3). The SLT Server creates a
database Trigger in the source system (we used a pre-
configured IDES system at SAP) and replicates all
changes (in the selected tables) to the SAP HANA
database. Another fact that requires a continuous
stream of data is that we want to do some time-travel
analysis. If you have only one point in time where the
table is created and initially filled with data, a time
travel analysis makes no sense at all. Updating the
data in intervals of weeks or month wouldn’t do the
job either, that’s why we rely on realtime replication
of the transactional ERP data.
Currently we have the connection between the SAP
HANA database at SAP and an IDES system at SAP
which is the source system and SLT server at the
same time.
Since the HANA System at SAP will be replaced by
the one in Potsdam at HPI, we will need to configure
a new connection for replication. As we can’t create a
VPN tunnel from Potsdam to the internal SAP net-
work, we will also need a new SAP ERP system as
data source as well as an SLT server.

Figure 2: Built-in analysis view in SAP HANA Studio

112

There is a SAP ERP available at the University of
Wuerzburg which contains up-to-date transactional
data from case studies in training courses. We would
like to use this system, but we would need to get the
DMIS addon/license installed in order to allow SLT
connections. Additionally an SLT server would have
to be set up at HPI in Potsdam.
In case the process of getting the required licenses
and addons for the SAP ERP in Wuerzburg is too
complicated we would need a SAP ERP and SAP
SLT system hosted in Potsdam at HPI.

2.3 KPI Calculations

Since building star schemas is not a real innovation in
SAP HANA, we focus our research on the historic
tables and time travel. This means we build a KPI
which is normally dependent from a reference date.
For example you can calculate the open sales order
items by joining the tables VBAK (Sales document:
header data), VBAP (Sales document: items data) and
VBUP (Sales document: item status). You count the
rows where the document category is ‘C’ (Order), the
overall processing status is ‘A’, the overall delivery
status is ‘A’ and there is no lock or cancellation on
header and item level.
You can run this query on every database to get the
open orders at this point of time (=now). But on SAP

HANA you can classify the tables as ‘historic table’
and add a time-travel clause to the select statement.
By appending ‘AS OF UTCTIMESTAMP […]’ you
can calculate the open orders at any point of time. To
make things easier we created a procedure called
‘open_orders_as_of’ which has a timestamp as input
parameter. The result table of this function call is
shown in Figure 4.
Once we activated this function we simply call it mul-
tiple times for the last X days, union the X result ta-
bles into a single one and then we already have the
KPI ‘Open sales order items’ in a timeline for the last
days. From now on it would also be easy to add the
sum of the net price or add other columns than sales
organization and item category.
This historic data can then be used for automated
monitoring and triggering alerts as well as context for
interpreting the numbers.

3 Further research and needed re-

sources

Until now we have already proven that SAP HANA
has all capabilities to enable the interactive reporting
we looked for. We created our first KPI and were
able to retrieve the values even for dates in the past.
Nevertheless, there is still a lot of research to do:

 The analysis period for the KPI is only static
right now. In the scenario of an interactive
analysis the user should be able to set the
analysis timeframe by himself.

 Until now we only have built one KPI. We
need to build other KPIs to prove our con-

Figure 3: Connection from SAP HANA to SLT and Source System

Figure 4: Result table of function call

113

cept. There are similar ones like blocked,
cancelled and completed orders and some
which need to be calculated differently like
‘changed orders’.

 We are planning to make use of the native R
Integration to calculate trends, recognize
patterns and trigger alerts based on customer
specific data from the past. This way the
threshold for the alerts can be set automati-
cally without the need of a manual defini-
tion.

 As mentioned before we need to find a way
to present the data and controls for the inter-
active analysis. Excel is a first step but we
will need to evaluate some of the Busi-
nessObjects tools.

3.1 Needed resources

This project requires the following resources:
 Access to the HANA database at HPI

through SAP HANA Studio

 SAP HANA link to an ERP database via
SAP landscape trans-formation (SLT) repli-
cation server (trigger-based replication)

 SAP Business Objects or Microsoft Excel
for visualizing reports

The following requirements have been met and can
be used for the project:

 SAP ERP incl. database, located in
Wuerzburg, 100/100 Mbit connection

114

The Impact of Software as a Service

Till Winkler
Humboldt-Universität zu Berlin

10178 Berlin, Germany
till.winkler@wiwi.hu-berlin.de

Abstract

Dieses Dokument beschreibt den Stand und Zwischen-
ergebnisse der empirischen Studie ”The Impact of
Software as a Service”, welche von der Humbodt-
Universität zu Berlin (HU) mit Unterstützung des HPI
Future SOC Lab und der SAP AG durchgeführt wur-
de. Insgesamt konnten über diese Kooperation 32
vollständige Datensätze zur Nutzung von verschie-
denen SaaS-Lösungen in Anwenderunternehmen ge-
wonnen werden. Präsentiert werden hier einige aus-
gewählte deskriptive Merkmale dieses Datensatzes.
Für weiterführende Auswertungen ist geplant, diese
Daten mit denen einer weiteren Erhebung zusammen
zu führen und wissenschaftlich auszuwerten.

1. Hintergrund

Die wachsende Verbreitung von Software as a Service
(SaaS) ist im Begriff die Zusammenarbeit von Fach-
und IT-Bereichen in Unternehmen zu verändern. Da-
durch dass weite Teile des Anwendungs- und Infra-
strukturmanagements für SaaS von externer Anbieter-
seite übernommen werden, ändert sich ebenfalls die
interne Aufteilung von Rollen und Verantwortlichkei-
ten (die Governance) zwischen Nutzern und IT Mitar-
beitern in Unternehmen.
An der Humbodt-Universität wurden in diesem Kon-
text verschiedene qualitativ und quantitativ ausgerich-
tete Arbeiten durchgeführt, welche nun durch die ak-
tuelle Studie ”The Impact of Software as a Service”
ergänzt werden sollen. Ziel dieser Studie ist insbeson-
dere zu erforschen, inwieweit sich verschiedene Auf-
teilungen der IT-Verantwortlichkeiten auf die Qualität
der internen Zusammenarbeit – und damit auf die Qua-
lität der SaaS-Nutzung insgesamt – auswirken.
Das HPI Future SOC Lab und seine Kooperationspart-
ner (insbesondere die SAP AG) haben sich im Rah-
men des vergangenen Future SOC Day bereit erklärt,
im Rahmen einer akademischen Partnerschaft dieses
Projekt und die notwendige Datenerhebung zu un-
terstützen.

2. Vorgehen und ausgewählte deskriptive
Ergebnisse

Vorgehen und ausgewählte deskriptive Ergebnisse Im
Mai-Juni 2012 wurde ein bestehendes Instrument
als Online-Fragebogen umgesetzt und im Hinblick
auf die Datenerhebung unter SAP-Kunden inhaltlich
und Layout-technisch umgestaltet sowie die Umfrage
vorbereitet. Qualitätssicherung und Pretests erfolgten
durch verschiedene Mitarbeiter der SAP.
Ab dem 2. Juli wurde die Umfrage über verschiedene
Online-Kanäle beworben. Hierzu gehörten insbeson-
dere der SAP Blog1, die LinkedIn Gruppe SAP Busi-
ness By Design2, die SAP ByDesign-Gruppe in Xing3,
die Facebook-Seite SAP Cloud Solutions4 sowie ein
Post im Tweet SAP Cloud Solutions über Twitter5.
Aufgrund des vergleichsweise schwachen Rücklaufs,
wurde die Umfrage ab Mitte Juli zusätzlich auch in di-
versen Usergruppen der SAP AG weltweit gepostet so-
wie die offizielle Fragebogenlaufzeit auf Ende August
verlängert. Abbildung 1 zeigt den Verlauf der (nutzba-
ren und nicht nutzbaren) Antworten über die Zeit.

Vorgehen und ausgewählte deskriptive Ergebnisse

Im Mai-Juni 2012 wurde ein bestehendes Instrument als Online-Fragebogen umgesetzt
und im Hinblick auf die Datenerhebung unter SAP-Kunden inhaltlich und Layout-technisch
umgestaltet sowie die Umfrage vorbereitet. Qualitätssicherung und Pretests erfolgten
durch verschiedene Mitarbeiter der SAP.

Ab dem 2. Juli wurde die Umfrage über verschiedene Online-Kanäle beworben. Hierzu
gehörten insbesondere der SAP Blog1, die LinkedIn Gruppe SAP Business By Design2, die
SAP ByDesign-Gruppe in Xing3, die Facebook-Seite SAP Cloud Solutions4 sowie ein Post
im Tweet SAP Cloud Solutions über Twitter5. Aufgrund des vergleichsweise schwachen
Rücklaufs, wurde die Umfrage ab Mitte Juli zusätzlich auch in diversen Usergruppen der
SAP AG weltweit gepostet sowie die offizielle Fragebogenlaufzeit auf Ende August
verlängert. Abbildung 1 zeigt den Verlauf der (nutzbaren und nicht nutzbaren) Antworten
über die Zeit.

Abbildung 1. Teilnehmer über die Fragebogenlaufzeit

Der Fragebogen gliederte sich in fünf große Abschnitte:

I. Company and Participant Profile
II. IT Organisation Characteristics

III. SaaS Application Details
IV. Business and IT Role in Managing SaaS (focus topic)
V. Outcomes of using SaaS

Insgesamt haben 245 Personen den Fragebogen aufgerufen. 84 Personen haben den
ersten Abschnitt ausgefüllt, 32 Teilnehmer haben den Fragebogen beendet. Die genaue
Teilnahme über die gesamte Länge des Fragebogens (bzw. der „Dropout“) ist in
Abbildung 2 dargestellt. Insgesamt bewegt sich der Verlust von Teilnehmern im normalen
Bereich. Die Dauer zum Ausfüllen des Fragebogens betrug laut dem Umfrage-Tool
durchschnittlich rund 20 Minuten.

1 http://blogs.sap.com/cloud/2012/07/02/scientific-study-among-users-of-sap-cloud-
products-please-participate-by-the-end-of-august/
2 http://www.linkedin.com/groups?gid=138840&trk=hb_side_g
3 https://www.xing.com/net/prib961b4x/sapbyd/.
4 http://www.facebook.com/SAPCloudSolutions
5 https://twitter.com/#!/SAPCloud

64

Abbildung 1. Teilnehmer über die Frage-
bogenlaufzeit.

1http://blogs.sap.com/cloud/2012/07/02/scientific-study-among-
users-of-sap-cloud-products-please-participate-by-the-end-of-
august/

2http://www.linkedin.com/groups?gid=138840&trk=hb side g
3https://www.xing.com/net/prib961b4x/sapbyd/
4http://www.facebook.com/SAPCloudSolutions
5https://twitter.com/#!/SAPCloud

115

Der Fragebogen gliederte sich in fünf große Abschnit-
te:

I Company and Participant Profile

II IT Organisation Characteristics

III SaaS Application Details

IV Business and IT Role in Managing SaaS (focus
topic)

V Outcomes of using SaaS

Insgesamt haben 245 Personen den Fragebogen auf-
gerufen. 84 Personen haben den ersten Abschnitt aus-
gefüllt, 32 Teilnehmer haben den Fragebogen beendet.
Die genaue Teilnahme über die gesamte Länge des
Fragebogens (bzw. der ”Dropout“) ist in Abbildung
2 dargestellt. Insgesamt bewegt sich der Verlust von
Teilnehmern im normalen Bereich. Die Dauer zum
Ausfüllen des Fragebogens betrug laut dem Umfrage-
Tool durchschnittlich rund 20 Minuten.

Abbildung 2. Gültige Teilnahmen pro Fragebogenabschnitt

Die überwiegende Mehrheit der Teilnehmer wurde offenbar über die SAP Usergruppen
akquiriert, hierauf deuten neben Abbildung 1 ebenfalls die http-Dereferrer. Hierbei
handelt es sich nahezu ausschließlich um internationale Teilnehmer. 80 Prozent haben
den Fragebogen auf Englisch ausgefüllt (Standardsprache). Das Herkunftsland wurde
jedoch bewusst nicht als explizites Merkmal mit abgefragt. Abbildung 3 zeigt eine
Aufschlüsselung der Teilnehmer nach Branchen.

Other:
Software
IT services
IT Software Development
IT
Consumer
electrical and electronics
Music Industry
Petrochemicals
Consumer Packaged Goods
Local Government
Energy Management
Medical Devices
Conglomerate: Chemicals,

autoparts, food, etc
HR and Payroll service

Abbildung 3. Teilnehmer-Branchen

Die Teilnehmer wurden gebeten, zunächst Auskunft über die Gesamtheit aller SaaS-
Anwendungen zu geben, die in Ihrem Unternehmen im Einsatz sind, bevor gezielte
Fragen zu einer SaaS-Anwendung ihrer Wahl gestellt wurden. Abbildung 4 zeigt die
verwendeten SaaS-Anwendungen nach Anbieter-Plattformen, welche in der Studie
aufgeführt wurden. Bemerkenswert erscheint, dass nur 13 der 32 Befragten SAP On-
Demand Lösungen einsetzen. Dies spricht für die breite Streuung der Studie, welche
offenbar auch von zahlreichen SaaS-Interessierten im Umfeld der SAP wahrgenommen
wurde, welche (noch) nicht notwendigerweise SAP Cloud-Kunden sind. Da bei dieser
Frage Mehrfachnennungen möglich waren, lässt sich übrigens sagen, dass etwa die Hälfte
der befragten Unternehmen (46%) mehr als eine einzige SaaS-Lösung im Einsatz hat.

65

Abbildung 2. Gültige Teilnahmen pro
Fragebogenabschnitt.

Die überwiegende Mehrheit der Teilnehmer wurde of-
fenbar über die SAP Usergruppen akquiriert, hier-
auf deuten neben Abbildung 1 ebenfalls die http-
Dereferrer. Hierbei handelt es sich nahezu ausschließ-
lich um internationale Teilnehmer. 80 Prozent haben
den Fragebogen auf Englisch ausgefüllt (Standard-
sprache). Das Herkunftsland wurde jedoch bewusst
nicht als explizites Merkmal mit abgefragt. Abbildung
3 zeigt eine Aufschlüsselung der Teilnehmer nach
Branchen.
Other: Software; IT services; IT Software Develop-
ment; IT; Consumer; electrical and electronics; Music
Industry; Petrochemicals; Consumer Packaged Goods;
Local Government; Energy Management; Medical De-
vices; Conglomerate: Chemicals, autoparts, food, etc;
HR and Payroll service

Abbildung 2. Gültige Teilnahmen pro Fragebogenabschnitt

Die überwiegende Mehrheit der Teilnehmer wurde offenbar über die SAP Usergruppen
akquiriert, hierauf deuten neben Abbildung 1 ebenfalls die http-Dereferrer. Hierbei
handelt es sich nahezu ausschließlich um internationale Teilnehmer. 80 Prozent haben
den Fragebogen auf Englisch ausgefüllt (Standardsprache). Das Herkunftsland wurde
jedoch bewusst nicht als explizites Merkmal mit abgefragt. Abbildung 3 zeigt eine
Aufschlüsselung der Teilnehmer nach Branchen.

Other:
Software
IT services
IT Software Development
IT
Consumer
electrical and electronics
Music Industry
Petrochemicals
Consumer Packaged Goods
Local Government
Energy Management
Medical Devices
Conglomerate: Chemicals,

autoparts, food, etc
HR and Payroll service

Abbildung 3. Teilnehmer-Branchen

Die Teilnehmer wurden gebeten, zunächst Auskunft über die Gesamtheit aller SaaS-
Anwendungen zu geben, die in Ihrem Unternehmen im Einsatz sind, bevor gezielte
Fragen zu einer SaaS-Anwendung ihrer Wahl gestellt wurden. Abbildung 4 zeigt die
verwendeten SaaS-Anwendungen nach Anbieter-Plattformen, welche in der Studie
aufgeführt wurden. Bemerkenswert erscheint, dass nur 13 der 32 Befragten SAP On-
Demand Lösungen einsetzen. Dies spricht für die breite Streuung der Studie, welche
offenbar auch von zahlreichen SaaS-Interessierten im Umfeld der SAP wahrgenommen
wurde, welche (noch) nicht notwendigerweise SAP Cloud-Kunden sind. Da bei dieser
Frage Mehrfachnennungen möglich waren, lässt sich übrigens sagen, dass etwa die Hälfte
der befragten Unternehmen (46%) mehr als eine einzige SaaS-Lösung im Einsatz hat.

65

Abbildung 3. Teilnehmer-Branchen.

Die Teilnehmer wurden gebeten, zunächst Auskunft
über die Gesamtheit aller SaaS-Anwendungen zu ge-
ben, die in Ihrem Unternehmen im Einsatz sind, be-
vor gezielte Fragen zu einer SaaS-Anwendung ihrer
Wahl gestellt wurden. Abbildung 4 zeigt die verwen-
deten SaaS-Anwendungen nach Anbieter-Plattformen,
welche in der Studie aufgeführt wurden. Bemerkens-
wert erscheint, dass nur 13 der 32 Befragten SAP
On-Demand Lösungen einsetzen. Dies spricht für die
breite Streuung der Studie, welche offenbar auch von
zahlreichen SaaS-Interessierten im Umfeld der SAP
wahrgenommen wurde, welche (noch) nicht notwen-
digerweise SAP Cloud-Kunden sind. Da bei dieser
Frage Mehrfachnennungen möglich waren, lässt sich
übrigens sagen, dass etwa die Hälfte der befragten Un-
ternehmen (46%) mehr als eine einzige SaaS-Lösung
im Einsatz hat.

Abbildung 4. Verwendete SaaS-Plattformen (Mehrfachnennungen möglich)

Die im Einsatz befindlichen SaaS-Lösungen wurden ebenfalls funktional untergliedert,
siehe Abbildung 5. Aufgrund der Stichprobe kann diese Rangreihung (wie alle anderen
Merkmale auch) selbstverständlich nur als rein deskriptiv und nicht als repräsentativ im
Sinne einer Marktstudie angesehen werden.

Abbildung 5. Verwendete Anwendungstypen (Mehrfachnennungen möglich)

Ziel der Studie ist, verschiedene Aufteilung von Rollen und Verantwortlichkeiten im Bezug
auf das Management der SaaS-Anwendung mit bestimmten Erfolgsdimensionen in
Zusammenhang zu setzen, um somit Aussagen treffen zu können für welche SaaS-
Anwendungen und welchen Umständen welcher Governance-Modus zielführend ist.
Vorstudien der Humboldt-Universität legen nahe, dass durchaus große Unterschiede (d.h.
statistisch gesehen eine Varianz) in der Governance-Frage existiert, von wem SaaS-
Anwendungen gesteuert und gemanagt werden [1, 2]. Diese Vermutung lässt sich durch
die vorliegenden Ergebnisse bereits bestätigen.

Abbildung 6 zeigt die Verteilungen einiger ausgewählter Governance-Items aus dem
Fragebogen. Demzufolge treffen bei den Befragten offenbar in ca. 2/3 der Fälle IT-
Bereiche die Hauptentscheidungen für das SaaS-Anwendungsmanagement (wie z.B.
Budgetentscheidungen) und den internen Nutzersupport. In ca. 1/3 der Fälle liegt die
Hoheit dagegen eindeutig im Fachbereich. Während die Budgetverantwortung
interessanterweise klar geregelt zu sein scheint, kommt es bei Änderungsentscheidungen
(Changes) offenbar wesentlich häufiger zu gemischten Formen, welche einen höheren
Abstimmungs- und Koordinationsbedarf zwischen Fach- und IT-Bereichen nahelegen
(Abbildung 6b).

66

Abbildung 4. Verwendete SaaS-
Plattformen (Mehrfachnennungen
möglich).

Die im Einsatz befindlichen SaaS-Lösungen wurden
ebenfalls funktional untergliedert, siehe Abbildung 5.
Aufgrund der Stichprobe kann diese Rangreihung (wie
alle anderen Merkmale auch) selbstverständlich nur
als rein deskriptiv und nicht als repräsentativ im Sinne
einer Marktstudie angesehen werden.
Ziel der Studie ist, verschiedene Aufteilung von
Rollen und Verantwortlichkeiten im Bezug auf das
Management der SaaS-Anwendung mit bestimmten
Erfolgsdimensionen in Zusammenhang zu setzen,
um somit Aussagen treffen zu können für welche
SaaS-Anwendungen und welchen Umständen wel-
cher Governance-Modus zielführend ist. Vorstudien

116

Abbildungen 6a/6b/6c: Ausgewählte Governance-Items (unabhängige Variablen)

Im Bezug auf die Erfolgsvariablen wurden die Teilnehmer auf der letzten Seite des
Fragebogens gebeten, die jeweilige SaaS-Anwendung mit anderen herkömmlichen
Anwendungen in ihrem Unternehmen zu vergleichen.

Abbildungen 7a/7b/7c. Ausgewählte Erfolgsvariablen (abhängig)

67

Abbildung 6. Ausgewählte Governance-Items (unabhängige Variablen).

Abbildung 4. Verwendete SaaS-Plattformen (Mehrfachnennungen möglich)

Die im Einsatz befindlichen SaaS-Lösungen wurden ebenfalls funktional untergliedert,
siehe Abbildung 5. Aufgrund der Stichprobe kann diese Rangreihung (wie alle anderen
Merkmale auch) selbstverständlich nur als rein deskriptiv und nicht als repräsentativ im
Sinne einer Marktstudie angesehen werden.

Abbildung 5. Verwendete Anwendungstypen (Mehrfachnennungen möglich)

Ziel der Studie ist, verschiedene Aufteilung von Rollen und Verantwortlichkeiten im Bezug
auf das Management der SaaS-Anwendung mit bestimmten Erfolgsdimensionen in
Zusammenhang zu setzen, um somit Aussagen treffen zu können für welche SaaS-
Anwendungen und welchen Umständen welcher Governance-Modus zielführend ist.
Vorstudien der Humboldt-Universität legen nahe, dass durchaus große Unterschiede (d.h.
statistisch gesehen eine Varianz) in der Governance-Frage existiert, von wem SaaS-
Anwendungen gesteuert und gemanagt werden [1, 2]. Diese Vermutung lässt sich durch
die vorliegenden Ergebnisse bereits bestätigen.

Abbildung 6 zeigt die Verteilungen einiger ausgewählter Governance-Items aus dem
Fragebogen. Demzufolge treffen bei den Befragten offenbar in ca. 2/3 der Fälle IT-
Bereiche die Hauptentscheidungen für das SaaS-Anwendungsmanagement (wie z.B.
Budgetentscheidungen) und den internen Nutzersupport. In ca. 1/3 der Fälle liegt die
Hoheit dagegen eindeutig im Fachbereich. Während die Budgetverantwortung
interessanterweise klar geregelt zu sein scheint, kommt es bei Änderungsentscheidungen
(Changes) offenbar wesentlich häufiger zu gemischten Formen, welche einen höheren
Abstimmungs- und Koordinationsbedarf zwischen Fach- und IT-Bereichen nahelegen
(Abbildung 6b).

66

Abbildung 5. Verwendete Anwendungs-
typen (Mehrfachnennungen möglich).

der Humboldt-Universität legen nahe, dass durchaus
große Unterschiede (d.h. statistisch gesehen eine Va-
rianz) in der Governance-Frage existiert, von wem
SaaS-Anwendungen gesteuert und gemanagt werden
[1] [2]. Diese Vermutung lässt sich durch die vorlie-
genden Ergebnisse bereits bestätigen.
Abbildung 6 zeigt die Verteilungen einiger aus-
gewählter Governance-Items aus dem Fragebogen.
Demzufolge treffen bei den Befragten offenbar in ca.
2/3 der Fälle IT-Bereiche die Hauptentscheidungen für
das SaaS-Anwendungsmanagement (wie z.B. Budge-
tentscheidungen) und den internen Nutzersupport. In
ca. 1/3 der Fälle liegt die Hoheit dagegen eindeutig im
Fachbereich. Während die Budgetverantwortung inter-
essanterweise klar geregelt zu sein scheint, kommt es
bei Änderungsentscheidungen (Changes) offenbar we-

sentlich häufiger zu gemischten Formen, welche einen
höheren Abstimmungs- und Koordinationsbedarf zwi-
schen Fach- und IT-Bereichen nahelegen (Abbildung
6b).

Im Bezug auf die Erfolgsvariablen wurden die Teil-
nehmer auf der letzten Seite des Fragebogens ge-
beten, die jeweilige SaaS-Anwendung mit anderen
herkömmlichen Anwendungen in ihrem Unternehmen
zu vergleichen.

In Abbildung 7 ist die Verteilung einiger ausgewählter
Erfolgsvariablen dargestellt. Interessanterweise lässt
sich auch hier eine gewisse Varianz bei den Fra-
gen erkennen (was für eine spätere inferenzstatisti-
sche Auswertung von Vorteil sein kann). Beispiels-
weise scheint es sowohl Beispiele in der Stichpro-
be zu geben, wo die Arbeitsaufteilung von IT und
Fachbereichen zu vergleichsweise viel, als aber auch
zu vergleichsweise wenig Gesamtaufwand im SaaS-
Anwendungsmanagement führt. Ebenfalls ist ein posi-
tiver Ausschlag zu erkennen, was die wahrgenommene
Effizienz und Zufriedenheit mit der SaaS-Anwendung
angeht. Wohlgemerkt kann dieser allerdings auch
auf einen positiven Response-Bias der Teilnehmer
zurückzuführen sein (d.h. zufriedene Anwender neh-
men u.U. eher an einer freiwilligen Befragung teil).

117

Abbildungen 6a/6b/6c: Ausgewählte Governance-Items (unabhängige Variablen)

Im Bezug auf die Erfolgsvariablen wurden die Teilnehmer auf der letzten Seite des
Fragebogens gebeten, die jeweilige SaaS-Anwendung mit anderen herkömmlichen
Anwendungen in ihrem Unternehmen zu vergleichen.

Abbildungen 7a/7b/7c. Ausgewählte Erfolgsvariablen (abhängig)

67

Abbildung 7. Ausgewählte Erfolgsvariablen (abhängig).

3 Nächste Schritte

Da die Stichprobengröße für weitergehende inferenz-
statistische Analysen als zu klein erscheint, ist ge-
plant die erhobenen Daten im nächsten Schritt mit de-
nen einer weiteren Befragung zusammen zu führen.
Dies verlangt zunächst einer umfangreicheren Da-
tenbereinigung und -analyse sowie im Nachgang ei-
ner fundierten Reflexion der Ergebnisse anhand der
wissenschaftlichen Literatur. Erwartet wird, dass so-
mit u.a. belastbarere Ergebnisse bezüglich der hypo-
thetisierten Zusammenhänge zwischen den dargestell-
ten Governance- und Erfolgsvariablen erzielt werden
können.

4 Danksagung

Wir danken dem HPI Soc Lab und dem Kooperations-
partner SAP, insbesondere Herrn Henning Schmitz,
für den Zugang zu den verschiedenen Kommunikati-
onskanälen und die engagierte Unterstützung bei der
Durchführung dieser Studie.

Literatur

[1] T. J. Winkler, C. Goebel, A. Benlian, F. Bidault, and
O. Guenther. The impact of software as a service on
is authority - a contingency perspective. International

Conference on Information Systems (ICIS 2011) Pro-
ceedings, 2011.

[2] T. J. Winkler and O. Guenther. Explaining the gover-
nance of software as a service applications - a process
view. Multikonferenz der Wirtschaftsinformatik (MKWI
2012) Proceedings, 2012.

118

Aktuelle Technische Berichte
des Hasso-Plattner-Instituts

Band

ISBN

Titel

Autoren / Redaktion

84

978-3-86956-
274-2

Anbieter von Cloud Speicherdiensten im
Überblick

Christoph Meinel, Maxim
Schnjakin, Tobias Metzke,
Markus Freitag

83

978-3-86956-
273-5

Proceedings of the 7th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Christoph Meinel, Hasso Plattner,
Jürgen Döllner, Mathias Weske,
Andreas Polze, Robert Hirschfeld,
Felix Naumann, Holger Giese,
Patrick Baudisch (Hrsg.)

82

978-3-86956-
266-7

Extending a Java Virtual Machine to
Dynamic Object-oriented Languages

Tobias Pape, Arian Treffer,
Robert Hirschfeld

81 978-3-86956-
265-0

Babelsberg: Specifying and Solving
Constraints on Object Behavior

Tim Felgentreff, Alan Borning,
Robert Hirschfeld

80 978-3-86956-
264-3

openHPI: The MOOC Offer at Hasso
Plattner Institute

Christoph Meinel,
Christian Willems

79 978-3-86956-
259-9

openHPI: Das MOOC-Angebot des Hasso-
Plattner-Instituts

Christoph Meinel,
Christian Willems

78 978-3-86956-
258-2

Repairing Event Logs Using Stochastic
Process Models

Andreas Rogge-Solti, Ronny S.
Mans, Wil M. P. van der Aalst,
Mathias Weske

77 978-3-86956-
257-5

Business Process Architectures with
Multiplicities: Transformation and
Correctness

Rami-Habib Eid-Sabbagh,
Marcin Hewelt, Mathias Weske

76 978-3-86956-
256-8

Proceedings of the 6th Ph.D. Retreat of
the HPI Research School on Service-
oriented Systems Engineering

Hrsg. von den Professoren des
HPI

75 978-3-86956-
246-9

Modeling and Verifying Dynamic Evolving
Service-Oriented Architectures

Holger Giese, Basil Becker

74 978-3-86956-
245-2

Modeling and Enacting Complex
Data Dependencies in Business
Processes

Andreas Meyer, Luise Pufahl,
Dirk Fahland, Mathias Weske

73 978-3-86956-
241-4

Enriching Raw Events to Enable Process
Intelligence

Nico Herzberg, Mathias Weske

72 978-3-86956-
232-2

Explorative Authoring of ActiveWeb
Content in a Mobile Environment

Conrad Calmez, Hubert Hesse,
Benjamin Siegmund, Sebastian
Stamm, Astrid Thomschke,
Robert Hirschfeld, Dan Ingalls,
Jens Lincke

71 978-3-86956-
231-5

Vereinfachung der Entwicklung von
Geschäftsanwendungen durch
Konsolidierung von Programmier-
konzepten und -technologien

Lenoi Berov, Johannes Henning,
Toni Mattis, Patrick Rein, Robin
Schreiber, Eric Seckler, Bastian
Steinert, Robert Hirschfeld

70 978-3-86956-
230-8

HPI Future SOC Lab - Proceedings 2011 Christoph Meinel, Andreas Polze,
Gerhard Oswald, Rolf Strotmann,
Ulrich Seibold, Doc D'Errico

69 978-3-86956-
229-2

Akzeptanz und Nutzerfreundlichkeit der
AusweisApp: Eine qualitative
Untersuchung

Susanne Asheuer, Joy
Belgassem, Wiete Eichorn, Rio
Leipold, Lucas Licht, Christoph
Meinel, Anne Schanz, Maxim
Schnjakin

Technische Berichte Nr. 85

des Hasso-Plattner-Instituts für
Softwaresystemtechnik
an der Universität Potsdam

HPI Future SOC Lab:
Proceedings 2012
Christoph Meinel, Andreas Polze, Gerhard Oswald,
Rolf Strotmann, Ulrich Seibold, Bernhard Schulzki
(Hrsg.)

ISBN 978-3-86956-276-6
ISSN 1613-5652

	Title
	Imprint

	Contents
	Parallelizing H.264 Decoding with OpenMP Superscalar
	Abstract
	1 Introduction
	2 Pipelining H.264
	3 Parallelizing Entropy Decoding
	4 Parallelizing Macroblock Reconstruction
	5 Optimizing Task Granularity
	6 Experimental Results
	7 Conclusions
	8 Acknowledgements
	References

	Service-Based 3D Rendering and Interactive 3D Visualization
	Abstract
	1 Motivation
	1.1 Complexity of 3D city models
	1.2 Service-based approach

	2 Processing massive 3D city models
	3 Processing massive 3D point clouds
	3.1 Spatially organizing 3D point clouds
	3.2 Rasterization of 3D point clouds

	4 Next Steps
	5 Conclusions
	Acknowledgment
	References

	Benchmarking and Tenant Placement for Efficient Cloud Operations
	Abstract
	1 Introduction
	2 Benchmarking
	3 Tenant Placement
	4 Project Proposal for Next Lab Term
	5 Acknowledgements
	6 References

	Towards Multi-Core and In-Memory for IDS Alert Correlation: Approaches and Capabilities
	Abstract
	1 Alert Correlation and its Performance
	2. Results and Achievements
	3 Towards High-quality Attack-Graph basedCorrelation
	3.1 Definitions
	3.2 Mapping
	3.3 Aggregation
	3.4 Alert Dependencies
	3.5 Searching

	4 Evaluation and Analysis of Attack Graphs
	5. Future Work
	References

	Multicore-Based High Performance IPv6 Cryptographically Generated Addresses (CGA)
	Abstract
	1 Introduction
	2 Project Description
	2.1 Cryptographically Generated Addresses (CGA) Algorithm

	3 Results and Achievements
	3.1 Implementation
	3.2 Experiments

	4 Future Works
	References

	Blog- Intelligence Extension with SAP HANA
	Abstract
	1 Introduction
	2 Fields of application
	3 Used Future SOC Resources
	4 Blog-Intelligence deployment
	5 Computational Effort Estimation
	6 Next Steps
	References

	Accurate Mutlicore Processor Power Models for Power-Aware Resource Management
	Abstract
	1 Introduction and Project Idea
	2 Used Lab Resources and Experimental setup
	3 Findings
	3.1 CPU-Power and frequency relationship
	3.2 CPU-Power and number of active cores relationship
	3.3 CPU-Power estimation models
	3.4 Statistical analysis
	3.5 Performance evaluation
	3.5.1 CPU-intensive applications
	3.5.2 Memory-intensive applications
	3.5.3 IO-intensive applications

	4 Conclusions and Next Steps
	References

	VMs Core-allocation scheduling Policy for Energy and Performance Management
	Abstract
	1 Project Idea
	2 Used SOC Lab resources
	3 Findings
	3.1 VMs with NBP Analysis
	3.2 VMs with I/O Analysis
	3.2.1 CPU Frequency Sensitivity
	3.2.2 VMs with I/O Domain-0 Dependency

	4 Performance Evaluations
	4.1 VMs with sensitive Inter-process Comm.

	5 Next Steps
	References

	Parallelization of Elementary Flux Mode Enumeration for Large-scale Metabolic Networks
	Abstract
	1 Introduction
	1.1 Metabolism
	1.2 The study of Metabolic Networks
	1.3 Elementary Flux Modes
	1.4 Enumeration of EFMs
	1.5 The Computational Challenge

	2 Our Approach
	2.1 Current Status

	3 Results
	3.1 Conclusions

	References
	4 Appendix

	Early Anomaly Detection in SAP Business ByDesign
	Abstract
	1 Introduction
	2 Approach
	3 Application to SAP Business ByDesign
	4 Anomaly signal collection
	5 HANA-based correlation engine
	6 Collecting Test and Real-world Data
	6.1 ByDesign execution traces
	6.2 Buildbot execution traces
	6.3 TACC Ranger execution traces

	7 Initial Results
	8 Conclusions and Next Steps
	References

	ECRAM (Elastic Cooperative Random-Access Memory)
	Abstract
	1 Project Idea
	2 Future SOC Lab Resources
	3 Findings
	4 Next Steps
	References

	KONECT Cloud — Large Scale Network Mining in the Cloud
	Abstract
	1. Introduction
	2. KONECT
	3 Architecture
	4 Graph Sampling
	5. Conclusion
	6 Acknowledgments
	References

	Integrated Management Support with Forward Business Recommendations
	Abstract
	1 Rule based Business Matrix Processing and Forward Business Recommendations
	2 Status quo
	3 Current developments
	3.1 Advantages
	3.2 Disadvantages
	3.3 Evolving the new app

	4 Next steps and required resources
	4.1 Scenario 1: Integrated alarm function
	4.2 Scenario 2: Work center-oriented
	4.3 Scenario 3: User-oriented
	4.4 Scenario 4: Central work center-oriented
	4.5 Required resources

	Service-Based 3D Rendering and Interactive 3D Visualization
	Abstract
	1 Latest Work and Results
	1.1 Massive Texture Processing
	1.2 Web View Services

	2 Next Steps
	References

	Smart Wind Farm Control
	Abstract
	1 Wind Farms
	2 Maintenance of Wind Turbines
	3 Objective Target
	4 Reasons to Use SAP HANA for this Project
	5 New Insights
	6 Further Steps and Outlook
	References

	Measurement of Execution Times and Resource Requirements for single user requests
	Abstract
	1 Introduction
	2 HPI Future SOC Lab resources
	3 Conclusions
	4 Further work
	References

	Benchmarking for Efficient Cloud Operations
	Abstract
	1 Report
	2 Project Proposal for Next Lab Term
	3 Acknowledgements
	4 References

	Instant Intrusion Detection using Live Attack Graphs and Event Correlation
	Abstract
	I. Introduction
	II. Review of HPI Security Analytic Lab
	III. Updates: Design and Architecture
	IV. Leveraging Live Environment Information for Instant Attack Detection
	V. Supporting Intrusion Detection with Event Log Information
	VI. Results and Achievements
	VII. Conclusion
	References

	Exploiting Heterogeneous Architectures for Algorithms with Low Arithmetic Intensity
	Abstract
	1 Motivation
	2 Heterogeneous Computing for Enumeration of Elementary Flux Modes
	2.1 Parallel Candidate Generation Model for GPU
	2.2 A Naïve Kernel
	2.3 Employing the Map-Reduce Structural Pattern for Parallel Applications
	2.4 Introducing the Compression Factor
	2.5 Brief Overview of Planned Optimizations

	3 Constraint-based Adaptive Memory Management
	4 Conclusions
	References

	Using In-Memory Computing for Proactive Cloud Operations
	Abstract
	1 Introduction
	2 Approach
	3 Predicting Failures
	4 A Use-case for In-memory Computing
	5 DealingWith Complex SIGs
	6 Conclusions and Next Steps
	References

	Evaluation of Multicore Query Execution Techniques for Linked Open Data
	Abstract
	1. LODcache Architecture
	2. Parallel LODcache
	2.1. Parallel Query Branches
	2.2. Pipelined Join
	2.3. TBB Scheduler
	2.4. Boost Mode

	3. Evaluation
	4. Conclusions & Outlook
	References

	Next Generation Sequencing: From Computational Challenges to Biological Insight
	Abstract
	1. Project idea
	2. Used Future SOC Lab Resources
	3. Methods and tools
	4. Findings
	4.1. Genome-wide identication of TFI binding sites
	4.2. Quantitative relationship between TFI binding and open chromatin

	5. Next steps
	References

	ECRAM (Elastic Cooperative Random-Access Memory)
	Abstract
	1 Project Idea
	2 Using ECRAM for in-memory MapReduce
	2.1 The ECRAM distributed in-memory storage
	2.2 The EMR Framework for In-memory MapReduce

	3 Future SOC Lab Resources
	4 Findings
	5 Next Steps
	References

	Analysis of CPU/GPU data transfer bottlenecks in multi-GPU systems for hard real-time data streams
	Abstract
	1 Introduction
	2 CPU/GPU data transfers
	2.1 Architectural description
	2.2 Streaming data transfers
	2.3 Transfer bandwidth and predictability

	3 Experiments
	3.1 Bandwidth maximization by card rearrangement
	3.2 Latency of data transfers

	4 Conclusions and discussion
	References

	KONECT Cloud — Large Scale Network Mining in the Cloud
	Abstract
	1 Introduction
	2 Performed Analyses
	3 Implementation
	4 Conclusions and Acknowledgements
	References

	Adaptive Realtime KPI Analysis of ERP transaction data using In-Memory technology
	Abstract
	1 Setting up the environment
	1.1 Difficulties
	1.2 Lessons learned

	2 Project related progress
	2.1 Presentation layer
	2.2 Connection to SAP ERP
	2.3 KPI Calculations

	3 Further research and needed resources
	3.1 Needed resources

	The Impact of Software as a Service
	Abstract
	1. Hintergrund
	2. Vorgehen und ausgewählte deskriptive Ergebnisse
	3 Nächste Schritte
	4 Danksagung
	Literatur

	Aktuelle Technische Berichte des Hasso-Plattner-Instituts

