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Abstract—This paper evaluates authentication based on sounds
emitted while typing on a laptop’s keyboard only with the help of
the integrated microphones and a smartphone placed nearby. The
sound samples of 26 individuals were recorded in a novel real-
world scenario using only web technologies. The data of laptop
and the smartphone was compared based on existing approaches.
They can reach Equal-Error-Rates (EERs) of 11.2% on the laptop
data and 9.3% on the smartphone data.

Index Terms—Smartphone, Behavioral Authentication, Key-
board Dynamics, Keyboard Acoustics

I. INTRODUCTION

Nowadays, authentication is critical for many services.
Without reliable authentication, it is impossible to offer ser-
vices like online banking or remote desktop applications.
Common authentication schemes like passwords, however, are
not sufficient due to the fact that they often only authenticate
the user at the beginning of a session. For instance, following
a password authentication, unauthorized access is still possible
if the user changes during the use of the service [1], [2].

In biometric authentication a user’s physical characteristics
are analyzed to verify whether they are who they claim to be.
Measurements of physiological characteristics like fingerprints
or face geometry, but also behavioral attributes, can be used
to determine a unique set of features to distinguish between
different individuals. These measurements can be acquired
continuously and in parallel to other activities, which is useful
for services like continuous desktop authentication [3].

In the field of mobile devices, there already exist authenti-
cation schemes that leverage behavioral characteristics. These
schemes mostly concentrate on features retrieved by sensors
such as accelerometers or magnetometers, which recognize
users by their movement. Such movements include walking
with the device in one’s pocket [4], [5] and handling the device
during a phone call [5], [6] or while typing a text message [5],
[7], [8].

While these techniques are promising if the user is actively
moving and using the device, they do not ensure continuous
authentication during stationary activities, especially when the
device is not being used. One such distinct scenario is working

on a computer while the mobile device like the smartphone is
positioned next to the keyboard [9].

Applying the typing sound authentication to the smartphone
gives the phone the possibility to continuously authenticate
their owner while he is typing. This can reduce the number
of unlock which is a nice feature because a smartphone is
unlocked multiple times a day [10]. Approaches that use typing
sounds already exists like the work of Roth et al. [11]. They
showed that it is possible to recognize users based on their
typing sound with an Equal-Error-Rate (EER) of 11% in a lab
environment using a web cam connected to a computer.

This paper investigates the authentication performance of
smartphone microphones and compares them against the mi-
crophones that are integrated into a laptop using the algorithms
of Roth et al. as basis.

In summary, this paper’s main contributions are the follow-
ing:

• We record typing data of 26 individuals in a static
and dynamic text setting in an unsupervised real-world
scenario including only their own notebook and own
smartphone. We are first to show that standard WebRTC
implementations of different browsers can be used to
record audio data but several challenges still remain
(see section III).

• We provide a normalization process and present that
the influence of different environments and differences
in the specifications of microphones can be reduced
(see subsection IV-A).

• We enhance the authentication procedure of Roth et al.
[11] by a majority voting (see section IV)

• We compare the collected laptop and smartphone data
using the authentication approach and an attacker per-
forming random attacks. The results show an EER of
11.2% for laptop data and also show that smartphones
can also achieve similar results with an EER of 9.3%
(see V).

II. PRIOR WORK

This section presents related work for authentication via
keystroke sounds and there are three different areas of prior
approaches are relevant for our research: keyboard dynamics,978-1-7281-3949-4/19/$31.00 ©2019 IEEE



keyboard acoustics, and the recent effort to combine these two
areas.

A. Keyboard Dynamics

Keyboard dynamics are researched for over 30 years with
the first research known to us being conducted by Umphress
and Williams [12] in 1985. They introduced digraph latency
(the time difference between two keystrokes of two specific
letters) as a feature. In their experiment, they measure the
digraph latencies by logging every keystroke. They then au-
thenticate the user by comparing the mean latency for each
digraph with a profile, achieving a false acceptance rate (FAR)
of 6% and a false rejection rate (FRR) of 12%.

Up until today, most research in this field is based on
digraph latency, aiming to improve upon it. This is done by
deriving additional features from the digraph latency and by
evaluating new classification algorithms.

In their survey paper Banerjee and Woodard [13] distinguish
between four categories of classification algorithms that have
been used in this area of research:
• Statistical algorithms, e.g. t-tests [12]
• Neural networks, e.g. Fuzzy ARTMAP [14]
• Pattern recognition, e.g. support vector machines [15]
• Search heuristics and combination of algorithms, e.g.

genetic algorithms [16]
Bergadano et al. [17] first attempted to use trigraph laten-

cies, which describe the time between the first and the last
of three keystrokes, as well as 4-graphs and 6-graphs. They
found out that trigraphs have more discriminatory power than
digraphs, while longer n-graphs are less stable and repeated
too seldom, leading to lower accuracies. Multiple other teams
have since used trigraphs in their research [18]–[20].

In 1997 Obaidat and Sadoun [14] separate keystroke latency
into the time between pressing and releasing the first key,
and the time between releasing the first key and pressing the
second key. In recent literature, these times are often called
dwell time and flight time, respectively, and can be used as
separate features [13]. Robinson et al. [21] found out that
classifiers trained on dwell time alone perform better than
those trained on latency alone.

While keyboard dynamics has not entered the mainstream
as of yet, there are commercial solutions such as TypingDNA1

and KeyTrac2 that use it as an authentication method.

B. Keyboard Acoustics

This field deals with attacking user input to break
user/password schemes and with eavesdropping on private user
communications. The acoustic emanations of keyboards are
used to infer the original text typed by the user. The majority
of methods employed in current research assume that different
keys emit distinct sounds while being pressed and released,
thus it is believed to be possible to reconstruct the typed input
from the sound of the typing alone. Problems that current

1https://www.typingdna.com
2https://www.keytrac.net

approaches still have are the presence of keystroke overlap
(touch typing) and background noise in practice [22].

Asonov and Agrawal [23] were the first to conduct an attack
using a neural network trained to distinguish different single
keystroke sounds and briefly discuss the issues of recording
distance, typing style and different keyboards. They achieve a
recognition rate of 79%, although that rate drops significantly
below 50% when the keyboard and/or the typist change.
Zhuang et al. [24] expand on that approach by additionally
including language models and reach accuracies of up to 92%.

Different methods for feature extraction are used throughout
the research literature. Plain audio is used by Kelly [22] to
directly represent the key samples, leading to a very large
number of features which require a dimensionality reduction
to be feasible. Furthermore, the fast Fourier transform (FFT)
and Mel-frequency cepstral coefficients (MFCC) of the audio
samples infer a feature set to be used for further processing,
also discussed by Kelly [22], Zhuang et al. [24], Roth et al.
[11] and Compagno et al. [25]

C. Authentication via Keystroke Sound

As the most recent of the three fields, authentication via
keystroke sound combines the two previously mentioned fields
and aims to assess user identities via sounds emitted by key-
boards. Roth et al. [11], [26] are to our knowledge the first to
explore this approach. They present a three-step algorithm that
consists of temporal segmentation/feature extraction, keystroke
clustering and scoring. The segmentation takes place by de-
tecting keystroke windows in the FFT of the audio sample,
which later get transformed into their respective MFCCs. The
resulting feature sets are then clustered into a virtual alphabet.
For each detected keystroke the virtual label, detection time
and MFCC feature set are transformed to form four scores:
digraph statistic, histogram of digraphs, histogram of virtual
letters and intra-letter distance. A fusion function is lastly
used to form a similarity score for a given set of subjects.
This approach achieved an Equal Error Rate (EER) of 11%
authenticating a user from a database of 50 subjects [11].

Even more recently, based on the work of Roth et al.,
the works of Pleva et al. [27]–[29] show a slightly different
approach which combines audio data with conventional key
timing data and uses Hidden Markov Models. Their best
acoustic model achieved an EER of 8.99% on a database of
50 subjects [29].

Previous methods employ static texts and homogeneous lab
environments for training and testing which may be subject to
instabilities in practice. While Roth et al.’s approach performed
quite well in the environment of only one microphone and one
keyboard, we decided to verify and extend the approach of
Roth et al. in a real-world setting by:

• applying the authentication approach to mobile devices
• allowing multiple keyboard types
• allowing multiple microphone types
• allowing a level of background noise during recordings



• using built in APIs of modern web browsers and thus
require no specific hardware / software for recording
typing data

III. DATA COLLECTION

Comparing typing audio from laptop and smartphones re-
quires data from both sources. To our knowledge, there are no
publicly available datasets which fits our needs. Therefore, we
built a web application to collect the data in two steps.

The first step was a supervised study to get knowledge about
how users behave during the study. With this information,
we optimized the study for the second, unsupervised stage in
order to provide a more intuitive user experience and to have
a ground truth e.g. regarding phone positioning. The second
stage is the source of data that is used for the comparison
in the evaluation. We collected data of 26 different users and
used the same web application for both recording stages.

This section gives information about the web application
architecture, presents the study procedure and the results of
the supervised and unsupervised instantiations of the study.

A. Web Application Architecture

The general web application architecture makes use of the
frontend/backend paradigm in combination with a RESTful
API. Our architecture is depicted in Figure 1. The web
application only requires WebRTC3 which is supported by all
major browsers.

Fig. 1: Backend architecture: We use HTML5, JavaScript and
Vue.js 2 for the frontend and Flask and PostgreSQL for the
backend. Sentry is used to capture errors during development
and during the execution of the study. Matomo keeps track of
the time users need for different steps.

During the experiment, the following data is collected:
• Sound stream for computer microphone
• Sound stream for smartphone microphone
• Keystroke timings
• Transition timings between experiment stages
The audio data is sent to the server in one-second chunks as

soon as it is recorded. By uploading data during the study, the
time at the end of the study for uploading was significantly
reduced. This approach also minimizes the client’s RAM

3https://webrtc.org

usage, as audio data that has been uploaded can be safely
deleted. Sound files are encoded to the lossless WAV format
and are sent as raw data to the REST API. Data on timings
and study completion is transmitted as a JSON object.

We decided against compressing our raw audio files in order
to avoid lossy compression which could potentially reduce
the discriminating power of the audio features. A lossless
compression was not possible because not all browsers support
the same lossless codecs.

B. Study Procedure

To collect data, we used the presented web application
to record typing sounds on laptops and smartphones. The
application was available over a simple URL and, therefore,
users do not need to install programs on their devices.

Each user who wants to participate in the study has to go
through four phases: user agreement, pairing, static text and
dynamic text.

When participating in the study, the user has to read and
accept the user agreement first. In this agreement, we inform
the users about the purpose of the study, what data we will
collect and how we will use the data and that it will be stored
and processed anonymously.

The second step checks the availability of the built-in
microphone of the laptop and sets up the pairing with the
smartphone. For this, the user opens the web app on his smart-
phone and enters the code which he sees in the web application
on his laptop. We use a simple token-based synchronization
mechanism to implement this. We asked the users to put
their phone on the side of their laptop as shown in Figure 2.
We observed in our daily life that many people put their

Fig. 2: The optimal recording setup with a laptop and a
smartphone on one side

smartphones close to they laptops and keyboards. So, they
can immediatly see when they got a call or message and from
who it is. That is, why we asked them to put their smartphone
next to the laptop.

The pairing with a smartphone can be skipped. Then only
the audio from the laptop is recorded.

The last two steps are doing the actual recording. In the third
step, the web application presents a series of lines of static



text to the user that he is supposed to type in an input field.
We enforce the correctness of the typed text: if a user makes
a typing error, he need to correct it before he can proceed
(see Figure 3). The static text consists of normal sentences,
pangrams (sentences that contain every letter of the alphabet)
and simple mathematical equations.

Fig. 3: The static text UI. The text is displayed above and has
to be entered into the input field below. Correctly entered text
is highlighted in green and the text after an error occurred
is highlighted in red. When all text is highlighted in green,
pressing the enter button proceeds with the next line.

In the fourth and last step, the user is required to write
a dynamic text of at least 500 characters. Users are free to
type any text they want, with the instruction text suggesting
“Describe your current environment” as an example prompt.
We also do not enforce the correctness anymore.

The idea to make a static text and free text part is taken
from the work of Roth et al. [11]. We use the static part to
make sure that each user has typed every letter in the alphabet
and the numbers at least once. The free text is used to record
the user specific typing style.

C. Supervised Pilot Study

After developing the study, it was tested with five partic-
ipants. The main goal was to improve the usability of the
user interface as well as to find unknown bugs caused by
different browsers and operating systems. During these tests
we encountered an unexpectedly high number of problems
regarding the audio recording:

• Implementations of the Web Audio API vary across dif-
ferent browsers. We, therefore, had to implement multiple
user agent checks and different methods to check for
recording errors.

• A bug in the Chrome browser4 leads to distorted audio
recordings. We were able to mitigate this problem in our
implementation so that it is only an issue when using
very low-performance devices.

• When recording audio with a smartphone, it would often
go into standby, which would prevent the audio recording
callbacks from being executed and eventually lead to
a crash. We, therefore, adopted the library NoSleep.js5,
which keeps smartphones from going into standby by
simulating the playback of a video.

4https://bugs.chromium.org/p/chromium/issues/detail?id=327649
5https://github.com/richtr/NoSleep.js

D. Unsupervised Experiment Study

The second study is an unsupervised variant of the first
one and provided the data for the following evaluation. We
advertised the study through our social networks and provide
the link to the web application. The participants went through
the study by themselves only following the textual instructions.
The time to finish the study for each participant was 8 to
10 minutes. At the end of each study, we collected some
meta data of the person including age, gender, experience with
the keyboard, environment, writing hours and keyboard types
through the web application.

After finishing the data collection, we needed to filter the
resulting data for potential misuse and outliers because of the
unsupervised nature of the study. This was done manually. In
the end, we collected usable data from 26 participants where
eight users only provide laptop audio and the other 18 both
laptop and smartphone audio. From the meta data, we get the
following information about our 26 participants:
• Age: 17 between 20 and 30 years, 7 between 30 and 40

years and 2 over 40 years.
• Gender: 22 males and 4 females
• keyboard types: 17 chiclet keyboards, 5 mechanical key-

boards and 4 rubber dome keyboards.

IV. AUTHENTICATION PROCEDURE

This section describes the authentication algorithm that
comprises three steps: audio normalization, preprocessing (ex-
tracting keystrokes) and the authentication (scoring) algorithm.

A. Audio Normalization

When analyzing the audio files recorded in our public
experiment, we noticed that different environment parameters
had a strong impact on the audio levels in the recording.
These parameters include the noise level, the loudness of the
keystrokes, the used microphone and the software settings of
the browser and operating system.

This audio normalization was designed to deal with the
following problems:
Comparable gain: Due to different browser and operating

system settings, audio files had different gain levels
varying from very low to very high.

Automatic gain control: We experienced situations where
automatic gain control built into the user’s operating
system changed the gain level while the user completed
the study, which cannot be turned off by browser APIs.
We, therefore, created a window-based gain control which
flattens these changes in the resulting audio file. To sup-
press high background noise in silent windows, we built
another window function that suppresses high volume
gains for a window if nearby windows are similarly silent.

Unified codomain of audio data: For an easier analysis
process we convert the codomain of the single audio
amplitudes to a codomain of [−1; 1].

To address these problems, we developed a process to
normalize the audio files. At first, a gain per chunk gc is



calculated (see Equation 1). This is a factor to multiply the
real value with. The gc is computed on every chunk n of the
size cs, where valuex is the raw data value at one sample
point at position x. Also this converts the codomain of the
real data to [−1; 1] for every chunk. Furthermore, this gain
would amplify each chunk to have a maximum amplitude of
1 and/or −1.

gcn =
1

max
cs·(n+1)
i=cs·n valuei

(1)

In the next step, an arithmetic mean of nearby chunks is
computed (see Equation 2). The window around a chunk is
given by size p where p is the extent of the window to the
right (into the “future”) and to the left (into the “past”) around
the current chunk. So, every chunk n gets an own arithmetic
mean value.

gmn =

∑n+p
m=n−p gcm

2 · p+ 1
(2)

Afterwards, we calculate the harmonized gain gh (see Equa-
tion 3) by checking, whether the chunk gain gc is smaller than
the mean gain gm multiplied by a static amplify factor af ,
which is set to af = 1.3 in our case.

ghn =

{
gcn if gm(n) · af < gc(n)

gmn otherwise
(3)

To prevent hard gain jumps between chunks, we adapt the
gain of consecutive chunks. To apply the adaption, a new gain
modification function m is introduced (see Equation 6). When
one chunk has a higher gain than the other one, the higher one
gets modified to create a smooth transition between different
gain levels.

m1(n, cs, i) = cos(
2 · i
cs · π

) · (ghn − ghn−1) (4)

m2(n, cs, i) = cos(
2 · i
cs · π

+ π) · (ghn − ghn+1) (5)

m(n, cs, i) =


m1(n, cs, i) if |ghn−1| < |ghn| ∧ i < cs

2

m2(n, cs, i) if |ghn+1| < |ghn| ∧ i > cs
2

1 otherwise
(6)

Lastly, the final gain gf is calculated (see Equation 7),
which is applied as a factor to the raw value of the sound
file.

gf(n, cs, i) = ghn ·m(n, cs, i) (7)

Although most audio files were recorded as stereo files,
we use only one channel because the differences between the
channels were marginal.

B. Preprocessing

After the normalization, the preprocessing takes places:
the keystroke extraction. Zhuang et al. [24] observed that
the energy of keystroke sounds is concentrated in the range
between 400 Hz and 12 kHz. Roth et al. [11] used this to
extract the keystrokes from the sound data and we follow
this approach. They do it by applying a sliding window
to the sound stream, computing a FFT on theses windows
and summarizing the magnitudes in the ranges of 400 Hz
to 12k Hz. In this new signal, timestamps bigger than a
threshold θ give the starting points of keystrokes. For each
detected keystroke (starting point + 40 ms average keystroke
duration), the MFCC (Mel-Filter Cepstral Coefficients) are
computed. The result is a 256-dimensional feature vector for
each keystroke [11] [24].

C. Authentication Algorithm

As authentication algorithm, we also use the approach of
Roth et al. [11] and summarize the main parts.

The authentication algorithm computes a score between two
audio signals and if the score is above a threshold these
two audio signals are considered to belong to the same user
(see Algorithm 1). To compute the similarity score for two
audio signals, four metrics are computed first: digraph statistic,
histogram of digraphs, histogram of virtual letters and intra-
letter distance. Then, a score between the same metric of both
signals is computed which results in four scores, one for each
metric comparison. The computation of the similarity score is
a fusion (projection using linear discriminate analysis (LDA))
of these four previous scores.

To get the digraphs and letters, a virtual alphabet is used
that is computed in the training phase. The keystrokes from
the training data are clustered using the K-Means algorithm.
The number of clusters (K) represents the size of the virtual
alphabet. For the digraphs, each detected keystroke is assigned
a virtual letter from the alphabet and two successive letters
form a digraph. From all possible digraphs in the training data,
only the top D percent are used. In the evaluation, we test
different values for K and D to find out which combination
works best for our data (see section V).

Algorithm 1 Authentication Algorithm of Roth et al.

Require: Trained virtual alphabet and threshold T
function AUTH(S, S′)

score← computeSimilarityScore(S, S′)
if score >= T then

return 1
else

return 0
end if

end function

We extended the authentication algorithm to support major-
ity voting based on the number of reference samples. Each
user has multiple samples of typing sounds. Roth et al. chose
one sample as the reference sample and the rest as the test



samples. In the majority voting approach, we can use multiple
reference samples per user. Each test sample is compared to all
reference samples. In our experiments, we used three and five
reference samples and, therefore, the number scores that needs
to be higher than a threshold are two or three, respectively. The
algorithm is shown in Algorithm 2.

Algorithm 2 Authentication Algorithm with Majority Voting

function AUTH2(LS, S′) . LS is list of reference samples
count← 0
for all S in LS do

count← count+AUTH(S, S′)
end for
if count > lengthOf(LS)/2 then

return 1
else

return 0
end if

end function

V. EVALUATION

In this section, we discuss the evaluation of our collected
data from page 3 and consider audio from laptop and smart-
phone as two separated datasets. The evaluation procedure for
each dataset is as follows:
• Data was split into chunks of 10, 30 and 60 seconds
• Configurations for each chunk size were generated with

different virtual alphabet size (K) and different percent-
age of top digraphs (D)

• A train test split of 30-70 was applied
• For each configuration, a virtual alphabet and the pro-

jection parameters of the LDA were trained on the train
data

• Pairwise scores were computed on the test data
• EERs on the scores were computed using no majority

voting, majority of three and majority of five
For testing and computing the EER we assume an attacker

performing random attacks [30] by using all using all the
other samples from the test set as attacker samples. For the
evaluation, we look at the results of the laptop data first,
followed by the result of the smartphone and we finish with
a comparison.

A. Laptop Data

The best result on the laptop dataset is achieved with a
chunk size of 60 seconds, a virtual alphabet size of 60, using
90% of the top digraphs from the training phase and a majority
voting of five. The EER for this configuration is 11.2% as
shown in Table 3c. We can also observe that the authentication
performance increases with larger chunk sizes. The best EER
for the chunk sizes 10, 20 and 30 are 11.7%, 11.5% and 11.2%,
respectively (see Tables 1b, 2c and 3c). The next observation
is that the best results for each configuration are achieved for
a virtual alphabet size of 60 which corresponds to Roth et
al.’s findings [11]. The D parameter varies. We can also see

that majority voting improves the result. For chunk size of 10
seconds, without majority voting we have a best EER of 17%
and with majority voting 11.7% (see Tables 1a and 1b). When
comparing both, the majority of three and majority of five,
we can observe that majority of five is often the better option
(see Tables 2b, 2c and Tables 3b, 3c). For the chunk size of 10
seconds, the EER does not improve and worsens from 11.7%
to 12.6% when using majority voting of five (see Table 1).

B. Smartphone Data

The best result on the smartphone dataset is achieved with
a chunk size 60 seconds, a virtual alphabet size of 60, using
70% of the top digraphs from the training phase and a majority
voting of five. The EER for this configuration is 9.3% as
shown in Table 6c. The results improve with larger chunk sizes
reaching EERs of 19.1%, 14.7% and 9.3% for chunk sizes 10,
30 and 60 seconds, respectively (see Tables 4c, 5c and 6c).
The Tables 5 and 6 show that the smartphone data achieves
best results using a larger virtual alphabet of 60 letters. For
the chunk size of 10 seconds, a virtual alphabet of 20 letters
achieved the best results (see table 4) The results for each
chunk size get better when majority voting is used. In the
Tables 4, 5 and 6 the EERs improves with using majority
voting from 21.8% to 19.1%, 17.8% to 14.7% and 14.7% to
9.3, respectively.

C. Comparison

Overall, there are some general points that are similar for
both, laptop and smartphone data. First, the results get better
with larger chunk sizes. Second, majority voting improves the
result and majority of five gives better results than majority
of three. Lastly, the best results are achieved using the larger
virtual alphabet size of 60.

When comparing the results of laptop and smartphone, we
also can see differences. Laptop data results are far better than
the results on the smartphone data for smaller chunk sizes of
10 and 30 seconds. While the laptop data achieves EERs of
11.7% and 11.4%, the EERs of the smartphone data are only
at 19.1% and 14.7% (see Tables 1, 2, 4 and 5). If we look at
the results of the 60 seconds chunk sizes, the smartphone data
can achieve similar and even better EERs than the laptop data,
e.g. 9.3% for smartphone and 11.2% for laptop with their best
configuration.

VI. CONCLUSION AND FUTURE WORK

In this paper, we verified behavioral authentication based
on sounds emitted by keyboards in different environment
conditions. These environment conditions are defined by a
user’s hardware (keyboard and microphone) and the situational
ambient noise. For that purpose, we are the first to build
a web application and record typing audio from the laptop
keyboards using the built-in microphone and a smartphone
that is positioned next to the laptop. Using the application, we
collected data from 26 participants.

We analyzed the data using different chunk sizes and
configuration parameters. We also applied the approach of



Tab. 1: EERs for chunk size 10 seconds of laptop data using

D
K 20 30 45 60

10% 18.9 17.7 17.3 17.0
20% 18.9 17.7 17.3 17.0
50% 18.8 17.7 17.4 17.1
70% 18.8 17.8 17.4 17.1
90% 18.8 17.8 17.4 17.1

(a) no majority voting

D
K 20 30 45 60

10% 14.8 13.7 12.9 11.8
20% 14.8 13.7 12.9 11.7
50% 14.4 13.5 12.9 11.7
70% 14.2 13.6 12.9 11.8
90% 14.4 13.7 12.9 11.9

(b) majority voting of 3

D
K 20 30 45 60

10% 14.9 13.6 12.9 12.7
20% 14.9 13.7 13.0 12.7
50% 14.7 13.7 13.1 12.6
70% 14.7 13.6 13.1 12.7
90% 14.7 13.7 13.1 12.7

(c) majority voting of 5

Tab. 2: EERs for chunk size 30 seonds of laptop data using

D
K 20 30 45 60

10% 17.2 16.8 15.1 15.4
20% 16.7 16.5 15.5 14.4
50% 16.5 16.3 14.7 14.4
70% 16.6 16.5 15.3 14.9
90% 16.6 16.5 14.6 14.8

(a) no majority voting

D
K 20 30 45 60

10% 13.9 14.3 12.5 14.3
20% 13.6 14.3 13.3 12.5
50% 13.4 13.3 11.8 11.5
70% 13.1 13.9 12.9 13.8
90% 13.2 13.7 12.1 12.2

(b) majority voting of 3

D
K 20 30 45 60

10% 14.8 15.6 13.2 14.3
20% 14.5 15.4 14.4 12.7
50% 14.8 13.9 13.0 11.4
70% 13.9 14.6 13.9 13.8
90% 13.9 14.3 12.8 12.0

(c) majority voting of 5

Tab. 3: EERs for chunk size 60 seconds of laptop data using

D
K 20 30 45 60

10% 15.4 14.5 14.3 13.1
20% 15.4 14.7 14.9 13.8
50% 14.9 15.6 13.6 13.2
70% 15.0 14.9 13.5 13.6
90% 14.9 15.9 13.5 12.8

(a) no majority voting

D
K 20 30 45 60

10% 15.4 14.5 14.3 13.1
20% 15.9 15.3 14.6 12.8
50% 14.2 15.8 13.4 13.3
70% 14.1 13.8 12.9 12.4
90% 14.0 14.8 13.5 12.6

(b) majority voting of 3

D
K 20 30 45 60

10% 15.4 14.3 13.7 13.1
20% 15.8 15.7 14.0 12.3
50% 15.4 15.6 13.4 12.5
70% 14.9 13.4 12.2 12.4
90% 14.9 14.8 13.1 11.2

(c) majority voting of 5

Tab. 4: EERs for chunk size 10 seconds of smartphone data using

D
K 20 30 45 60

10% 21.8 23.3 22.7 22.3
20% 21.9 23.3 22.7 22.1
50% 21.9 23.4 22.7 22.4
70% 21.9 25.8 23.9 22.4
90% 23.3 23.9 24.2 22.5

(a) no majority voting

D
K 20 30 45 60

10% 21.3 22.6 21.3 24.2
20% 21.3 22.9 21.2 24.4
50% 21.1 23.0 21.4 24.5
70% 21.4 26.2 24.3 24.7
90% 23.1 23.0 24.9 24.8

(b) majority voting of 3

D
K 20 30 45 60

10% 19.2 21.2 22.5 22.0
20% 19.2 21.1 22.6 21.9
50% 19.1 21.4 22.1 21.5
70% 19.4 23.1 23.2 22.0
90% 19.2 21.1 23.4 21.9

(c) majority voting of 5

Tab. 5: EERs for chunk size 30 seconds of smartphone data using

D
K 20 30 45 60

10% 19.5 21.7 19.7 17.8
20% 22.5 20.7 18.6 18.7
50% 20.7 22.4 19.1 17.9
70% 22.3 24.9 22.1 18.9
90% 25.0 23.4 21.4 22.9

(a) no majority voting

D
K 20 30 45 60

10% 17.7 19.8 18.9 17.3
20% 21.2 18.9 17.4 16.7
50% 19.5 20.4 17.4 18.7
70% 19.9 25.0 23.0 18.4
90% 25.0 23.4 22.6 26.2

(b) majority voting of 3

D
K 20 30 45 60

10% 16.6 19.5 18.1 16.5
20% 18.9 17.6 16.7 14.7
50% 17.8 19.6 17.2 17.1
70% 18.6 23.6 23.6 15.0
90% 23.6 23.6 22.1 26.0

(c) majority voting of 5

Tab. 6: EERs for chunk size 60 seconds of smartphone data using

D
K 20 30 45 60

10% 18.8 18.8 16.7 15.9
20% 18.9 18.6 18.9 15.8
50% 19.8 22.9 15.9 14.7
70% 19.5 16.3 16.9 15.3
90% 20.1 17.7 15.5 16.8

(a) no majority voting

D
K 20 30 45 60

10% 18.7 18.9 12.5 11.5
20% 17.9 17.9 16.3 12.6
50% 18.4 23.2 14.1 11.7
70% 18.7 14.9 11.9 10.5
90% 20.5 13.9 12.8 15.8

(b) majority voting of 3

D
K 20 30 45 60

10% 15.4 17.6 11.3 11.9
20% 16.6 17.4 15.5 11.2
50% 19.9 21.9 13.0 11.1
70% 19.5 14.8 11.1 9.3
90% 18.8 12.9 12.5 12.0

(c) majority voting of 5



Roth et al.’s work and extend the authentication algorithm with
majority voting. The best EER for laptop and smartphone data
is 11.2% and 9.3%, respectively.

The results show that the smartphone can be used to record
typing sounds and recognize the smartphone owner based on
the typing sound. They also show that devices can use a
model (e.g. virtual alphabet) that was trained in advance and
works without knowledge about the underlying keyboard and
microphone hardware.

Although the results are promising, they are not sufficient
enough to provide a very secure user authentication system.
Thus, there are a few things to note which will be done in
future work. First, typing sound should not be used as a single
method in a continuous authentication scheme but only in
combination with other methods for a reliable result, especially
if there is not much involvement of a keyboard. Second, we
will look into other methods for keystroke detection, e.g. using
deep learning approaches because keystroke detection is a very
important part in this whole procedure. The third point is
to implement the continuous typing sound authentication as
streaming process on smartphones and optimize performance
and battery usage. A fourth point is to analyze different
positions of the smartphone (distance to the keyboard) and
how this will increase or decrease the authentication result.
The fifth and last point, we want to address in the future,
is to improve the keyboard acoustic authentication against an
attacker that can execute more complex attacks than random
ones.
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