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Abstract—Several research evaluated the user’s style of walk-
ing for the verification of a claimed identity and showed high
authentication accuracies in many settings. In this paper we
present such a system that successfully verifies a user’s identity
based on many real world smartphone placements and yet not
regarded interactions while walking. Our contribution is the
distinction of all considered activities into three distinct subsets
and a specific one-class Support Vector Machine per subset. Using
sensor data of 30 participants collected in a semi-supervised study
approach, we prove that unsupervised verification is possible
with very low false-acceptance and false-rejection rates. We
furthermore show that these subsets can be distinguished with a
high accuracy and demonstrate that this system can be deployed
on off-the-shelf smartphones.

Index Terms—gait, authentication, smartphone, activities, ver-
ification, behavioral, continuous

I. INTRODUCTION

Smartphones became a very personal asset over the last

years. Some of the most sensible applications on smartphones

provide access to web platforms as, for instance, social net-

works, email, crypto currency wallets, or trading platforms.

In addition, a lot of sensitive data are stored on the phone

itself, like exchanged text messages or personal photos. To

prevent access by malicious users, the devices are protected

by personal identification numbers (pin), touchgestures, fin-

gerprint readers, or face scans. These protection mechanisms

suffer from different vulnerabilities which can be exploited by

smudge-attacks [1], shoulder-surfing [2], or face masks [3].

Furthermore, they only provide an one-off authentication after

which any action can be taken. To tackle these problems,

existing research proposed alternative authentication methods

over the last years.

Some of these protection mechanisms are part of an au-

thentication method based on something-you-are in terms

of biometrics that encompass physiological (e.g. fingerprints

or iris characteristics) and behavioral biometrics. The latter

include the authentication of users based on the way they

walk (gait). In addition to a higher difficulty for attackers to

imititate this behavior, it helps authenticating the legitimate

user in a continuous manner. If an attacker steals a phone and

walks away, protection is still possible as the system can detect

the attacker because of a different style of walking. From

another point of view, continuous authentication can enable

the smartphone as an authenticator that continuously provides

a kind of (trust) score for web service authentication [4].

Smartphones are good candidate devices for authentication

based on biometrics:

• Data input: Smartphones are equipped with many move-

ment sensors, for instance, accelerometer, or gyroscope,

and can collect raw data input for biometric classification.

• Processing power: Current smartphones are very pow-

erful in terms of CPU or RAM and provide sufficient

storage space. They can collect, store, and process raw

sensor data for biometric classification on the phone

itself.

• Data availability: Due to the sensible data stored on

smartphones, they became very important companions for

users. As a result, users carry their phone along with them

almost all day and provide many interaction data.

Over the last years, a lot of research that also covered aspects

like sensor positioning [5], different activities apart from

walking (e.g. biking or sitting) [6], [7], and the integration of

smartwatches as a second factor [8], [9] has been published

in that field. They proved high authentication accuracies in

user studies of different sizes with traditional machine learning

techniques [10], [11] and Neural Networks [12].

A. Motivation

Particularly because smartphones are so convenient and

provide access to a lot of services, they are often used

actively while walking, too. Browsing the news, reading and

typing messages, or recording a voice message are just a

few tasks people perform while walking. These people are

sometimes referred to as smartphone-zombies (SMOMBIES)

[13] as any environmental events are rarely recognized any-

more and they seem to be controlled by their phones only.

While these activities are a health hazard to people and their

environment [14] and while this behavior is already considered

chargeable in some cities [15], these users define additional

robustness requirements to any authentication or trust level

system using gait biometrics: the device’s movement may

differ substantially depending on all possible locations and

interactions while the user is walking in comparison to simply

walking with the phone located in one’s front side trousers
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pocket. These different levels can aggravate a correct authen-

tication and possibly increase False-Acceptance-Rates (FAR)

or False-Rejection-Rates (FRR) [11], [16]. With a higher FAR,

the security level decreases and attackers may circumvent

a gait authentication system by keeping the phone in their

hands while walking, for example. If the FRR is increased,

usability may worsen as users are detected as attackers during

interactions while walking. Depending on a possible imple-

mentation, that could trigger traditional fallback mechanisms

like passwords or pins continuously which would need explicit

user interactions every time.

B. Contribution

In this paper we present a verification system that is resistant

against different locations and interactions connected to the

act of walking. It allows continuous authentication based on

a person’s gait independent from the location or interaction.

Our detailed contributions are as follows:

• We collected sensor data of 30 users in a semi-supervised

user-study with a yet unseen approach to simulate real

world situations linked to walking. These situations in-

clude interactions such as texting or reading and typical

placements of devices while walking, like bags or pockets

(section III). To our best knowlegde this work is the

first evaluation of up to 14 different placements and

interactions per person in terms of user verification while

walking.

• We prove that unsupervised user verification is possible

with a high performance that needs only 15-20 seconds

of training time per activity. We reach F1-scores of up to

97% for single activities resulting from three different

activity subsets and specific one-class Support Vector
Machines (SVM) per subset (section V).

• We further illustrate that our subsets can be distinguished

with a mean accuracy of 88.82% using SVMs (sec-

tion V-E).

• We demonstrate that our system can be deployed on off-

the-shelf Android devices and performs well with low

sampling rates, too (section VI).

Starting with an overview on related work (section II) this

paper closes with a conclusion and an outlook regarding future

research (section VII).

II. BACKGROUND

The evaluation of a person’s gait has been the topic of

research for some years already, wherein it has been analyzed

in different contexts, for example, activity detection [17]–

[20], sensor positioning [5], smartwatch integrations [8], [9],

or health issues such as detecting spoofing attacks aiming

for healthcare benefits [21]. In this section we give a more

detailed overview on related work in terms of (unsupervised)

user authentication based on a user’s gait with a focus on real

world situations.

In 2014, [22] conducted three user studies to evaluate (un-

supervised) user verification by applying a Gaussian Mixture
Model Universal Background Model (GMM-UBM). In the first

study they trained a supervised walking activity classifier with

47 subjects performing different activities such as walking,

biking, or running with the smartphone in different positions.

In the second study they collected data to evaluate supervised

training with the help of 12 subjects who were carrying the

phone in at least two different positions on their body like belts

or jacket pockets. Lastly, they collected unlabeled data from

8 subjects over two to three weeks. They reached up to 98%

precision for walking detection using a decision tree, an EER

of up to 14% for supervised gait verification using 20% of the

participants training data, and an accuracy in the unsupervised

scenario that is 5% lower than in the supervised scenario.

They explicitely note that actions with tight coupling to body

motions (trousers pocket) are easier to verify in comparison to

loosely coupled ones like holding in hands. In terms of fea-

tures, they include time and frequency-domain features with a

focus on Compressed Sub-band Cepstral Coefficients (CSCC)
based on the Mel Frequency Cepstral Coefficients (MFCC)

which are typically applied in speech detection. They extracted

these features using windows from extracted accelerometer

data with a length of 512 samples and an overlap factor of

50% using 100Hz sampling. Finally, they showed that their

setup can be deployed on off-the-shelf smartphones with low

CPU and RAM usage. In this process, feature extraction and

gait analysis are the heaviest operations.

Watanabe and Sara presented an activity and user detection

evaluation in 2016 that was based on a former study from

2014 [10]. In this evaluation, 15 participants executed 5

different activities (pocket, pretend to call, pretend to look

at device, upstairs, downstairs) each for about a minute in

a 50 m corridor. They applied different feature selection

methods to determine the most appropriate subset from a

total of 52 features which they extracted from nonoverlapping

windows of 300 accelerometer sensor events collected with

a sampling rate of 100Hz. The Random Forest algorithm

outperformed Neural Networks, Bayes Net and Support Vector

Machines (SVM) provided by Weka Machine Learning suite

in all classification scenarios. These scenarios included activity

detection (5 activities), user detection (15 subjects), and user
and activity detection (75 combinations). They reported correct

classification rates of up to 90% which they reached in the

classification of 5 activities [16].

Reference [11] analyzed 10 different one-class approaches

for continuous authentication including K-Nearest-Neighbours

(KNN), one-class SVMs, and 3 different distance-based clas-

sifiers (Euclidean, Manhattan, Mahalanobis) with different

configurations for gait authentication. For evaluation they

collected data of 10 participants executing 25 rounds of data

collection, each based on 5 placements (right upper arm, right

hand, right jacket pocket, right trousers pocket, waist) and 5

activities (ascending and descending stairs, walking, jogging,

and jumping). Using linear acceleration and gyroscope sensor

data recorded with 20Hz, they extracted 89 features from

time-domain, frequency-domain and wavelet-domain based on

a 1 second window with a 50% overlap. They evaluated

an activity-aware and a placement-aware scenario. Overall,
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Manhattan and Mahalanobis distance classifiers performed

better than the other and showed that placement-aware situa-

tions are more difficult. For the activity-aware scenario and

the placement-aware scenario the best EERs of 2.4% and

5.5% were reached for jogging activity and right side pocket,
respectively.

With IDNet, Gadaleta and Rossi present a gait authentica-

tion system that uses neural networks as a feature extractor

and one-class SVMs (ocSVM) for user recognition. They

used a Convolutional Neural Network (CNN) to extract fea-

ture vectors with 40 dimensions out of determined walking

cycles from a data set of 50 participants. For each of the

subjects they collected ’front right trousers pocket’ walking

activity data over a 6-months period. The activity also in-

cluded different shoes and clothes. They reported that their

extracted features outperform other traditional schemes, such

as classification trees or KNN by comparing classification

accuracies on the test set. In addtion, they stated that even the

traditional schemes would perform better with the CNN-based

features. Finally, they used an ocSVM to evaluate whether

their feature extractor can be used for yet unconsidered test

samples in a real-world setting. Further reducing the feature

dimensions using Principal Component Analysis they showed

that a ocSVM performs best with less feature dimensions

than the original 40. In the end, they reach false-positive

rates and false-negative rates of less than 0.15% based on

a multi-stage authentication approach considering multiple

subsequenct walking cycles [12].

We will extend the approaches presented above by focussing

on interactions occuring while walking that have not yet been

considered. Most of them became increasingly common with

the rising success of smartphones and apps over the last

3-5 years such as texting or voice message recording. To

our best knowledge, no in-depth analysis of user verification

exists at the moment which includes different placements and

interactions that occur while walking. Moreover, our work

focuses on a real world deployment and thus only consid-

ers unsupervised learning for the verification. In addition, it

involves a deployability evaluation that is left out in most

of the other works. Nevertheless, our study does not include

data collected over a longer time in comparison to, e.g, [12]

or [22].

III. SEMI-SUPERVISED DATA COLLECTION

With respect to the user’s clothes and manually observed

interactions, the following activities and phone positions were

considered for data collection:

• 7 Interaction activities: reading a text (portrait), texting

(portrait), texting (landscape), watching a video (land-

scape), listening to a voice message (portrait), recording

a voice message (portrait), and answering a call (portrait)

• 9 Side-specific wearing activities (right/left): holding in

hand if no pockets are available, trousers frontside pocket,

trousers backside pocket, trousers knee-level pocket,

jacket outer pockets (usually at the bottom end of the

jacket), shoulderbag over shoulder, shoulderbag diagonal,

handbag over shoulder, and handbag holding in hand

• 3 Wearing activities with central placements: jacket breast

pocket, jacket inner pocket, and backpack

To our best knowledge no public data set with the respective

activities included exists. Therefore, we prepared a specific

data collection application that covers the different locations

and interactions (section III-A). The overall experiment took

place in a large parking lot with very little car activities. We

explained the purpose of the study to the participants and

asked them to walk a speed they consider normal. Overall, we

collected data from 30 participants (10 female) ranging from

18-42 (σ=6,3) years and heights from 163-201 (σ=9,6) cm we

recruited on-campus. We used a Google Pixel Smartphone and

a Huawei Smartwatch to collect 30 seconds of pure walking

per wearing or interaction activity (table I).

A. Data Collection Application

In addition to the approaches from related work like [16],

we wanted participants to actually interact instead of only

pretending to perform a specific activity. Moreover, we wanted

to allow users to behave natural and to reduce possible bias by

repeated instructions of a supervisor. Thus, we implemented

the app to enable the participants to navigate through the

collection process on their own with as few interruptions as

possible. For implementation we extended the ResearchStack

framework [23] to collect raw accelerometer and gyroscope
sensor data in the background. In addition, we created six

real-world survey step interfaces to simulate situations for

instant messaging (simple chat bot), reading articles (web

view of Google research blog), watching videos (lecture

video), recording and listening to voice messages (similar to

WhatsApp) and telephoning. With regard to the user interface,

each possible wearing or interaction survey step is represented

by either two or three screens referring to the instruction,

execution, and closure phases (Fig. 1).

1) Instruction: This screen describes the possible places

in which to put the device while walking for wearing
activities. All side-related locations were recommended

based on the initial information in case a person was left-

handed or right-handed. For interaction activities, such

as reading an article, a short summary of the execution
part is given in addition, e.g. ”read a text”.

2) Execution (interaction only): This screen shows the

interaction interface, e.g. a chat view to exchange mes-

sages or a web view to read articles.

TABLE I
TOTAL QUANTITY OF PARTICIPANTS FOR WEARING AND INTERACTION

ACTIVITIES DURING DATA COLLECTION
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3) Closure: This screen indicates that the required time of

activity execution is over. It allows the participants to

stop the specific step and proceed to the next one.

The screens are connected by either two or three different

timers depending on the type of activity:

1) Lock and locate device timer (5,15 seconds): Within

this time the participant should lock the device, start

walking, and put it in the place requested on the in-
struction screen. It is started by the participant from

the instruction screen. For trousers or jacket pockets we

decided on a 5 second timer, for handbags, backpacks

and shoulderbags the timer spanned 15 seconds.

2) Retrieve and unlock device timer (only interaction, 8

seconds): Once the timer passed, a notification sound

plays on the smartphone and the smartwatch vibrates to

signal the participant that he or she needs to retrieve

the device from the respective location he or she put it

before, and to unlock it. This second timer runs in the

background after the previous one finishes.

3) Activity Execution timer (30 seconds): This timer starts

after the lock and locate timer for wearing activities

and after the retrieve and unlock timer for interaction
activities, respectively. Once finished, the closure screen

shows. For all wearing activities a notification sound

plays again as the device still remains in the respective

location and needs to be retrieved and unlocked to finish

the step.

Although a more thorough evaluation regarding the partic-

ipant’s perceived level of reality was left out for this study,

the approach worked out quite well in our observation in

terms of less supervision. After a supervised introductory

sample task, all participants navigated themselves through

the collection process with only a very few interruptions.

These were mostly necessary due to technical problems while

only two participants misunderstood the holding in hand task.

Please note that a supervisor observed the collection from a

distance of 10-50 meters for the whole time and took notes or

interrupted in case of any problem. To our best knowledge, this

semi-supervised approach is yet unseen. Although [20] used

an app that guided participants through the collection process

in a similar manner, their study was conducted with the help

of a threadmill and fewer activities.

B. Sampling Configuration

To access sensor data on Android for specific applications,

a respective sensor delay needs to be defined. This setting

determines the approximate delay or sampling rate with which

the sensor data are available for that application. The final

delay is, furthermore, only a suggestion for the system and

can be changed by Android depending on available CPU pro-

cessing power or battery level, for instance [24]. For this study

we decided to collect the data with the lowest delay possible

which results in a sampling frequency of approximately 400Hz
on our device.

(a) Basic instructions for the
texting activity. Participants
could test all signals for that
task prior to the start.

(b) Chat view to exchange mes-
sages with a simple chat bot that
asks a new question after each
response

Fig. 1. Screen flow of the execution phase and the closure phase of the texting
activity.

C. Data Preprocessing

The following processing steps were taken prior to our

evaluation:

• Sliding window: With respect to the above presented

work, we decided to apply a sliding window approach for

feature extraction. After manual evaluations, we chose a

window length of 2 seconds that is extracted every 200

milliseconds resulting in an overlay factor of 90%. To our

best knowledge, this is a novel approach with regards to

related work mentioned before.

• Activity time extraction: As stated above, we collected 30

seconds of each wearing or interaction activity. To have

raw activity time with no interference from a delayed

placement or access of the device, we skipped the initial

8 seconds of the collected data. Based on our sliding

window specifics, we extracted 100 windows of 2 seconds

out of the last 21.8 seconds of each activity. We extracted

this data based on the end of the activity execution timer.

• Filter: We applied a savgol filter of a window length of

21 with a polyorder of 3 to minimize hardware errors and

noise in the raw sensor data.

• Feature extraction: We extracted 18 features in the time

domain per sensor dimension (X, Y, Z-dimension per

sensor respectively) resulting in 108 features in total

per window. Per dimension, we extracted the 11 bin

edges after applying equal-width binning for 10 bins, the

peak-to-peak difference based on the first and last edge

(min, max), variance, standard deviation, median, mean,

average median deviation, and average mean deviation.

IV. EVALUATION APPROACH

A. Detecting the legitimate User

We considered the following process to evaluate whether

the legitimate user is successfully detected in which we repre-
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sented situations where the legitimate user is fully enrolled and

performs one of the abovementioned activities while walking:

1) Choose support activities for training: We considered the

first 75% of extracted feature sets from all activities by

a single participant as given by an assumed enrollment.

For training, we initially left out the data for a particular

activity we wanted to evaluate in terms of verification

performance later on. To give an example, we included

75 feature sets from all wearing activities and interaction

activities performed by a participant for training except

answering a call. We refer to answering a call as the

target activity.

2) Train and test target activity verification: The first 75%

of the target activity feature sets were taken as further

input for training. The yet unseen remaining 25% of

the target activity data were used to test. For further

verification, we cross-validated by repeating this process

for all 75%/25% splits of the available 100 feature sets of

the target activity. For a realistic validation situation we

only took 25% shares of feature sets that were created

from subsequent windows, whereas the 75% for training

were taken from before and after the test data. In terms

of 100 available feature sets per activity we repeated

training and test thus 76 times and conducted 76×25

= 1900 tests of our model. For each test, the training

set consisted of 75 feature sets of the current target

activity training/test split and all training feature sets

of the support activities.

3) Repeat for other activities: We repeated this process for

each other recorded activity by the specific participant

and for each other participant, respectively.

B. Detecting nonlegitimate Users

We followed a similar procedure to verify whether nonlegit-

imate users are detected. As a result, we represented situations

where the legitimate user is fully enrolled and a nonlegitimate
user gained access to the phone and started walking away.

1) Train model based on legitimate user: We picked one

participant as the legitimate user and trained the model

with 100% of all available feature sets extracted from

any recorded activity of that participant. To give an

example, 11 activities were used as a training profile
for a participant that recorded all 7 interaction activities

and 4 wearing activities (trousers front/back, holding in

hand, jacket outer pocket). Overall, training was done

with 11×100 = 1100 feature sets.

2) Test model: We considered a threat model with an

attacker who put no effort in observing the user’s fa-

vorite placement side or style of walking and could be

categorized as a random attack [25]. Nevertheless, the

attacker observed the favorite pockets of the legitimate

user. Because of that, we tested the model with all fea-

ture sets extracted from activities recorded by all other

participants that fit the activities of the training profile.

Furthermore, we ignored any side-specific information

in case a participant was right-handed or left-handed.

3) Repeat for other participants: We repeated this process

so that each participant was the legitimate user once and

a random attacker for all other participants, respectively.

C. One-Class Support Vector Machines

We used one-class Support Vector Machines (ocSVM) with

an rbf kernel for all training and testing operations. Referring

to related work like [11], [12] or [26], (one-class) SVMs with

rbf kernel show a good performance in different settings.

Moreover, implementations like LIBSVM are given for a vast

amount of environments [27], which is important for a later

real-world deployment. In general, Support Vector Machines
(SVM) determine a hyperplane that separates vectors that rep-

resent feature sets of different target classes with a maximum

margin in a linear space. If SVMs are used with a specific

kernel they map these vectors into higher dimensional spaces

and thus also can find nonlinear relations to determine the

optimal hyperplane. Prior to our application, any training or

test feature set was standardized accordingly using a Min-Max
Scaling procedure based on the training data.

D. Sensor-based ocSVMs and Majority-Voting

Depending on the specific activity, the device’s orientation

may be more important than the overall acceleration applied

to a device, especially in terms of interaction activities, such

as texting or calling. For the evaluation we thus included four

different decision schemes to cover these characteristics:

1) Accelerometer-only ocSVM: This ocSVM only consid-

ers training and test feature sets extracted from ac-
celerometer sensor data (54 features).

2) Gyroscope-only ocSVM: This ocSVM only considers

training and test feature sets extracted from gyroscope
sensor data (54 features).

3) Hybrid-sensor ocSVM: This ocSVM considers training

and test feature sets with the full feature set as described

in section III-C extracted from accelerometer and gyro-
scope sensor data (108 feature vectors).

4) Majority Voting on decision level: Based on the decision

of each separate ocSVM majority voting was applied.

If both the accelerometer-only and the gyroscope-only
ocSVM agree in their decision this did overwrite any

decision of the hybrid-sensor ocSVM.

E. Activity-aware User Verification

As the presented work by [11] showed, specific evaluation

scenarios that are either placement- or activity-aware can lead

to different results. Furthermore, [22] mentions that the cou-

pling of the device to the overall body motion influences the

verification performance, too. This is especially the case when

a user performs activities with different levels of coupling. In

addition to considering all recorded activities as a whole, we

also evaluated whether a split into specific activity subsets can

increase verification performance. Based on our observations

during the study and the mentioned related work, we focussed

on a split resulting from the the device’s level of coupling to
body motion per activity.
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V. RESULTS

A. Verification based on all available Activities
Overall, our results are promising including all recorded

activities with all decision schemes as depicted in Fig. 2. In the

end, the accelerometer-only approach slightly outperformed

the hybrid and the majority-voting-based approach with a

focus on a most balanced result that gains an overall FAR

of 4.47% and FRR of 7.17%. For each decision scheme we

used a coarse grid search and manual tuning to find the optimal

hyper-parameters ν and γ that can be used to tune ocSVMs.
A different situation is observed for all decision schemes

in terms of per-activity performance. Please refer to table II

for per-activity performances based on the results of the

accelerometer-only ocSVM. Activities #1-#11 perform quite

TABLE II
FAR, FRR, PRECISION, RECALL, AND F1-SCORE PER ACTIVITY FOR ν=0.01

AND γ=0.25 FOR ACCELEROMETER-ONLY OCSVM

# Activity Precision Recall F1-Score FAR FRR
1 Trousers front right 99.84 90.33 94.85 0.10 9.67
2 Trousers front left 99.98 89.25 94.31 0.01 10.75
3 Trousers back right 99.99 92.47 96.09 0.00 7.53
4 Trousers back left 100.00 89.12 94.25 0.00 10.88
5 Jacket outer right 99.89 93.65 96.67 0.07 6.35
6 Jacket outer left 99.99 90.59 95.06 0.01 9.41
7 Holding in hand right 97.75 84.33 90.54 1.27 15.67
8 Holding in hand left 98.97 86.78 92.47 0.59 13.22
9 Jacket inner 99.82 95.59 97.66 0.20 4.41

10 Jacket breast 99.99 92.86 96.29 0.02 7.14
11 Backpack 99.98 93.44 96.60 0.02 6.56
12 Texting portrait 81.17 98.56 89.02 14.98 1.44
13 Texting landscape 86.84 95.32 90.88 9.46 4.68
14 Reading article 85.01 98.41 91.22 12.21 1.59
15 Watching video 88.37 96.74 92.37 8.34 3.26
16 Answering a call 97.83 91.09 94.34 1.33 8.91
17 Listening to voice message 95.17 90.55 92.80 3.01 9.45
18 Recording voice message 89.94 94.47 92.15 6.92 5.53

well regarding protection against nonlegitimates with single

per-activity FARs of 0.0%. At the same time, holding in hand
right and trousers front/back left activities show high FRRs of

up to 15.67%. Regarding interaction activities, reading and

texting portrait activities demonstrate high FARs up to 15

% while having acceptable FRR rates of less than 5%. Any

further tuning effort resulted in either lower FRRs for tasks #1-

#11 and higher FARs for all remaining interaction activities or

vice-versa. In conclusion, our results fit the observations made

by [22] in terms of different levels of device-body movement

coupling and can be extended to our set of activities while

walking.

HYBRID
= 0.01
= 0.1

GYRO-ONLY
= 0.01
= 0.5

ACC-ONLY
= 0.01
= 0.25

MAJ-VOTING
= 0.01
= 0.25

0

5

10

15
FAR FRR

%

Fig. 2. FAR and FRR per decision scheme including all activities based on
best hyper-parameter settings per decision scheme

B. Verification based on Coupling to Body Motion

We improved our system by splitting all activities into three

subsets with specific ocSVMs as shown in table III, IV and

table V, respectively. Each subset includes activities with

a certain level of coupling between the device’s movement

and the body motion and the following three-fold split out-

performed a two-fold split based on wearing and interaction
activities only:

• Screen attention activities: For these activities users need

to absorb all body movements in order to still be able

to follow anything that happens on the screen, such as

writing and reading texts, or watching videos.

• Speech-related activities: These activities encompass

recording of and listening to voice messages, and an-
swering a call. Although users still need to absorb body

motion to a certain level they absorb less motion in

comparison to screen attention activities. In the end, they

only need to talk or listen and therefore they do not need

full screen attention all the time.

• Wearing only activities: These activities have a tight

coupling to body motion and include all of our wearing
activities defined in section III.

Although the FARs for reading an article and texting por-
trait improved only a little, we reached an overall more

balanced performance using the accelerometer-only ocSVM

again. While the FRR of speech-related activities increases,

some of the remaining wearing only activities’ performance

could be improved significantly. The FRR could be reduced

by approximately 6% from 15.67% to 9.63% for the holding
in right hand activity, for instance. Simultaneously, the per-

formance of the other included activities remained on a high

level reaching F1-scores of up to 97.71% for the jacket inner
pocket activity.

In conclusion, we consider the three subsets of wearing
only, screen attention, and speech-related as the optimal split

for this evaluation:

• We consider the wearing only activities to be the most

important group as we assume that the majority of people

(and attackers) still merely walk in most of the cases.

TABLE III
FAR, FRR, PRECISION, RECALL, AND F1-SCORE PER SCREEN ATTENTION

ACTIVITY FOR ν=0.01 AND γ=0.02 FOR ACCELEROMETER-ONLY OCSVM

# Activity Precision Recall F1-Score FAR FRR
1 Texting portrait 87.33 90.75 89.00 8.63 9.25
2 Texting landscape 87.32 93.20 90.16 8.87 6.80
3 Reading article 89.40 93.69 91.50 7.82 6.31
4 Watching video 89.91 92.48 91.18 6.80 7.52

TABLE IV
FAR, FRR, PRECISION, RECALL, AND F1-SCORE PER SPEECH-RELATED

ACTIVITY FOR ν=0.01 AND γ=0.03 FOR ACCELEROMETER-ONLY OCSVM

# Activity Precision Recall F1-Score FAR FRR
2 Answering a call 94.08 89.86 91.92 3.70 10.14
1 Listening to voice message 93.89 89.40 91.59 3.81 10.60
3 Recording voice message 88.72 90.94 89.81 7.58 9.06
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TABLE V
FAR, FRR, PRECISION, RECALL, AND F1-SCORE PER WEARING ONLY

ACTIVITY FOR ν=0.01 AND γ=0.03 FOR ACCELEROMETER-ONLY OCSVM

# Activity Precision Recall F1-Score FAR FRR
1 Trousers front right 92.14 93.10 92.62 5.59 6.90
2 Trousers front left 93.68 95.33 94.50 4.53 4.67
3 Trousers back right 91.30 95.08 93.15 6.88 4.92
4 Trousers back left 89.73 95.54 92.54 8.31 4.46
5 Jacket outer right 94.19 96.36 95.26 4.03 3.64
6 Jacket outer left 98.93 97.03 97.97 0.71 2.97
7 Holding in hand right 92.52 90.37 91.43 4.79 9.63
8 Holding in hand left 98.77 92.18 95.36 0.75 7.82
9 Jacket inner 97.93 97.50 97.71 2.45 2.50

10 Jacket breast 98.73 94.97 96.81 3.32 5.03
11 Backpack 98.49 94.94 96.69 1.38 5.06

• All screen attention activities could be supported by

a second factor in a later real-world deployment, like

keystroke/touchstroke authentication approaches [28], or

eye-movement-based authentication systems [29].

• All activities of the speech-related activity set except

listening to a voice message could be supported by

a second factor in a later real-world deployment like

voice/speech recognition technologies [30].

Please note that depending on the overall focus of the verifi-

cation system different activity subset splits may be sufficient.

C. Wrong Decisions in a Row

As explained in section III-C we used a sliding window

approach that results in 5 decisions per second. We evaluated

the number of wrong decisions in a row to gain further insights

on all cases in which decisions were made wrong. In general,

the mean length is sufficiently low with values that represent

approximately 1 second (3-6 wrong decisions) for both groups

of users. Nevertheless, there exist single outliers which nearly

correspond to the respective test window length referring to

the legitimate users (24 decisions) and up to 97 decisions for

nonlegitimates in all subsets as shown in table VI.

D. Majority Voting on the Decision Level

Based on the row lengths presented above, we evaluated

a majority voting scheme in addition to the four decision

schemes described in section IV-D. With regard to section IV,

multiple test sets of 25 decisions are considered to verify the

legitimate user. Thus, we included only 7 to 17 subsequent
decisions for majority voting to get a) a sufficient amount of

majority voting results per test set and b) a realistic situation

TABLE VI
MEAN, STANDARD DEVIATION, AND MAXIUM OUTLIER FOR THE LENGTHS

OF WRONG DECISIONS IN A ROW BASED ON ACTIVITY SUBSET FOR

LEGITIMATE AND NONLEGITIMATE USERS

wearing only screen attention speech-related
x̄ legitimate 3.05 3.8 3.91
σ legitimate 3.44 3.96 4.32

max outlier legitimate 24 24 24
x̄ nonlegitimate 5.09 4.06 5.68
σ nonlegitimate 8.71 5.98 8.44

max outlier nonlegitimate 97 85 88

in terms of extracted walking data. Majority voting based on

17 decisions results in 9 majority decisions as the respective

window of 17 decisions could be shifted 8 times based on 25

ocSVM decisions, for example.

Fig. 3 shows the performance of majority voting applied

to the results of the accelerometer-only ocSVM for speech-
related activities. We can see that precision values worsen

9 13 171171 15

Number of decisions considered for majority voting

86

88

90

92

Recall Precision F1-Score

%

Fig. 3. Performance depending on different amounts of decisions considered
for majority voting for speech-related activities based on the accelerometer-
only ocSVM with ν=0.01 and γ=0.03

a little more (from 92.14% to 85.07%) than the recall is

improved (from 90.06% to 91.23%) with larger window sizes.

This results in a slightly decreasing F1-Score from 91.09%

to 88.04%. Apart from these metrics, FAR and FRR slightly

improve from 5.03% / 9.93% to 4.49% / 8.76% in terms of 1
(no majority voting) and 17 included decisions.

We further evaluated a larger number of considered deci-

sions for the detection approach of nonlegitimate users as these

test sets included 100 decisions. Overall, a slight improvement

of the accuracy is reached from 95.54% to 96.49% based on 1

to 51 considered decisions. We observed similar results for the

other activity subsets for both groups of considered decisions

as shown in table VII and VIII, respectively. In conclusion,

majority voting can increase FAR and FRR by up to 2%

for wearing only activities based on only a few seconds of

consequent walking activity (17 decisions ≈̂ 3,4 seconds). In

terms of nonlegitimate users only, the detection accuracy can

be improved by up to approximately 3% in the case of screen

TABLE VII
PERFORMANCE RESULTS OF A MAJORITY-VOTING APPROACH THAT

CONSIDERS DIFFERENT AMOUNTS OF SUBSEQUENT DECISIONS FOR

WEARING ONLY AND SCREEN ATTENTION SUBSET

Activity Set Decisions Precision Recall F1-Score FAR FRR
Wearing only 1 88.46 92.51 90.44 8.04 7.49
Wearing only 17 80.58 94.15 86.84 6.48 5.85

Screen attention 1 94.63 92.69 93.65 3.85 6.35
Screen attention 17 89.49 94.15 91.76 3.47 5.85

TABLE VIII
DETECTION ACCURACIES OF NONLEGITIMATE USERS BASED ON

DIFFERENT AMOUNTS OF SUBSEQUENT DECISIONS CONSIDERED FOR

MAJORITY-VOTING

Decisions considered
Activity Set 1 7 15 25 35 51

Wearing only 94.97 95.17 95.43 95.70 95.92 96.06
Screen attention 91.96 92.54 93.32 93.99 94.44 94.84
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attention activities if 51 decisions are considered for majority

voting.

E. Activity Subset Detection

In a real-world scenario the proposed subset-based verifi-

cation system needs to determine which activity is currently

performed to decide about the sufficient subset classifier. We

further evaluated SVMs with an rbf -kernel, Random Forests

(RF) and Decision Trees (DT) for supervised detection of our

activity subsets including all decision schemes. Therefore, we

performed a 10-fold cross validation based on 30 participants

and repeated it 10 times (100 runs in total).

Since the speech-related activity subset includes only three

activities, this class had the lowest amount of available

training/test samples. Thus, we randomly removed samples

from the other classes to gain an equal amount of samples

per class. We conducted a grid search to find the optimal

hyper-parameter for the SVM but did not consider additional

feature selection approaches for RF and DT. Overall, we

reached the best mean accuracy of 88.82% using the SVM

majority-voting scheme (C=1, γ=0.1). In general, majority-
voting performed slightly better (1%-2%) than the hybrid
and accelerometer-only scheme while gyroscope-only per-

formed worst for all classification approaches. In comparison,

the SVM performed a little better than the Random Forest

(majority-voting 87.16%), and clearly outperformed the Deci-

sion Tree (majority-voting 83.69%) classification scheme.

Regarding the confusion matrix shown in table IX, the

distinction between speech-related and screen attention activ-

ities is the most difficult as a lot of speech-related activities

were classified as screen attention activities. Additionally,

TABLE IX
CONFUSION MATRIX FOR SUPERVISED ACTIVITY SUBSET DETECTION

BASED ON SVM MAJORITY-VOTING AFTER 100 CROSS VALIDATIONS

wearing only screen attention speech-related
wearing only 83121 1428 5451

screen attention 602 85266 4132
speech-related 2778 15804 71418

distinguishing speech-related activities from wearing only
activities is more difficult than to distinguish them from screen
attention activities. Referring to our data collection and the

presented results of our study we assume that they are due to

the following reasons:

1) Users do not need to absorb body movement while

listening or speaking, because they do not need to see

what is happening on the screen. Thus, the device’s

movements are not decoupled as heavyly as they are

during screen attention activities. They may also be

more similar to wearing activities.

2) Some of the participants recorded one long message

while others recorded multiple short messages with

some short walking only activity in between. Moreover,

some participants talked rather loudly while the device

was in approximately the same position as reading
an article in front of the body. Another share of the

participants talked with a normal conversation volume

but made sure that the microphone pointed to their

mouth. As the participants had to keep their finger on

the recording button all the time while speaking (similar

to WhatsApp), only two participants recorded voice

messages similar to answering a call.
3) One group of participants listened to the voice message

just like they would answer a call. Another group of

participants changed the location of the device to listen

properly: While some of them just increased the volume

to keep the device in approximately the same position as

reading an article, others moved the device next to their

head and made sure that the speaker pointed to their left

or right ear.

VI. DEPLOYABILITY EVALUATION

As stated in section III-B we recorded sensor data with

the lowest delay possible. To determine deployability [31],

we evaluated verification performance related to different

sampling rates and the on-device processing complexity of our

approach.

• Verification performance: We simulated lower sampling

rates by considering only every n-th sample of the data we

collected initially. Although this downsampling approach

does not consider possible aliasing effects, it is sufficient

enough as our features are extracted solely from the time
domain. Our target sampling rates focused hereby on the

different built-in sensor delay settings from Android.

• Processing complexity: We implemented our approach in

a prototype app that we deployed on our test device. We

fully charged the phone and let the system run for one

hour without any further active apps except the profiling

app TrepN [32]. While this approach does not consider

any influence from real world phone interaction while

walking, it is sufficient for a basic understanding of

wearing only activities.

A. Sampling Rate vs. Accuracy

To determine the default sampling rates for our test device

we measured sampling rates based on the built-in sensor delay

settings provided by Android resulting in approximately 400

Hz (fastest), 50 hz (game delay), 25 Hz (UI delay), and 6

Hz (normal delay). Thus, we simulated lower sampling rates

of approximately 200, 100, 50, 25 and 6 Hz by considering

only every 2nd, 4th, 8th, 16th and 64th sample of our

initially collected data. Please refer to Fig. 4 to see the best

performances we could reach for the screen attention activity

set with a focus on FAR and FRR.

On the one hand, we proved our verification system to

be stable against lower sampling rates as we reached suffi-

cient performances even with only 6 Hz simulated sampling

frequency. On the other hand, hyper-parameter settings and

the decision scheme needed to be changed with a decreasing

sampling rate to still reach a good performance. While the

accelerometer still outperforms the other schemes in most

frequencies, the majority-voting approach provided the most

658



balanced set for 6 Hz. Overall, FRR and FRR provided the

best performance with a simulated rate of 25 Hz but the most

balanced with 200 Hz and 400 Hz. Although FAR and FRR

are still sufficient low with 6 Hz, they drop approximately 4%

in comparison to 25 Hz. With only 6 measurements per second

not all walking specifics may be covered anymore. We thus

consider a sampling rate of 25 Hz as the best trade-off between

sampling rate and performance. For further verification, we

successfully cross-validated the 25 Hz setting by shifting the

reference for every 16th sample by 0-15 times prior to the

feature extraction. Overall, we got a mean FAR and FRR

of 5,66% (σ=0.07) and 6,87% (σ=0.15), respectively. For the

speech-related and wearing only subset we reached sufficient

FARs / FRRs for 25 Hz of 5,57% / 10.39% and 3,58% / 4,98%

(accelerometer-only with ν=0.01, γ=0.05 for both), too.

The activity subset detection performed best with a mean

accuracy of up to 88.43% based on the hybrid decision scheme

using a SVM and slightly outperforms the accelerometer-only
and majority voting scheme (1%-2%) again.

400Hz - ACC
= 0.01
= 0.02

200Hz - ACC
= 0.01
= 0.02

100Hz - ACC
= 0.01
= 0.03

50Hz - ACC
= 0.01
= 0.03

25Hz - ACC
= 0.01
= 0.05

6Hz - MAJ-VOT
= 0.01
= 0.04

0
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Fig. 4. FAR and FRR per simulated frequency for screen attention activity
set based on best hyper-parameter settings per frequency

B. Processing Complexity

For complexity evaluations we used an open source LIB-

SVM [27] integration for Android [33] and built a proto-

type app based on our presented work. Since activity sub-

set detection performance was only slightly worse with the

accelerometer-only approach, we focused on that approach for

activity subset detection and the final decision. Please refer

to table X which summarizes the mean times needed for the

different operations after a one hour test run based on 15077

decisions. On our test device, a verification process was trig-

gered approximately every 238 ms based on 25 Hz sampling

frequency and a threshold of 200 ms between decisions. To

simulate a previous enrollment, we used an activity subset

detection model trained based on 29 users. For the different

activity subsets we picked a participant that contributed 5

wearing activities, 4 screen attention activities and 3 speech-

related activities. The battery was drained by 4% after one hour

and TrepN reported a mean per-CPU workload of 457 MHz,

467 MHz, 399 MHz, and 398 MHz and a mean RAM usage

of 367 MB, respectively. Based on the measured times and

the profiling results, we argue that our approach is deployable

on off-the-shelf Android devices. In the end, decisions needed

an average time-span of approximately 30 ms for all subsets

including feature extraction, subset determination, and the

final subset-specific scaling and decision process.

TABLE X
PERFORMANCE OF SUBSET BASED VERIFICATION SYSTEM AFTER A ONE

HOUR TEST RUN WITH 25 Hz

Component Mean (ms) Min (ms) Max (ms) σ (ms)
Feature Extraction 10,45 1,62 79,54 1,73

Scaling Subset Detection 8,11 1,13 54,43 3,1
Prediction Subset Detection 2,56 0,3 36,09 1,73

Scaling Screen Subset 6,45 1,04 37,47 2,43
Prediction Screen Subset 2,41 0,34 24,59 1,43

Scaling Wearing Subset 6,31 1,03 34,96 2,13
Prediction Wearing Subset 2,31 0,36 27,58 1,41

Scaling Speech Subset 6,31 1,05 36,14 2,06
Prediction Speech Subset 2,32 0,32 22,54 1,43

VII. CONCLUSION AND FUTURE WORK

Based on a user study with 30 participants, we showed that

unsupervised verification in a privacy-preserving scenario is

possible using one-class Support Vector Machines (ocSVM)

based on 15-20 seconds of walking in different real-world

situations. These include activities like reading a text on the

device while walking or placing it in different pockets. We

reached promising results with FARs and FRRs of less than

10% for most activities. The main contribution of this work

is the distinction of all possible activities into several activity

subsets and the determination of a customized classifier per

subset. Each subset represents a different level of coupling

between the device and the body movement which resulted

in wearing only, screen attention and speech-related activity

subsets. For each subset we determined the best out of four

decision schemes including three different ocSVMs and a

majority voting scheme. Overall, accelerometer-only ocSVMs

slightly outperform the majority voting and hybrid approach

in terms of a most balanced FAR to FRR ratio for all activity

subsets. We further showed that majority voting can improve

verification performance if subsequent decisions over a longer

time frame are considered. Nevertheless, a nonlegitimate user

was not detected in single test cases.

We further proved that the three proposed subsets can be

distinguished with a sufficient mean accuracy of 88.82% based

on a SVM using the majority voting decision scheme. As a re-

maining challenge, speech-related activities such as recording
or listening to voice messages are the most difficult activities

to classify as our participants applied many different strategies

and mixed several locations during the data collection. Finally,

we evaluated deployability using the example of screen atten-
tion activities and demonstrated that our system performs well

with lower sampling rates down to 6Hz. Moreover, we showed

that an accelerometer-only approach can be deployed on off-

the-shelf Android devices with an acceptable battery drain and

low processing complexity based on a 25 Hz sampling rate.

In terms of data collection we followed a novel approach with

the help of a special survey-like application that simulated

real-world interactions like instant messaging and enabled
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participants to collect data mostly by themselves under less

supervision.
In future research, we will include smartwatch data and eval-

uate an improvement of the overall verification performance.

Future studies will focus specifically on power users referring

to possible activities (listening/recording voice messages) and

placements (handbags, shoulderbags) while walking, but also

include other border cases such as injuries, different types

of ground or shoes. Furthermore, the proposed mechanism

has to be evaluated regarding its deployability with respect

to energy consumption and required processing power in a

realistic usage over a longer time. The activity subset detection

needs further improvement based on the various related work

in that field, too. On the one hand, it is very important to

choose the right subset verification classifier. On the other

hand, a sufficient activity detection is needed for a proper

enrollment. Due to the amount of different activities included,

research for an enrollment approach with a high usability

needs to be conducted, too.
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