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Image Captioning with Deep Bidirectional LSTMs

and Multi-Task Learning

CHENG WANG, HAOJIN YANG, and CHRISTOPH MEINEL, Hasso Plattner Institute,

University of Potsdam

Generating a novel and descriptive caption of an image is drawing increasing interests in computer vision,
natural language processing, and multimedia communities. In this work, we propose an end-to-end trainable
deep bidirectional LSTM (Bi-LSTM (Long Short-Term Memory)) model to address the problem. By combin-
ing a deep convolutional neural network (CNN) and two separate LSTM networks, our model is capable of
learning long-term visual-language interactions by making use of history and future context information
at high-level semantic space. We also explore deep multimodal bidirectional models, in which we increase
the depth of nonlinearity transition in different ways to learn hierarchical visual-language embeddings. Data
augmentation techniques such as multi-crop, multi-scale, and vertical mirror are proposed to prevent over-
fitting in training deep models. To understand how our models “translate” image to sentence, we visualize
and qualitatively analyze the evolution of Bi-LSTM internal states over time. The effectiveness and generality
of proposed models are evaluated on four benchmark datasets: Flickr8K, Flickr30K, MSCOCO, and Pascal1K
datasets. We demonstrate that Bi-LSTM models achieve highly competitive performance on both caption
generation and image-sentence retrieval even without integrating an additional mechanism (e.g., object de-
tection, attention model). Our experiments also prove that multi-task learning is beneficial to increase model
generality and gain performance. We also demonstrate the performance of transfer learning of the Bi-LSTM
model significantly outperforms previous methods on the Pascal1K dataset.
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1 INTRODUCTION

It is challenging to describe an image using sentence-level captions (Karpathy and Li 2015;
Karpathy et al. 2014; Kiros et al. 2014b; Kuznetsova et al. 2012, 2014; Mao et al. 2015; Socher et al.
2014; Vinyals et al. 2015), where the task is to map the input image to a sentence output that
possesses its own structure. Inspired by the success of machine translation:translate source lan-
guage to target language, image captioning system tries to “translate” an image to a sentence. It
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Fig. 1. Deep Multimodal Bidirectional LSTM. L1: sentence embedding layer. L2: Text-LSTM (T-LSTM) layer

which receives text only. L3: Multimodal-LSTM (M-LSTM) layer which receives both image and text input. L4:

Softmax layer. We feed sentence in both forward (blue arrows) and backward (red arrows) order which allows

our model to summarize context information from both the left and right sides for generating a sentence

word by word over time. Our model is end-to-end trainable by minimizing a joint loss.

requires not only the recognition of visual objects in an image and the semantic interactions be-
tween objects, but the ability to capture visual-language interactions and learn how to “translate”
the visual understanding to sensible sentence descriptions. A general approach is to train a visual
model using images and train a language model using provided captions. By learning a multi-
modal joint representation on images and captions, the semantic similarity of images and captions
can be measured and thus recommend the most descriptive caption for a given input image. The
most important part at the center of this visual-language modeling is to capture the semantic cor-
relations across image and text modalities. While some previous works (Li et al. 2011; Kulkarni
et al. 2013; Mitchell et al. 2012; Kuznetsova et al. 2012, 2014) have been proposed to address the
problem of image captioning, they mostly use sentence templates, or treat image captioning as a
retrieval task through ranking the best matching sentence in the database as the caption. Those
approaches usually suffer difficulties in generating variable-length and novel sentences. Recent
work (Karpathy and Li 2015; Karpathy et al. 2014; Kiros et al. 2014b; Mao et al. 2015; Socher et al.
2014; Vinyals et al. 2015) indicates that embedding visual and language to common semantic space
with relatively shallow recurrent neural network (RNN) yields promising results.

In this work, we propose novel architectures to generate novel image descriptions. The overview
of architecture is shown in Figure 1. Different from previous approaches, we learn a visual-
language space where sentence embeddings are encoded using bidirectional Long Short-Term
Memory (Bi-LSTM) and visual embeddings are encoded with Convolutional Neural Network
(CNN). Typically, in unidirectional sentence generation, one general way of predicting next word
wt with visual context I and history textual contextw1:t−1 is to maximize log P (wt |I ,w1:t−1). While
the unidirectional model includes past context, it is still limited to retaining future context wt+1:T

that can be used for reasoning previous word wt by maximizing log P (wt |I ,wt+1:T ). The bidirec-
tional model tries to overcome the shortcomings that each unidirectional (forward and backward
direction) model suffers on its own and exploits the past and future dependence to give a pre-
diction. As in Figure 2, two example images with bidirectionally generated sentences intuitively
support our assumption that bidirectional captions are complementary; combining them can gen-
erate more sensible captions. Thus, our Bi-LSTM is able to summarize long-range visual-language
interactions from forward and backward directions.
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Fig. 2. Illustration of generated captions. Two example images from Flickr8K dataset and their best match-

ing captions that generated in forward order (blue) and backward order (red). Bidirectional models capture

different levels of visual-language interactions (more evidence see Section 4.7). The final caption is the sen-

tence with higher probabilities (histogram under sentence). In both examples, backward caption is selected

as final caption for corresponding images.

Inspired by the architectural depth of human brain, to learn higher level visual-language em-
beddings, we also explore the deeper bidirectional LSTM architectures where we increase the non-
linearity by adding a hidden-to-hidden transformation layer. All of our proposed models can be
trained in an end-to-end way by optimizing a joint loss in forward and backward directions. In
addition, we design multi-task learning (Caruana 1998) and transfer learning (Pan and Yang 2010)
to increase the generality of the proposed method on different datasets.

The core contributions of this work are fourfold:

—We propose an end-to-end trainable multimodal bidirectional LSTM and its deeper variant
models (see Section 3.3) that embed image and sentence into a high-level semantic space
by exploiting both long-term history and future context. The code, networks, and examples
for this work can be found at our Github repository.1

—We evaluate the effectiveness of proposed models on three benchmark datasets: Flickr8K,
Flickr30K, and MSCOCO. Our experimental results show that bidirectional LSTM models
achieve highly competitive performance on caption generation (Section 4.6).

—We explore the generality on multi-task/transfer learning models on Pascal1K (Section 4.5).
It demonstrates that transferring a multi-task joint model on Flickr8K, Flickr30K, and
MSCOCO to Pascal1K is beneficial and performs significantly better than recent methods
(see Section 4.6).

—We visualize the evolution of hidden states of bidirectional LSTM units to qualitatively
analyze and understand how to generate a sentence that is conditioned by visual context
information over time (see Section 4.7).

The rest of the article is organized as follows. In Section 2, we review the related work on image
captioning using deep architectures. In Section 3, we introduce the proposed deep multimodal
bidirectional LSTM for image captioning and explore its deeper variant models. Section 4 presents
several groups of experiments to illustrate the effectiveness of proposed methods. In Section 4.6, we
compare our models with state-of-the-art methods; it shows that Bi-LSTM models achieve very
competitive performance. In Section 4.7, we visualize the internal states of LSTM hidden units
and show how our methods generalize to new datasets with multi-task/transfer learning; we also
provide some illustrative examples. Section 5 summarizes our methods and presents future work.

2 RELATED WORK

This section gives the related knowledge. It starts by introducing Recurrent Neural Network (RNN)
which equips neural networks with memories, followed by the review of recently proposed ap-
proaches on the image captioning task.

1https://github.com/deepsemantic/image_captioning.
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2.1 RNN

RNN is a powerful network architecture for processing sequential data. It has been widely used
in natural language processing (Socher et al. 2011), speech recognition (Graves et al. 2013), and
handwriting recognition (Graves et al. 2009) in recent years. In RNN, it allows cyclical connection
and reuse of the weights across different instances of neurons; each of them is associated with
different timesteps. This idea can explicitly support the network to learn the entire history of
previous states and map them to current states. With this property, RNN is able to map an arbitrary
length sequence to a fixed length vector.

LSTM (Long short-term memory) (Hochreiter and Schmidhuber 1997) is a particular form of
traditional RNN. Compared to traditional RNN, LSTM can learn the long-term dependencies be-
tween inputs and outputs; it can also effectively prevent backpropagation errors from vanishing
or exploding. LSTM has increasing popularity in the field of machine translation (Cho et al. 2014),
speech recognition (Graves et al. 2013), and sequence learning (Sutskever et al. 2014) recently. An-
other special type of RNN is Gated Recurrent Unit (GRU) (Cho et al. 2014). GRU simplifies LSTM by
removing the memory cell and provides a different way to prevent the vanishing gradient problem.
GRU has been recently explored in language modeling (Chung et al. 2015), face aging (Wang et al.
2016a), face alignment (Wang et al. 2016b), and speech synthesis (Wu and King 2016). Motivated
by those works, in the context of automatic image captioning, our networks build on bidirectional
LSTM in order to learn the long-term interaction across image and sentence from both history and
future information.

2.2 Image Captioning

Multimodal representation learning (Ngiam et al. 2011; Srivastava and Salakhutdinov 2012; Wang
et al. 2016c) has significant value in multimedia understanding and retrieval. The shared con-
cept across modalities plays an important role in bridging the “semantic gap” of multimodal data
(Rasiwasia et al. 2007; Yang et al. 2015, 2016). Image captioning falls into this general category of
learning multimodal representations.

Recently, several approaches have been proposed for image captioning. We can roughly classify
those methods into three categories. The first category is template-based approaches that generate
caption templates through detecting objects and discovering attributes in an image. For example,
the work Li et al. (2011) was proposed to parse a whole sentence into several phrases, and learn the
relationships between phrases and objects in an image. In Kulkarni et al. (2013), conditional ran-
dom field (CRF) was used to correspond objects, attributes, and prepositions of image content and
predict the best label. Other similar methods were presented in Mitchell et al. (2012), Kuznetsova
et al. (2012, 2014). These methods are typically hard-designed and rely on a fixed template, which
mostly lead to poor performance in generating variable-length sentences. The second category is
retrieval-based approaches. This sort of method treats image captioning as a retrieval task by lever-
aging a distance metric to retrieve similar captioned images, and then modifying and combining
retrieved captions to generate a caption (Kuznetsova et al. 2014). But these approaches generally
need additional procedures such as modification and generalization process to fit image query.

Inspired by the recent success of CNN (Krizhevsky et al. 2012; Zeiler and Fergus 2014) and RNN
(Mikolov et al. 2010, 2011; Bahdanau et al. 2015), the third category emerged as neural network
based methods (Vinyals et al. 2015; Xu et al. 2015; Kiros et al. 2014b; Karpathy et al. 2014; Karpathy
and Li 2015). Our work also belongs to this category. The work conducted by Kiros et al. (2014a) can
be seen as a pioneer work to use neural network for image captioning with a multimodal neural
language model. In their follow-up work (Kiros et al. 2014b), Kiros et al. introduced an encoder-
decoder pipeline where a sentence was encoded by LSTM and decoded with a structure-content
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neural language model (SC-NLM). Socher et al. (2014) presented a DT-RNN (Dependency Tree-
Recursive Neural Network) to embed a sentence into a vector space in order to retrieve images.
Later on, Mao et al. (2015) proposed m-RNN which replaces the feed-forward neural language
model in Kiros et al. (2014b). Similar architectures were introduced in NIC (Vinyals et al. 2015) and
LRCN (Donahue et al. 2015); both approaches use LSTM to learn text context. But NIC only feeds
visual information at the first timestep while Mao et al. (2015) and LRCN (Donahue et al. 2015)
consider image context at each timestep. Another group of neural network based approaches has
been introduced in Karpathy et al. (2014) and Karpathy and Li (2015) where object detection with
R-CNN (region-CNN) (Girshick et al. 2014) was used for inferring the alignment between image
regions and descriptions.

Most recently, Fang et al. (2015) used multi-instance learning and a traditional maximum-
entropy language model for image description generation. Chen and Zitnick (2015) proposed to
learn visual representation with RNN for generating image captions. Xu et al. (2015) introduced
an attention mechanism of human visual system into an encoder-decoder framework (Cho et al.
2015). It is shown that an attention model can visualize what the model “sees” and yields sig-
nificant improvements on image caption generation. In You et al. (2016), the authors proposed a
semantic attention model by combining top-down and bottom-up approaches in the framework of
recurrent neural networks. In the bottom-up approach, semantic concepts or attributes are used
as candidates. In the top-down approach, visual features are employed to guide where and when
attention should be activated.

Unlike those models, our model directly assumes the mapping relationship between visual-
semantic is antisymmetric and dynamically learns long-term bidirectional and hierarchical visual-
semantic interactions with deep LSTM models. This is proved to be very effective in generation
and retrieval tasks as we demonstrate in Section 4.

3 MODEL

In this section, we describe our multimodal Bi-LSTM model and explore its deeper variants. We
first briefly introduce LSTM; the LSTM we used is described in Zaremba and Sutskever (2014).

3.1 Long Short-Term Memory

Our model builds on the LSTM cell; as shown in Figure 3, the reading and writing memory cell c
is controlled by a group of sigmoid gates. At given timestep t , LSTM receives inputs from different
sources: current input x, the previous hidden state of all LSTM units ht−1, as well as previous
memory cell state ct−1. The updating of those gates at timestep t for given inputs xt , ht−1, and ct−1

is as follows:

it = σ (Wxi xt +Whi ht−1 + bi ), (1)

ft = σ (Wxf xt +Whf ht−1 + bf ), (2)

ot = σ (Wxoxt +Whoht−1 + bo ), (3)

gt = ϕ (Wxc xt +Whc ht−1 + bc ), (4)

ct = ft � ct−1 + it � gt , (5)

ht = ot � ϕ (ct ), (6)

where without considering the optional peephole connections, W is the weight matrix learned
from the network and b is the bias term. σ is the sigmoid activation function σ (x ) = 1

1+exp(−x )
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Fig. 3. Long Short-Term Memory (LSTM) cell. It consists of an input gate i , a forget gate f , a memory cell c ,

and an output gate o. The input gate decides to let an incoming signal go through to the memory cell or block

it. The output gate can allow new output or prevent it. The forget gate decides to remember or forget the

cell’s previous state. Updating cell states is performed by feeding previous cell output to itself by recurrent

connections in two consecutive timesteps.

and ϕ presents hyperbolic tangent ϕ (x ) =
exp(x )−exp(−x )
exp(x )+exp(−x ) . � denotes the products with a gate value.

The LSTM hidden output ht = {htk }Kk=0, ht ∈ RK will be used to predict the next word by Softmax
function with parameters Ws and bs :

F (pt i ; Ws , bs ) =
exp(Ws ht i + bs )

∑K
j=1 exp(Ws ht j + bs )

, (7)

where pt i is the probability distribution for predicted word.
Our key motivation of chosen LSTM is that it can learn long-term temporal activities and avoid

quick exploding and vanishing problems that traditional RNN suffers from during backpropagation
optimization.

3.2 Bidirectional LSTM

In order to make use of both the past and future context information of a word in sentence predic-
tion, we propose a bidirectional model by feeding a sentence to LSTM from forward and backward
order. Figure 1 presents the overview of our model; it is comprised of three modules: a CNN for
encoding image inputs, a Text-LSTM (T-LSTM) for encoding sentence inputs, and a Multimodal
LSTM (M-LSTM) for embedding visual and textual vectors to a common semantic space and de-
coding to sentence. The bidirectional LSTM is implemented with two separate LSTM layers for

computing forward hidden sequences
−→
h and backward hidden sequences

←−
h . The forward LSTM

starts at time t = 1 and the backward LSTM starts at time t = T . Formally, our model works as

follows: for a given raw image input Ĩ , forward order sentence
−→
S , and backward order sentence

←−
S ,

the encoding performs as

It = C (̃I ; Θv ),
−→
h 1

t = T (
−→
E
−→
S ;
−→
Θl ),

←−
h 1

t = T (
←−
E
←−
S ;
←−
Θl ), (8)

where C, T represent CNN, T-LSTM, respectively, and Θv , Θl are their corresponding weights.
Following previous work (Mao et al. 2015; Donahue et al. 2015), It is considered at all timesteps as

visual context information.
−→
E and

←−
E are bidirectional embedding matrices learned from network.

Encoded visual and textual representations are then embedded to multimodal LSTM by
−→
h 2

t =M
(−→

h 1
t , It ;
−→
Θm

)
,
←−
h 2

t =M
(←−

h 1
t , It ;
←−
Θm

)
, (9)
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Fig. 4. Illustrations of proposed deep architectures for image captioning. The network in (a) is commonly

used in previous work. (b) Our proposed Bidirectional LSTM (Bi-LSTM). (c) Our proposed Bidirectional

Stacked LSTM (Bi-S-LSTM). (d) Our proposed Bidirectional LSTM with full connected (FC) transition layer

(Bi-F-LSTM). T-LSTM receives text input only and M-LSTM receives both image and text input.

whereM presents M-LSTM and its weight Θm .M aims to capture the correlation of visual context
and words at different timesteps. We feed visual vector It to the model at each timestep for cap-
turing strong visual-word correlation. On the top of M-LSTM are Softmax layers with parameters
Ws and bs which compute the probability distribution of the next predicted word by

−→p t+1 = F
(−→

h 2
t ;
−→
Ws ,
−→
b s

)
, ←−p t+1 = F

(←−
h 2

t ;
←−
Ws ,
←−
b s

)
, (10)

where p ∈ RK and K is the vocabulary size.

3.3 Deeper LSTM Architecture

The recent success of deep CNN in image classification and object detection (Krizhevsky et al. 2012;
Simonyan and Zisserman 2014b) demonstrates that deep, hierarchical models can be more efficient
at learning representation than shallower ones. This motivated our work to explore deeper LSTM
architectures in the context of learning bidirectional visual-language embeddings. As claimed in
Pascanu et al. (2013), if we consider LSTM as a composition of multiple hidden layers that unfolded
in time, LSTM is already a deep network. But this is a way of increasing the “horizontal depth”
in which network weights W are reused at each timestep and limited to learn more representa-
tive features such as increasing the “vertical depth” of the network. To design deep LSTM, one
straightforward way is to stack multiple LSTM layers as a hidden-to-hidden transition. Alterna-
tively, instead of stacking multiple LSTM layers, we propose to add multilayer perceptron (MLP)
as an intermediate transition between LSTM layers. This can not only increase LSTM network
depth, but can also prevent the parameter size from growing dramatically because the number of
recurrent connections at a hidden layer can be largely decreased.

Directly stacking multiple LSTMs on top of each other leads to Bi-S-LSTM (Figure 4(c)). In addi-
tion, we propose to use a fully connected layer as an intermediate transition layer. Our motivation
comes from the finding of Pascanu et al. (2013), in which DT(S)-RNN (deep transition RNN with
shortcut) is designed by adding a hidden-to-hidden multilayer perceptron (MLP) transition. It is
arguably easier to train such network. Inspired by this, we extend Bi-LSTM (Figure 4(b)) with a
fully connected layer that we called Bi-F-LSTM (Figure 4(d)); a shortcut connection between the
input and hidden states is introduced to make it easier to train the model. The aim of the extension
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Fig. 5. Transition for Bi-S-LSTM (left) and Bi-F-LSTM (right).

models is to learn an extra hidden transition function Fh . Formally, in Bi-S-LSTM

hl+1
t = Fh

(
hl−1

t , h
l
t−1

)
= Uhl−1

t + Vhl
t−1, (11)

where hl
t presents the hidden states of the l-th layer at time t , and U and V are matrices connected

to the transition layer (also see Figure 5 (left)). For readability, we consider one direction training
and suppress bias terms. Similarly, in Bi-F-LSTM, to learn a hidden transition function Fh by

hl+1
t = Fh

(
hl−1

t

)
= ϕr

(
Whl−1

t ⊕
(
V
(
Uhl−1

t

))
, (12)

where ⊕ is the operator that concatenates hl−1
t and its abstractions to a long hidden state (also

see Figure 5 (right)). ϕr represents the rectified linear unit (Relu) activation function for transition
layer, which performs ϕr (x ) = max(0,x ).

3.4 Data Augmentation

One of the most challenging aspects of training deep bidirectional LSTM models is preventing
overfitting. Since our largest dataset has only 80K images (Lin et al. 2014) which might cause over-
fitting easily, we adopted several techniques such as fine-tuning on a pre-trained visual model,
weight decay, dropout, and early stopping that were commonly used in previous work. Addition-
ally, it has been proved that data augmentation such as randomly cropping and horizontal mirror
(Simonyan and Zisserman 2014a; Lu et al. 2014), adding noise, blur, and rotation (Wang et al. 2015)
can effectively alleviate overfitting. Inspired by this, we designed new data augmentation tech-
niques to increase the number of image-sentence pairs. Our implementation performs on a visual
model, as follows:

—Multi-Corp: Instead of randomly cropping on input image, we crop at the four corners
and center region because we found that random cropping tends to select center region
and cause overfitting easily. By cropping four corners and center, the variations of network
input can be increased to alleviate overfitting.

—Multi-Scale: To further increase the number of image-sentence pairs, we rescale input im-
age to multiple scales. For each input image Ĩ with sizeH ×W , it is resized to 256× 256, then
we randomly select a region with a size of s ∗ H × s ∗W , where s ∈ [1, 0.925, 0.875, 0.85] is
the scale ratio. s = 1 means we do not multi-scale operation on a given image. Finally, we
resize it to AlexNet input size 227 × 227 or VGG-16 input size 224 × 224.

—Vertical Mirror: Motivated by the effectiveness of the widely used horizontal mirror, it is
natural to also consider the vertical mirror of image for the same purpose.
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Those augmentation techniques are implemented in a real-time fashion. Each input image is
randomly transformed using one of the augmentations to network input for training. In principle,
our data augmentation can increase image-sentence training pairs by roughly 40 times (5 × 4 × 2).
We report the evaluation of data augmentation in Section 4.4.

3.5 Multi-Task/Transfer Learning

Although our data augmentation can reduce overfitting in training deep LSTM network, it only
helps to a certain extent. Increasing the effective training size with fresh training examples can
further enlarge the variations of training data. This can effectively prevent training loss from go-
ing down quickly and reduce overfitting. On the other hand, it is also beneficial to increase the
model robustness and generality. To address this issue, we propose to combine the training exam-
ples from different datasets; for example, in our case, Dmulti = Df l ickr 8K

⋃
Df l ickr 30K

⋃
Dmscoco .

With combined dataset Dmulti , we train a multi-task joint modelMmulti , then we evaluate model
performance on validation/test sets of different datasets, respectively.

In order to further test the generality and performance of multi-task joint model Mmulti in
transferring knowledge learned on Dmulti to new dataset, we propose to useMmulti to perform
image captioning and image-sentence retrieval on target dataset Dpascal1K . Here, we do not use
any images from Pascal1K for training, only for validation. We report the evaluation of multi-
task/transfer learning of Bi-LSTM in Section 4.5.

3.6 Training and Inference

Our model is end-to-end trainable by using Stochastic Gradient Descent (SGD). The joint loss

function L =
−→
L +
←−
L is computed by accumulating the Softmax losses of forward and backward

directions. Our objective is to minimize L, which is equivalent to maximizing the probabilities of
correctly generated sentences. We compute the gradient �L with the Back-Propagation Through
Time (BPTT) algorithm (Werbos 1990).

The trained model is used to predict a word wt with given image context I and previous word
context w1:t−1 by P (wt |w1:t−1, I ) in forward order, or by P (wt |wt+1:T , I ) in backward order. We set
w1=wT=0 at the start point for forward and backward directions, respectively. Ultimately, with
generated sentences from two directions, we decide the final sentence for a given image p (w1:T |I )
according to the average of word probability within the sentence:

p (w1:T |I ) = max �
�

1

T

T∑

t=1

(−→p (wt |I )),
1

T

∑T

t=1
(←−p (wt |I ))�

�
, (13)

−→p (wt |I ) =
T∏

t=1

p (wt |w1,w2, . . . ,wt−1, I ), (14)

←−p (wt |I ) =
T∏

t=1

p (wt |wt+1,wt+2, . . . ,wT , I ). (15)

Following previous work, we adopted beam search to consider the best k candidate sentences at
time t to infer the sentence at next timestep. In our work, we fix k = 1 on all experiments, although
the average of 2 BLEU (Papineni et al. 2002) points out that better results can be achieved with
k = 20 compared to k = 1 as reported in Vinyals et al. (2015).

4 EXPERIMENTS

In this section, we design several groups of experiments to accomplish the following objectives:
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—Measure the benefits and performance of the proposed bidirectional model and its deeper
variant models so that we increase their nonlinearity depth in different ways.

—Examine the influences of data augmentation and multi-task/transfer learning on bidirec-
tional LSTM.

—Compare our approach with state-of-the-art methods in terms of sentence generation and
image-sentence retrieval tasks on popular benchmark datasets.

—Qualitatively analyze and understand how bidirectional multimodal LSTM learns to gener-
ate a sentence conditioned by visual context information over time.

4.1 Datasets

To validate the effectiveness, generality, and robustness of our models, we conduct experiments
on four benchmark datasets: Flickr8K (Hodosh et al. 2013), Flickr30K (Young et al. 2014), MSCOCO
(Lin et al. 2014), and Pascal1K (Rashtchian et al. 2010) (used only for transfer learning experiment).

Flickr8K. It consists of 8,000 images and each of them has five sentence-level captions. We
follow the standard dataset divisions provided by authors; 6,000/1,000/1,000 images for training/
validation/testing, respectively.

Flickr30K. An extension version of Flickr8K. It has 31,783 images and each of them has five
captions. We follow the publicly accessible2 dataset division by Karpathy and Li (2015). In this
dataset split, 29,000/1,000/1,000 images are used for training/validation/testing, respectively.

MSCOCO. This is a recent released dataset that covers 82,783 images for training and 40,504
images for validation. Each of the images has five sentence annotations. Since there is a lack of
standard splits, we also follow the splits provided by Karpathy and Li (2015). Namely, 80,000 train-
ing images and 5,000 images for both validation and testing.

Pascal1K. This dataset is only used for evaluating the generalities of models in our transfer
learning experiment. It is a subset of images from the PASCAL VOC challenge. It contains 1,000
images; each of them has five sentence descriptions. We do not use any images from this dataset
for training. Following the protocol in Socher et al. (2014), we randomly selected 100 images for
validation.

4.2 Implementation Details

Visual feature. We use two visual models for encoding images: Caffe (Jia et al. 2014) refer-
ence model which is pre-trained with AlexNet (Krizhevsky et al. 2012) and 16-layer VGG model
(Simonyan and Zisserman 2014b). We extract features from the last fully connected layer and feed
them to train the visual-language model with LSTM. Previous work (Vinyals et al. 2015; Mao et al.
2015) has demonstrated that more powerful image models such as GoogleNet (Szegedy et al. 2015)
and ResNet (He et al. 2016) can achieve promising improvements. To make a fair comparison with
recent works, we selected two widely used models for experiments.

Textual feature. We first represent each wordw within a sentence as a one-hot vector,w ∈ RK ,
where K is the vocabulary size built on training sentences for a given dataset. By performing
basic tokenization and removing the words that occur less than five times in the training set, we
have 2,028, 7,400, and 8,801 words for Flickr8K, Flickr30K, and MSCOCO dataset vocabularies,
respectively.

Our work uses the LSTM implementation of Donahue et al. (2015) on the Caffe framework. All
of our experiments were conducted on Ubuntu 14.04, 16G RAM and single Titan X GPU with 12G
memory. Our LSTMs use 1,000 hidden units and weights were initialized uniformly from [−0.08,
0.08]. The batch sizes are 150, 100, and 100 for Bi-LSTM, Bi-S-LSTM, and Bi-F-LSTM, respectively,

2http://cs.stanford.edu/people/karpathy/deepimagesent/.
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Fig. 6. METEOR/CIDEr scores on data augmentation.

when we use AlexNet as the visual model. When we use VGG as the visual model, the batch size is
set to 32. Models are trained with learning rates η = 0.01 (AlexNet-based training) and η = 0.005
(VGG-based training), weight decay λ is 0.0005, and we used momentum 0.9. Each model is trained
for 18–35 epochs with early stopping.

4.3 Evaluation Metrics

We evaluate our models mainly on caption generation; we follow previous work to use BLEU-N
(N=1,2,3,4) scores (Papineni et al. 2002):

BN = min
(
1, e1− r

c

)
· e

1
N

∑
N

n=1 log pn , (16)

where r , c represent the length of the reference sentence and the generated sentence, respectively,
and pn is the modified n-gram precisions. We also report the METETOR (Lavie 2014) and CIDEr
(Vedantam et al. 2015) scores for further comparison. To evaluate the generality of our models, we
conduct a transfer learning experiment using Pascal1K on image-sentence retrieval3 (image query
sentence and vice versa). It performs by computing the score of each image-sentence pair, and
ranking the scores to obtain the top-K (K = 1,5,10) retrieved results. We adopt R@K and Mean r as
the evaluation metrics. R@K is the recall rate R at top K candidates and Mean r is the mean rank.
All mentioned metric scores are computed by the MSCOCO caption evaluation server,4 which is
commonly used for image captioning challenge.5

4.4 Experiments on Data Augmentation

In this subsection, we design a group of experiments to examine the effects of utilized data aug-
mentation techniques. To this end, we use Bi-S-LSTM for experiment, because it has deeper LSTM
and we believe that training a deeper LSTM network on limited data is more challenging and
helpful to measure the benefits brought by data augmentation. In this experiment, we turn off the
introduced augmentation techniques in Section 3.4 and keep other configurations unchanged. The
BLEU performance is reported in Table 1 and Table 2; METEOR/CIDEr performance is reported
in Figure 6 (shown as Bi-S-LSTMA,−D ). It is clear to see that without using data augmentation,
the model performance drops significantly on all metrics. Those results also reveal how data aug-
mentation affects datasets at different scales. For example, the model performance on small-scale

3Although this work focuses on image captioning task, we conduct an image-sentence retrieval experiment here to examine
the generality of our models across datasets and tasks. The task has been discussed widely in our previous work (Wang
et al. 2016d).
4https://github.com/tylin/coco-caption.
5http://mscoco.org/home/.
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Table 1. BLEU-N Performance Comparison on Flickr8K and Flickr30K (High Score is Good)

Flickr8K Flickr30K

Models B-1 B-2 B-3 B-4 B-1 B-2 B-3 B-4

NIC (Vinyals et al. 2015)G,‡ 63 41 27.2 - 66.3 42.3 27.7 18.3
X. Chen et al. (Chen and Zitnick 2014) - - - 14.1 - - - 12.6
LRCN (Donahue et al. 2015)A,‡ - - - - 58.8 39.1 25.1 16.5
DeepVS (Karpathy and Li 2015)V 57.9 38.3 24.5 16 57.3 36.9 24.0 15.7
m-RNN (Mao et al. 2015)A,‡ 56.5 38.6 25.6 17.0 54 36 23 15
m-RNN (Mao et al. 2015)V ,‡ - - - - 60 41 28 19
Hard-Attention (Xu et al. 2015)V 67 45.7 31.4 21.3 66.9 43.9 29.6 19.9
ATT-FCN (You et al. 2016)G - - - - 64.7 46.0 32.4 23.0

C. Wang et al. (Wang et al. 2016d)V 65.5 46.8 32.0 21.5 62.1 42.6 28.1 19.3
Bi-LSTMA 63.7 44.7 31 20.9 61.0 40.9 27.1 18.1
Bi-S-LSTMA 65.1 45.0 29.3 18.4 60.0 40.3 27.1 18.2
Bi-F-LSTMA 63.9 44.6 30.2 19.9 60.7 41.0 27.5 18.5
Bi-LSTMV 66.7 48.3 33.7 23 63.3 44.1 29.6 20.1
Bi-S-LSTMV 66.9 48.8 33.3 22.8 63.6 44.8 30.4 20.5
Bi-F-LSTMV 66.5 48.4 32.8 22.4 63.4 44.3 30.1 20.4

Bi-LSTMA,+M 58.4 42.1 28.6 18.2 61.0 41.4 27.8 18.5
Bi-S-LSTMA,−D 55.4 38.0 24.6 15.3 58.2 39.0 25.1 16.3

The superscript “A” means the visual model is AlexNet (or similar network), “V” is VGG-16, “G” is GoogleNet, “-D” means
without using data augmentations in Section 3.4, “+M” means using multi-task learning in Section 3.5, “-” indicates
unknown value, “‡” means different data splits.6 The best results are marked in bold and the second best results with an
underline (the superscripts are also applicable to Tables 2, 3, and 4).

dataset Flickr8K is worse than that on Flickr30K and MSCOCO. This confirms that data augmen-
tation is beneficial in preventing overfitting and particularly helpful on small-scale dataset.

4.5 Experiments on Multi-Task/Transfer Learning

In addition to using data augmentation to increase the variations of training examples and re-
duce overfitting, another effective way should be multi-task learning. Inspired by Simonyan and
Zisserman (2014a) and Donahue et al. (2015) in which datasets were combined to train a joint
model, we combine the training set of Flickr8K, Flickr30K, and MSCOCO in order to increase the
number of training examples. Then we train a multi-task joint model with combined training sets
and evaluate on each validation set to examine its performance and generality. To save training
time, we initialize the training of the multi-task joint model with the best-performing pre-trained
MSCOCO model. We change the input unit numbers of embedding layers and the output units
number of the last fully connected layer; they are the vocabulary size (11,557) of the combined
training set.

To compare with baseline models without using multi-task learning, we select the best-
performing models7 for Flickr8K, Flickr30K, MSCOCO, and Pascal1K datasets, respectively. The
comparison with baseline models in terms of BLEU scores is reported in Table 1 and Table 2. The
results show that the multi-task joint model (shown as Bi-LSTMA,+M ) did not improve the BLEU

6On the MSCOCO dataset, NIC uses 4K images for validation and test. LRCN randomly selects 5K images from MSCOCO
validation set for validation and test. m-RNN uses 4K images for validation and 1K as test.
7The model from 100000th iterations has the best performance on Flickr8K, the model from 90000th iterations performs
best on the rest of datasets.
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Table 2. BLEU-N, METEOR and CIDEr Performance Comparison on MSCOCO

MSCOCO

Models B-1 B-2 B-3 B-4 METEOR CIDEr

NIC (Vinyals et al. 2015)G,‡ 66.6 46.1 32.9 24.6 - -
X. Chen et al. (Chen and Zitnick 2014) - - - 19.0 20.4 -
LRCN (Donahue et al. 2015)A,‡ 62.8 44.2 30.4 - - -
DeepVS (Karpathy and Li 2015)V 62.5 45 32.1 23 19.5 66.0
m-RNN (Mao et al. 2015)V ,‡ 67 49 35 25 - -
Hard-Attention (Xu et al. 2015)V 71.8 50.4 35.7 25 23.0 -
ATT-FCN (You et al. 2016)G 70.9 53.7 40.2 30.4 24.3 -
C. Wang et al. (Wang et al. 2016d)V 67.2 49.2 35.2 24.4 21.6 71.0
Bi-LSTMA 65.1 45.0 29.3 18.4 20.0 64.1
Bi-S-LSTMA 64.1 45.4 31.3 21.1 20.7 68.1
Bi-F-LSTMA 64.0 45.5 31.5 21.5 20.5 67.5
Bi-LSTMV 68.5 50.5 36.0 25.3 22.1 73.0
Bi-S-LSTMV 68.7 50.9 36.4 25.8 22.9 73.9

Bi-F-LSTMV 68.2 50.6 36.1 25.6 22.6 73.5

Bi-LSTMA,+M 65.6 47.4 33.3 23.0 21.1 69.5
Bi-S-LSTMA,−D 62.8 44.4 30.2 20.0 19.7 60.7

Fig. 7. METEOR/CIDEr scores on multi-task learning.

score on small dataset Flickr8K. We conjecture the reason is, on the one hand, multi-task joint
model helps to make diversity of training examples and increase model generality. On the other
hand, it enlarges the differences between training and validation data. Those factors lead to worse
BLEU performance on Flickr8K even though the generated sentences are highly descriptive and
sensible (also see examples in Figure 11). However, the multi-task joint model shows promising im-
provements on Flickr30K and MSCOCO. In addition, in Table 1 and Table 2 we also found that the
multi-task joint model tends to improve B-2, B-3, and B-4 performance (2.4, 4.0, and 4.6 points in-
creased on MSCOCO). In Figure 7, The METEOR/CIDEr performance is improved with multi-task
learning except METETOR on Flickr8K.

4.6 Comparison with State-of-The-Art Methods

4.6.1 Model Performance. Now we compare with state-of-the-art methods. Table 1 and Table 2
summarize the comparison results in terms of BLEU-N. Our approach achieves very competitive
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Table 3. Image Captioning Performance Comparison on Pascal1K

Methods BLEU METEOR

Midge (Mitchell et al. 2012) 2.89 8.80
Baby talk (Kulkarni et al. 2011) 0.49 9.69
RNN (Chen and Zitnick 2014) 2.79 10.08

RNN+IF (Chen and Zitnick 2014) 10.16 16.43
RNN+IF+FT (Chen and Zitnick 2014) 10.18 16.45
X.Chen et al. (Chen and Zitnick 2014) 10.48 16.69

X.Chen et al.+FT (Chen and Zitnick 2014) 10.77 16.87
Bi-LSTMA(transfer) 16.4 18.30

performance on evaluated datasets, although with a less powerful visual model—AlexNet. Increas-
ing the depth of LSTM is beneficial on generation task. Deeper variant models mostly obtain bet-
ter performance compared to Bi-LSTM, but they are inferior to the latter one in B-3 and B-4 on
Flickr8K. We believe it should be the reason that Flick8K is a relatively small dataset which suffers
difficulty in training deep models with limited data. One of the interesting facts we found is that
stacking multiple LSTM layers is generally superior to LSTM with a fully connected transition
layer, although Bi-S-LSTM needs more training time. Replacing AlexNet with VGG-16 results in
significant improvement on all BLEU evaluation metrics. We should be aware that a recent inter-
esting work (Xu et al. 2015) achieves the best results on B-1 by integrating an attention mechanism
(LeCun et al. 2015; Xu et al. 2015). Semantic attention (You et al. 2016) with GoogleNet achieves
the best performance on B-2, B-3, and B-4.

Regarding METEOR and CIDEr performance, our baseline model (Bi-LSTMA) outperforms
DeepVSV (Karpathy and Li 2015) in a certain margin. It achieves 19.1/51.8 on Flickr8K (compare to
16.7/31.8 of DeepVSV ) and 16.1/29.0 on Flickr30K (15.3/24.7 of DeepVSV ). On MSCOCO, our best
results are 22.9/73.9; the METEOR score is sightly inferior to 23.0 in Xu et al. (2015) and 24.3 in
You et al. (2016) but exceeds the rest of the methods. Although we believe incorporating an atten-
tion mechanism into our framework can make further improvements, note that our current model
achieves competitive results while the small gap between our model and the attention-based model
(Xu et al. 2015; You et al. 2016) existed.

Comparing to our prior work (Wang et al. 2016d), we use the mean probability in Equation (13),
rather than the sum probability of all words when selecting the final caption from the bidirection-
ally generated captions. This sightly improves our model performance on nearly all metrics by an
average 1.7 points on Flickr8K, 1.2 points on Flickr30K, and 1.1 points on MSCOCO.

4.6.2 Model Generality. In order to further evaluate the generality of our model on image cap-
tioning, we test our joint model on the Pascal1K validation dataset. Table 3 presents the comparison
with related work on BLEU and METEOR. We can see that even with our base model Bi-LSTMA,
the performance on generation task exceeds previous approaches in a certain margin even without
using the training images of Pascal1K.

On the same dataset, we also examine the generality of our model on a different task: image-
sentence retrieval. The results are reported in Table 4. It shows that without using any training
images from Pascal1K, our model substantially outperforms previous work in all metrics. Partic-
ularly on R@1, transfer learning achieves more than 20 points on both image-to-sentence and
sentence-to-image retrieval tasks.

Those experiments demonstrate that although with less powerful visual model, our simplest
network (Bi-LSTM) achieves the best performance on both image captioning and image-sentence
retrieval tasks.
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Table 4. Image-Sentence Retrieval Performance Comparison on Pascal1K

Image to Sentence Sentence to Image

Methods R@1 R@5 R@10 M_r R@1 R@5 R@10 M_r

Random Ranking 4.0 9.0 12.0 71.0 1.6 5.2 10.6 50.0

KCCA (Socher et al. 2014) 21.0 47.0 61.0 18.0 16.4 41.4 58.0 15.9

DeViSE (Frome et al. 2013) 17.0 57.0 68.0 11.9 21.6 54.6 72.4 9.5

SDT-RNN (Socher et al. 2014) 25.0 56.0 70.0 13.4 35.4 65.2 84.4 7.0

DeepFE (Karpathy et al. 2014) 39.0 68.0 79.0 10.5 23.6 65.2 79.8 7.6

RNN+IF (Chen and Zitnick 2014) 31.0 68.0 87.0 6.0 27.2 65.4 79.8 7.0

X. Chen et al. (Chen and Zitnick 2014) 25.0 71.0 86.0 5.4 28.0 65.4 82.2 6.8

X. Chen et al. (T+I) (Chen and Zitnick 2014) 30.0 75.0 87.0 5.0 28.0 67.4 83.4 6.2

Bi-LSTMA (transfer) 65.0 90.0 95.0 2.0 52.8 86.0 95.4 2.1

Fig. 8. Visualization of LSTM cell. The horizontal axis corresponds to timesteps. The vertical axis is cell index.

Here we visualize the gates and cell states of the first 32 Bi-LSTM units of T-LSTM in forward directional

over 11 timesteps.
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Fig. 9. Pattern of the first 96 hidden units chosen at each layer of Bi-LSTM in both forward and backward

directions. The vertical axis presents timesteps. The horizontal axis corresponds to different LSTM units.

In this example, we visualize the T-LSTM layer for text only, the M-LSTM layer for both text and image,

and the Softmax layer for word prediction. The model was trained on Flickr 30K dataset for generating a

sentence word by word at each timestep. In (g), we provide the predicted words at different timesteps and

their corresponding index in vocabulary where we can also read from (e) and (f) (the highlight point at each

row). Word with highest probability is selected as the predicted word.

Fig. 10. Examples of generated captions for a given query image on MSCOCO validation set. Blue captions

are generated in forward direction and red captions are generated in backward direction. The final caption

is selected according to Equation (13) which selects the sentence with the higher mean probability. The final

captions are marked in bold.

4.7 Visualization and Qualitative Analysis

The aim of this set experiment is to visualize the properties of the proposed bidirectional LSTM
model and explain how it works in generating a sentence word by word over time.

First, we examine the temporal evolution of internal gate states and understand how bidirec-
tional LSTM units retain valuable context information and attenuate unimportant information.
Figure 8 shows input and output data, the pattern of three sigmoid gates (input, forget, and out-
put), as well as cell states. We can clearly see that dynamic states are periodically distilled to units
from timestep t = 0 to t = 11. At t = 0, the input data are sigmoid modulated to input gate i(t )
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Fig. 11. Examples of generated captions for given query images on Flickr8K, Flickr30K, MSCOCO, and Pas-

cal1K validation set. Left: input images. Right: → and ← present the generated captions in forward and

backward direction, respectively. The superscript M or T means the captions generated with multi-task or

transfer learning. The final captions are marked in bold.

where values lie within in [0,1]. At this step, the values of forget gates f (t ) of different LSTM units
are zeros. Along with the increasing of timestep, forget gate starts to decide which unimportant
information should be forgotten, and meanwhile, decide to retain useful information. Then the
memory cell states c(t ) and output gate o(t ) gradually absorb the valuable context information
over time and make a rich representation h(t ) of the output data.

Next, we examine how visual and textual features are embedded to common semantic space
and used to predict words over time. Figure 9 shows the evolution of hidden units at different
layers. For the T-LSTM layer where LSTM units are conditioned by textual context from the past
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and future, It performs as the encoder of forward and backward sentences. At the M-LSTM layer,
LSTM units are conditioned by both visual and textual context. It learns the correlations between
input word sequence and visual information that were encoded by CNN. At a given timestep, by
removing unimportant information that makes less contribution to correlate input word and visual
context, the units tend to appear sparsity pattern and learn more discriminative representations
from inputs. At higher layer, embedded multimodal representations are used to compute the prob-
ability distribution of next predict word with Softmax. It should be noted, for a given image, the
number of words in a generated sentence from forward and backward direction can be different.

Figure 10 presents some example images with generated captions. From generated captions, we
found bidirectionally generated captions cover different semantic information; for example, in (b)
the forward sentence captures “couch” and “table” while the backward one describes “chairs” and
“table.” We also found that a significant proportion (88% by randomly selected 1,000 images on
MSCOCO validation set) of generated sentences are novel (do not appear in training set). But gen-
erated sentences are highly similar to ground-truth captions; for example, in (d), forward caption
is similar to one of the ground-truth captions (“A passenger train that is pulling into a station”) and
the backward caption is similar to the ground-truth caption (“a train is in a tunnel by a station”).
It illustrates that our model has a strong capability in learning visual-language correlation and
generates novel sentences.

More example sentence generations on Flickr8K, Flickr30K, MSCOCO, and Pascal1K can be
found in Figure 11. Those examples demonstrate that without using an explicit pre-trained lan-
guage model on additional corpus, our models generate sentences which are highly descriptive
and semantically relevant to corresponding images.

5 CONCLUSIONS

We proposed a bidirectional LSTM model that generates a descriptive sentence for an image by
taking both history and future context into account. We further designed deep bidirectional LSTM
architectures to embed image and sentence at high semantic space for learning visual-language
model. We proved multi-task learning of Bi-LSTM is beneficial to increase model generality and
further confirmed by transfer learning experiment. We also qualitatively visualized internal states
of the proposed model to understand how multimodal bidirectional LSTM generates words at
consecutive timesteps. The effectiveness, generality, and robustness of the proposed models were
evaluated with numerous datasets on two different tasks: image captioning and image-sentence
retrieval. Our models achieve highly competitive results on both tasks. Our future work will fo-
cus on exploring more sophisticated language representation (e.g., word2vec) and incorporating
an attention mechanism into our model. It would also be interesting to explore the multilingual
caption generation problem. We also plan to apply our models to other sequence learning tasks
such as text recognition and video captioning.
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