Hasso
Plattner
Institut

Digital Engineering * Universitdt Potsdam

Master Seminar:

Machine Intelligence with Deep Learning
Introduction

Joseph Bethge, Christian Bartz, Mina Rezaei, Dr. Haojin Yang
Internet Technologies and Systems
Hasso Plattner Institute, University of Potsdam




Hasso
Plattner

Content Institut

= Teaching team

= Multimedia analysis and Deep Learning
= Topic presentation

= Important information

Machine
Intelligence with
Deep Learning

Course Website

L D




Hasso

. Plattner
Personal Information Institut
Christian Bartz, M.sc
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Joseph Bethge, M.sc

= Research background

= 2010~2013 Bachelor Degree (Hasso-Plattner-Institute)
= 2014~2017 Master Degree (Hasso-Plattner-Institute)
= 2017~ PhD Student at Hasso-Plattner-Institute

= Research interests
. Computer vision, deep learning, binary neural networks



Personal Information

Mina Rezael, M.sc

m Research background

s 2005.10-2008.03 Azad University, Arak, Iran
B.S c. Computer Engineering

= 2010.10-2013.03 Shiraz University, Shiraz, Iran
M.Sc. Artificial Intelligence

s 2015.11-now PhD student at HPI
m Research interests
m Deep Learning for Medical Image Analysis
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Dr. Haojin Yang

e Dipl.-Ing study at TU-Ilmenau (2002-2007)
e Software engineer (2008-2010)

e PhD student, internet technology and system HPI (2010-2013)
e Senior researcher, Multimedia and Deep Learning research team
e Research interest: multimedia analysis, computer vision, machine

learning/deep learning

Research Group:
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Text Localization with Deep Reinforcement Learning ﬂ Inetitut

= Nowadays text localization typically based on fully supervised object
detectors

( Synthetic Text in the Wild )

Parameter Multi-task loss
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= How about a system that behaves like a human?
Legend:
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= Plan:
1. Learn about reinforcement learning
2. Train agent for text localization
3. .
4. Profit!



Binary Neural Networks

Data

Results
(Latency)

processing in the cloud
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processing on device

Hasso
Plattner
Institut




Hasso
Plattner
Institut

Binary Neural Networks

®  Use BMXNet "2.0"” based on MXNet Gluon API (Python)
® Dynamic computational graph, easier debugging
® Develop an application which requires: guaranteed low latency,
data privacy and/or network independency
®  Specific application is open for discussion, we have a few ideas
prepared
" Deploy on a mobile device, e.g. smartphone or Raspberry Pi
®  Convert model from full-precision to binary (probably Python)

®  Update code for optimized computation to BMXNet “2.0” (C++)

Python (80 %) C++ (20 %)
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Motivation

= DL has achieved the best performance in many domains

Melanoma Benign

R 100%
> ,No Cancer"

Interpretable Deep Learning| 15.10.2018 | chart 1 Source: http://interpretable-ml.org/miccai2018tutorial/
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Why interpretability ?

= Verify that classifier works as we expected?

= Wrong decisions can be costly and dangerous
= Understand weaknesses and improve classifier
= Learn new things from learning machine
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Dimension of Interpretability

Different dimensions prediction

of “interpretability” “Explain why a certain pattern x has
been classified in a certain way f(x).”

model

“What would a pattern belonging
to a certain category typically look
like according to the model.”

data

“Which dimensions of the data
are most relevant for the task.”

Interpretable Deep Learning| 15.10.2018 | chart 3 Source: http://interpretable-ml.org/miccai2018tutorial/
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Techniques of Interpretability

functional

mechanistic
understanding

understanding
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Understanding what mechanism Understanding how the network
the network uses to solve a relates the input to the output
problem or implement a function. variables.

Interpretable Deep Learning| 15.10.2018 | chart 4 Source: http://interpretable-ml.org/miccai2018tutorial/
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Techniques of Interpretability

mechanistic functional
understanding understanding

decision analysis

Interpretable Deep Learning| 15.10.2018 | chart 5 Source: http://interpretable-ml.org/miccai2018tutorial/
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Model Analysis

“How does a goose typically look like according to the
neural network?”

Activation Maximization

- find prototypical example of a category
- find pattern maximizing activity of a neuron
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Interpretable Deep Learning| 15.10.2018 | chart 6 Source: http://interpretable-ml.org/miccai2018tutorial/
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=  Sensitivity Analysis

= Layer-wise Relevance Propagation (LRP) Heatmap of prediction "9”  Heatmap of prediction “3”

= Heatmap of prediction [9] [3]

Sensitivity Deconvolution
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Learn P(x|y) Learn P(y|x) indirectly )
and P(y) ——> P(ylx)aP(x|y)P(y) Generative Model (G)

/

data X
label Y

> Learn directly P(y|x) Discriminative Model (D)

Interpretable Deep Learning| 15.10.2018 | chart 8
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Model Analysis for Segmentation Task

Generative Model Discriminative Model
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Interpretable Deep Learning| 15.10.2018 | chart 9
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Question ?
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Tools and Hardware

m Deep learning framework
m Keras/Tensorflow, MXNet, Caffe/Caffe2, Chainer, PyTorch...

m GPU Servers from ITS chair

dmlc
T I[dKeras mxnet Chﬁer

TensorFlow

‘an PYTORCH écaﬁez Cafte
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Grading Policy Institut

= The final evaluation will be based on:
Initial implementation / idea presentation, 10% (03.12.2018)
Final presentation, 20% (04.02.2019)

Report/Documentation, 12-18 pages (single column), 30% (until
28.02.2018)

Implementation, 40% (until 28.02.2018)

Participation in the seminar (bonus points)

27
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Enrollment/Anmelden

= Enroll on Doodle (link &> HPI website of the course)
= Starting time: 8 a.m. 19.10.2018 (Friday)
=  Maximum number of participants: 20

Chart 28



Literature

m Book: "Deep Learning", Ian Goodfellow, Yoshua Bengio and Aaron
Courville, online version: www.deeplearningbook.org

m cs231n: Convolutional Neural Networks for Visual Recognition,
course of Standford University

m Deep Learning courses at Coursera, created by Andrew Ng and
deeplearning.ai, MOOC

m Practical Deep Learning For Coders, created by fast.ai, MOOC

m "Deep Learning - The Straight Dope” http://gluon.mxnet.io, deep
learning tutorials created by MXNet team
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Dr. Haojin Yang
Office: H-1.22

Email: haojin.yang@hpi.de
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Office: H-1.22
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Christian Bartz, M.sc
Office: H-1.11
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