Aufgabenblatt 4

Abgabetermin: Freitag, 28. November 2003, 14:00 Erreichbare Punkte: 12

URL: http://www.informatik.uni-trier.de/TI/Lehre/2003-2004/dsl/blatt4.ps (blatt4.pdf)

Themen: Mengenoperationen, Mengenprodukt

Bitte besuchen Sie regelmäßig die Seite zur Übung und Vorlesung:

http://www.informatik.uni-trier.de/TI/Lehre/2003-2004/DisStrukLog.html

Dieser Seite können Informationen zur Übung, Ankündungen der Vorlesung und/oder Übung betreffend und die Übungsblätter entnommen werden. Ich möchte darauf hinweisen, dass Abschreiben *nicht* erlaubt ist!!

Aufgabe 1: 4 Punkte

Seien A, B, C, D, S, T und M Mengen über dem Universum U. Beweisen oder widerlegen Sie die folgenden Behauptungen:

1.
$$((S \subseteq \overline{M} \land T \subseteq M)) \Leftrightarrow (S \cap T = \emptyset)$$

2.
$$(S \setminus T) \setminus M = \overline{(M \cup \overline{S})} \cap \overline{T}$$

3.
$$(A \times (B \cup C)) \cap (C \times D) = (A \cap C) \times ((B \cap D) \cup (D \cap C))$$

Hinweis: Der Beweis muss anhand der Definition der Mengenoperationen geführt werden.

Aufgabe 2: 4 Punkte

Seien A und B Mengen. Beweisen Sie, dass wenn 2 Bedingungen aus den folgenden

- 1. $A \cap B = \emptyset$
- $2. A \subseteq B$
- 3. $A = \emptyset$

wahr sind, dann gilt auch die 3. Bedingung.

Aufgabe 3:

Geben Sie (ohne Beweis, aber mir einer kurzen Erklärung) für alle $i \in \{1, 2, 3\}$ die kleinsten Mengen M_i und N_i an, so dass $A_i \subseteq M_i \times N_i$ ist. (Falls M_i und N_i endlich sind, müssen die Mengen durch explizites aufzählen ihrer Elemente beschrieben werden.)

Bsp: $A_0 = \{(2,3), (1,2)\}$. Hier ist $M_0 = \{1,2\}$ und $N_0 = \{2,3\}$.

1.
$$A_1 = \{(a, \alpha), (4, 3), (\beta, \gamma)\}$$

2.
$$A_2 = \{(m, n) \in \mathbb{N}_0 \times \mathbb{Z} \mid m = 2 \cdot n\}$$

3.
$$A_3 = \{(C, D) \in P(\{2, 3\}) \times P(\{1, 3, 4\}) \mid C \cup D = \{1, 2, 3, 4\}\}$$