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ABSTRACT 
Extraction–Transform–Load (ETL) processes comprise complex 
data workflows, which are responsible for the maintenance of a 
Data Warehouse. Their practical importance is denoted by the fact 
that a plethora of ETL tools currently constitutes a multi-million 
dollars market. However, each one of them follows a different 
design and modeling technique and internal language. So far, the 
research community has not agreed upon the basic characteristics 
of ETL tools. Hence, there is a necessity for a unified way to 
assess ETL workflows. In this paper, we investigate the main 
characteristics and peculiarities of ETL processes and we propose 
a principled organization of test suites for the problem of 
experimenting with ETL scenarios. 

1. INTRODUCTION 
Data Warehouses (DW) are collections of data coming from 
different sources, used mostly to support decision-making and 
data analysis in an organization. To populate a data warehouse 
with up-to-date records that are extracted from the sources, special 
tools are employed, called Extraction – Transform – Load (ETL) 
tools, which organize the steps of the whole process as a 
workflow. To give a general idea of the functionality of these 
workflows we mention their most prominent tasks, which include: 
(a) the identification of relevant information at the source side; (b) 
the extraction of this information; (c) the transportation of this 
information to the Data Staging Area (DSA), where most of the 
transformation usually take place; (d) the transformation, (i.e., 
customization and integration) of the information coming from 
multiple sources into a common format; (e) the cleansing of the 
resulting data set, on the basis of database and business rules; and 
(f) the propagation and loading of the data to the data warehouse 
and the refreshment of data marts. 

Due to their importance and complexity (see [1, 12] for relevant 
discussions and case studies), ETL tools constitute a multi-million 
market. There is a plethora of commercial ETL tools available. 
The traditional database vendors provide ETL solutions built in 
the DBMS’s: IBM with WebSphere DataStage [5], Microsoft 
with SQL Server 2005 Integration Services (SSIS) [7], and Oracle 
with Oracle Warehouse Builder [8]. There also exist independent 
vendors that cover a large part of the market (e.g., Informatica 
with Powercenter 8 [6]). Nevertheless, an in-house development 
of the ETL workflow is preferred in many data warehouse 

projects, due to the significant cost of purchasing and maintaining 
an ETL tool. The spread of existing solutions comes with a major 
drawback. Each one of them follows a different design approach, 
offers a different set of transformations, and provides a different 
internal language to represent essentially similar necessities.  

The research community has only recently started to work on 
problems related to ETL tools. There have been several efforts 
towards (a) modeling tasks and the automation of the design 
process, (b) individual operations (with duplicate detection being 
the area with most of the research activity) and (c) some first 
results towards the optimization of the ETL workflow as a whole 
(as opposed to optimal algorithms for their individual 
components). For lack of space, we refer the interested reader to 
[11] for a detailed survey on research efforts in the area of ETL 
tools and to [14] for a survey on duplicate detection.  

The wide spread of industrial and ad-hoc solutions combined with 
the absence of a mature body of knowledge from the research 
community is responsible for the absence of a principled 
foundation of the fundamental characteristics of ETL workflows 
and their management. Here is a small list of shortages 
concerning these fundamental characteristics: no principled 
taxonomy of individual activities is present, few research efforts 
have been made towards the optimization of ETL workflows as a 
whole, and, practical problems like the recovery from failures 
have mostly been ignored. To add a personal touch to this 
landscape, in various occasions during our research, we have 
faced the problem of constructing ETL suites and varying several 
parameters of them; unfortunately, there is no commonly agreed 
benchmark for ETL workflows. Thus, a commonly agreed, 
realistic framework for experimentation is also absent. 

In this paper, we take a step towards this latter issue. Our goal is 
to provide a principled categorization of test suites for the 
problem of experimenting with a broad range of ETL workflows. 
First, we provide a principled way for constructing ETL 
workflows. We identify the main functionality provided by 
representative commercial ETL tools and we categorize the most 
frequent ETL operations into abstract logical activities. Based on 
that, we propose a categorization of ETL workflows, which covers 
frequent design cases. Then, we describe the main configuration 
parameters and a set of crucial measures to be monitored in order 
to capture the generic functionality of ETL tools. Also, we discuss 
how different parallelism techniques may affect the execution of 
ETL processes. Finally, we provide a set of specific ETL 
scenarios based on the aforementioned analysis, which can be 
used as an experimental testbed for the evaluation of ETL 
methods or tools. 

Contributions. Our main contributions are as follows: 

− A principled way of constructing ETL workflows based on an 
abstract categorization of frequently used ETL operations. 
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− The provision of a set of measures and parameters, which are 
crucial for the efficient execution of an ETL workflow. 

− A principled organization of test suites for the problem of 
experimenting with ETL scenarios. 

Outline. In Section 2, we discuss the nature and structure of ETL 
activities and workflows, and provide a principled way for 
constructing the latter. In Section 3, we present the main measures 
to be assessed by a benchmark and the basic problem parameters 
that should be considered for the case of ETL workflows. In 
Section 4, we give specific scenarios that could be used as a test 
suite for the evaluation of ETL scenarios. In section 5, we discuss 
issues that are left open and mention some parameters that require 
further tuning when constructing test suites. In Section 6, we 
discuss related work and finally, in Section 7, we summarize our 
results and propose issues of future work. 

2. Problem Formulation 
In this section, we introduce ETL workflows along with their 
constituents and internal structure and discuss the way ETL 
workflows operate. First, we start with a formal definition and an 
intuitive discussion of ETL workflows as graphs. Then, we zoom 
in the micro-level of ETL workflows inspecting each individual 
activity in isolation and afterwards, and then, we return at the 
macro-level, inspecting how individual activities are “tied” 
altogether to compose an ETL workflow. Both levels can be 
further examined from a logical or physical perspective. The final 
section of this section discusses the characteristics of the 
operation of ETL workflows and ties them to the goals of the 
proposed benchmark. 

An ETL workflow at the logical level is a design blueprint for the 
ETL process. The designer constructs a workflow of activities, 
usually in the form of a graph, to specify the order of cleansing 
and transformation operations that should be applied to the source 
data, before being loaded to the data warehouse. In what follows, 
we will employ the term recordsets to refer to any data store that 
obeys a schema (with relational tables and record files being the 
most popular kinds of recordsets in the ETL environment), and 
the term activity to refer to any software module that processes the 
incoming data, either by performing any schema transformation 
over the data or by applying data cleansing procedures. Activities 
and recordsets are logical abstractions of physical entities. At the 
logical level, we are interested in their schemata, semantics, and 
input-output relationships; however, we do not deal with the 
actual algorithm or program that implements the logical activity or 
with the storage properties of a recordset. When in a later stage, 
the logical-level workflow is refined at the physical level a 
combination of executable programs/scripts that perform the ETL 
workflow is devised. Then, each activity of the workflow is 
physically implemented using various algorithmic methods, each 
with different cost in terms of time requirements or system 
resources (e.g., CPU, memory, space on disk, and disk I/O).  

Formally, we model an ETL workflow as a directed acyclic graph 
G(V,E). Each node v∈V is either an activity a or a recordset r. An 
edge (a,b)∈E  denotes that b receives data from node a for further 
processing. In this provider relationship, nodes a and b play the 
role of the data provider and data consumer, respectively. The 
following well-formedness constraints determine the interconnec-
tion of nodes in ETL workflows: 

− Each recordset r is a pair (r.name, r.schema), with the schema 
being a finite list of attribute names. 

− Each activity a is a tuple (N,I,O,S,A). N is the activity’s name. 
I is a finite set of input schemata. O is a finite set of output 
schemata. S is a declarative description of the relationship of 
its output schema with its input schema in an appropriate 
language (without delving into algorithmic or implementation 
issues). A is the algorithm chosen for activity’s execution.  

− The data consumer of a recordset cannot be another recordset. 
Still, more than one consumer is allowed for recordsets. 

− Each activity must have at least one provider, either another 
activity or a recordset. When an activity has more than one 
data providers, these providers can be other activities or 
activities combined with recordsets. 

− Feedback of data is not allowed; i.e., the data consumer of an 
activity cannot be the same activity. 

2.1 Micro-level activities 
Concerning the micro level, we consider three broad categories of 
ETL activities: (a) extraction activities, (b) transformation and 
cleansing activities, and (c) loading activities. 

Extraction activities extract the relevant data from the sources and 
transport them to the ETL area of the warehouse for further 
processing (possibly including operations like ftp, compress, etc). 
The extraction involves either differential data sets with respect to 
the previous load, or full snapshots of the source. Loading 
activities have to deal with the population of the warehouse with 
clean and appropriately transformed data. This is typically done 
through a bulk loader program; nevertheless the process also 
includes the maintenance of indexes, materialized views, reports, 
etc. Transformation and cleansing activities can be coarsely 
categorized with respect to the result of their application to data 
and the prerequisites, which some of them should fulfill. In this 
context, we discriminate the following categories of operations:  

− Row-level operations, which are locally applied to a single 
row. 

− Router operations, which locally decide, for each row, which 
of the many (output) destinations it should be sent to. 

− Unary Grouper operations, which transform a set of rows to a 
single row. 

− Unary Holistic operations, which perform a transformation to 
the entire data set. These are usually blocking operations. 

− Binary or N-ary operations, which combine many inputs into 
one output. 

A taxonomy of activities at the micro level is depicted in Table A1 
(in the appendix). For each one of the above categories, a 
representative set of transformations, which are provided by three 
popular commercial ETL tools, is presented. The table is 
indicative and in many ways incomplete. The goal is not to 
provide a comparison among the three tools. On the contrary, we 
would like to stress out the genericity of our classification. For 
most of the ETL tools, the set of built-in transformations is 
enriched by user defined operations and a plethora of functions. 
Still, as Table A1 shows, all frequently built-in transformations in 
the majority of commercial solutions fall into our classification. 
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Figure 1. Abstract butterfly components 
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Figure 2. Butterfly configuration  

2.2 Macro level workflows 
The macro level deals with the way individual activities and 
recordsets are combined together in a large workflow. The 
possibilities of such combinations are infinite. Nevertheless, our 
experience suggests that most ETL workflows follow several 
high-level patterns, which we present in a principled fashion in 
this section. We introduce a broad category of workflows, called 
Butterflies. A butterfly (see also Figure 1) is an ETL workflow 
that consists of three distinct components: (a) the left wing, (b) the 
body, and (c) the right wing of the butterfly. The left and right 
wings (shown with dashed lines in Figure 1) are two non-
overlapping groups of nodes which are attached to the body of the 
butterfly. Specifically: 

− The left wing of the butterfly includes one or more sources, 
activities and auxiliary data stores used to store intermediate 
results. This part of the butterfly performs the extraction, 
cleaning and transformation part of the workflow and loads 
the processed data to the body of the butterfly. 

− The body of the butterfly is a central, detailed point of 
persistence that is populated with the data produced by the left 
wing. Typically, the body is a detailed fact or dimension table; 
still, other variants are also possible. 

− The right wing gets the data stored at the body and utilizes 
them to support reporting and analysis activity. The right wing 
consists of materialized views, reports, spreadsheets, as well 
as the activities that populate them. In our setting, we abstract 
all the aforementioned static artifacts as materialized views. 

Assume the small ETL workflow of Figure 2 with 10 nodes. R and 
S are source tables providing 100,000 tuples each to the activities 
of the workflow. These activities apply transformations to the 
source data. Recordset V is a fact table and recordsets Z and W are 
Target tables. This ETL scenario is a butterfly with respect to the 
fact table V. The left wing of the butterfly is {R, S, 1, 2, 3} and the 
right wing is {4, 5, Z, W}. 

Balanced Butterflies. A butterfly that includes medium-sized left 
and right wings is called a Balanced butterfly and stands for a 
typical ETL scenario where incoming source data are merged to 

populate a warehouse table along with several views or reports 
defined over it. Figure 2 is an example of this class of butterflies. 
This variant represents a symmetric workflow (there is symmetry 
between the left and right wings). However, this is not always the 
practice in real-world cases. For instance, the butterfly’s triangle 
wings are distorted in the presence of a router activity that 
involves multiple outputs (e.g., copy, splitter, switch, and so on). 
In general, the two fundamental wing components can be either 
lines or combinations. In the sequel, we discuss these basic 
patterns for ETL workflows that can be further used to construct 
more complex butterfly structures. Figure 3 pictorially depicts 
example cases of the above variants. 

Lines. Lines are sequences of activities and recordsets such that 
all activities have exactly one input (unary activities) and one 
output. In these workflows, nodes form a single data flow.  

Combinations. A combinator activity is a join variant (a binary 
activity) that merges parallel data flows through some variant of a 
join (e.g., a relational join, diff, merge, lookup or any similar 
operation) or a union (e.g., the overall sorting of two 
independently sorted recordsets). A combination is built around a 
combinator with lines or other combinations as its inputs. We 
differentiate combinations as left-wing and right-wing 
combinations. 

Left-wing combinations are constructed by lines and combinations 
forming the left wing of the butterfly.  The left wing contains at 
least one combination. The inputs of the combination can be: 

− Two lines. Two parallel data flows are unified into a single 
flow using a combination. These workflows are shaped like 
the letter ‘Y’ and we call them Wishbones. 

− A line and a recordset. This refers to the practical case where 
data are processed through a line of operations, some of which 
require a lookup to persistent relations. In this setting, the 
Primary Flow of data is the line part of the workflow. 

− Two or more combinations. The recursive usage of 
combinations leads to many parallel data flows. These 
workflows are called Trees. 

Observe that in the cases of trees and primary flows, the target 
warehouse acts as the body of the butterfly (i.e., there is no right 
wing). This is a quite practical situation that covers (a) fact tables 
without materialized views and (b) the case of dimension tables 
that also need to be populated through an ETL workflow. There 
are some cases, too, where the body of the butterfly is not 
necessarily a recordset, but an activity with many outputs (see last 
example of Figure 5). In these cases, the main goal of the scenario 
is to distribute data to the appropriate flows; this task is performed 
by an activity serving as the butterfly’s body.   

Right-wing combinations are constructed by lines and combina-
tions on the right wing of the butterfly. These lines and 
combinations form either a flat or a deep hierarchy. 

− Flat Hierarchies. These configurations have small depth 
(usually 2) and large fan-out. An example of such a workflow 
is a Fork, where data are propagated from the fact table to the 
materialized views in two or more parallel data flows. 

− Right - Deep Hierarchies. To handle all possible cases, we 
employ configurations with right-deep hierarchies. These 
configurations have significant depth and medium fan-out.  
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2.3 Goals of the benchmark 
The design of a benchmark should be based upon a clear 
understanding of the characteristics of the inspected systems that 
do matter. Our fundamental motivation for coming up with the 
proposed benchmark was due to the complete absence of a 
principled way to experiment with ETL workflows in the related 
literature. Therefore, we propose a configuration that covers a 
broad range of possible workflows (i.e., a large set of configur-
able parameters) and a limited set of monitored measures. 

The goal of this benchmark is to provide the experimental 
testbed to be used for the assessment of ETL methods or tools 
concerning their basic behavioral properties (measures) over a 
broad range of ETL workflows. 

The benchmark’s goal is to study and evaluate workflows as a 
whole. We are not interested in providing specialized perform-
ance measures for very specific tasks in the overall process. We 
are not interested either, in exhaustively enumerating all the 
possible alternatives for specific operations. For example, this 
benchmark is not intended to facilitate the comparison of 
alternative methods for the detection of duplicates in a data set, 
since it does not take the tuning of all the possible parameters 
for this task into consideration. On the contrary, this benchmark 
can be used for the assessment of the integration of such 
methods in complex ETL workflows, assuming that all the 
necessary knobs and bolts have been appropriately tuned. 

There are two modes of operation for an ETL workflow. In the 
traditional off-line mode, the workflow is executed during a 
specific time window of some hours (typically at night), when 
the systems are not servicing their end-users. Due to the low 
load of both the source systems and the warehouse, both the 
refreshment of data and any other administrative activities 
(cleanups, auditing, etc) are easier to complete. In the active 

mode, the sources continuously try to send new data to the 
warehouse. This is not necessarily done instantly; rather, small 
groups of data are collected and sent to the warehouse for 
further processing. The difference of the two modes does not 
only lie in the frequency of the workflow execution, but also to 
the load of the systems whenever the ETL workflow executes. 

Independently of the mode under which the ETL workflow 
operates, the two fundamental goals that should be reached are 
effectiveness and efficiency. Hence, given an ETL engine or a 
specific experimental method to be assessed over one or more 
ETL workflows, these fundamental goals should be evaluated. 
To organize the benchmark better, we classify the assessment of 
the aforementioned goals through the following questions: 

Effectiveness 

Q1. Does the workflow execution reach the maximum possible 
(or, at least, the minimum tolerable) level of data freshness, 
completeness and consistency in the warehouse within the 
necessary time (or resource) constraints? 

Q2. Is the workflow execution resilient to occasional failures? 

Efficiency 

Q3. How fast is the workflow executed? 

Q4. What resource overheads does the workflow incur at the 
source and the warehouse side? 

In the sequel, we elaborate on these questions.  

Effectiveness. The objective is to have data respect both database 
and business rules. A clear business rule is the need to have as 
fresh data as possible in the warehouse. Also, we need all of the 
source data to be eventually loaded at the warehouse – not 
necessarily immediately as they appear at the source side – 
nevertheless, the sources and the warehouse must be consistent 



 

at least at a certain frequency (e.g., at the end of a day). Sub-
problems that occur in this larger framework: 

− Recovery from failures. If some data are lost from the ETL 
process due to failures, then, we need to synchronize sources 
and warehouse and compensate the missing data. 

− Missing changes at the source. Depending on what kind of 
change detector we have at the source, it is possible that 
some changes are lost (e.g., if we have a log sniffer, bulk 
updates not passing from the log file are lost). Also, in an 
active warehouse, if the active ETL engine needs to shed 
some incoming data in order to be able to process the rest of 
the incoming data stream successfully, it is imperative that 
these left-over tuples need to be processed later.  

− Transactions. Depending on the source sniffer (e.g., a trigger 
-based sniffer), tuples from aborted transactions may be sent 
to the warehouse and, therefore, they must be undone. 

Minimal overheads at the sources and the warehouse. The 
production systems are under continuous load due to the large 
number of OLTP transactions performed simultaneously. The 
warehouse system supports a large number of readers executing 
client applications or decision support queries. In the offline 
ETL, the overheads incurred are of rather secondary importance, 
in the sense that the contention with such processes is practically 
non-existent. Still, in active warehousing, the contention is clear. 

− Minimal overhead of the source systems. It is imperative to 
impose the minimum additional workload to the source, in 
the presence of OLTP transactions. 

− Minimal overhead of the DW system. As writer processes 
populate the warehouse with new data and reader processes 
ask data from the warehouse, the desideratum is that the 
warehouse operates with the lightest possible footprints for 
such processes as well as the minimum possible delay for 
incoming tuples and user queries. 

3. Problem Parameters 
In this section, we propose a set of configuration parameters 
along with a set of measures to be monitored in order to assess 
the fulfillment of the aforementioned goals of the benchmark. 

Experimental parameters. Given the previous description of 
ETL workflows, the following problem parameters, appear to be 
of particular importance to the measurement: 

P1. the size of the workflow (i.e., the number of nodes 
contained in the graph),  

P2. the structure of the workflow (i.e., the variation of the 
nature of the involved nodes and their interconnection as 
the workflow graph) 

P3. the size of input data originating from the sources,  

P4. the overall selectivity of the workflow, based on the 
selectivities of the activities of the workflow,  

P5. the values of probabilities of failure. 

Measured Effects. For each set of experimental measurement, 
certain measures need to be assessed, in order to characterize the 
fulfillment of the aforementioned goals. In the sequel, we 
classify these measures according to the assessment question 
they are employed to answer. 

Q1. Measures for data freshness and data consistency. The 
objective is to have data respect both database and business 
rules. Also, we need data to be consistent with respect to the 
source as much as possible. The later possibly incurs a certain 
time window for achieving this goal (e.g., once a day), in order 
to accommodate high refresh rates in the case of active data 
warehouses or failures in the general case. Concrete measures: 

− (M1.1) Percentage of data that violate business rules. 

− (M1.2) Percentage of data that should be present at their 
appropriate warehouse targets, but they are not. 

Q2. Measures for the resilience to failures. The main idea is to 
perform a set of workflow executions that are intentionally 
abnormally interrupted at different stages of their execution. The 
objective is to discover how many of these workflows were 
successfully compensated within the specified time constraints. 
Concrete measures: 

− (M2) Percentage of successfully resumed workflow execu-
tions. 

Q3. Measures for the speed of the overall process. The objective 
is to perform the ETL process as fast as possible. In the case of 
off-line loading, the objective is to complete the process within 
the specified time-window. Naturally, the faster this is 
performed the better (especially, in the context of failure 
resumption). In the case of active warehouse, where the ETL 
process is performed very frequently, the objective is to 
minimize the time that each tuple spends inside the ETL 
module. Concrete measures: 

− (M3.1) Throughput of regular workflow execution (this may 
also be measured as total completion time). 

− (M3.2) Throughput of workflow execution including a 
specific percentage of failures and their resumption. 

− (M3.3) Average latency per tuple in regular execution. 

Q4. Measured Overheads. The overheads at the source and the 
warehouse can be measured in terms of consumed memory and 
latency with respect to regular operation. Concrete measures: 

− (M4.1) Min/Max/Avg/ timeline of memory consumed by the 
ETL process at the source system. 

− (M4.2) Time needed to complete the processing of a certain 
number of OLTP transactions in the presence (as opposed to 
the absence) of ETL software at the source, in regular source 
operation. 

− (M4.3) The same as 4.2, but in the case of source failure, 
where ETL tasks are to be performed too, concerning the 
recovered data. 

− (M4.4) Min/Max/Avg/ timeline of memory consumed by the 
ETL process at the warehouse system. 

− (M4.5) (active warehousing) Time needed to complete the 
processing of a certain number of decision support queries in 
the presence (as opposed to the absence) of ETL software at 
the warehouse, in regular operation. 

− (M4.6) The same as M4.5, but in the case of any (source or 
warehouse) failure, where ETL tasks are to be performed too 
at the warehouse side. 



 

4. SPECIFIC SCENARIOS 
A particular problem that arises in designing a test suite for ETL 
workflows concerns the complexity (structure and size) of the 
employed workflows. The first possible way to deal with the 
problem is to construct a workflow generator, based on the 
aforementioned disciplines. The second possible way is to come 
up with an indicative set of ETL workflows that serve as the 
basis for experimentations. Clearly, the first path is feasible; 
nevertheless it is quite hard to artificially produce large volumes 
of workflows in different sizes and complexities all of which 
make sense. In this paper, we follow the second approach. We 
discuss an exemplary set of sources and warehouse based on the 
TPC-H benchmark [13] and we propose specific ETL scenarios 
for this setting. 

4.1 Database Schema 
The information kept in the warehouse concerns parts and their 
suppliers as well as orders that customers have along with some 
demographic data for the customers. The scenarios used in the 
experiments clean and transform the source data into the desired 
warehouse schema. The sources for our experiments are of two 
kinds, the storage houses and sales points. Every storage house 
keeps data for the suppliers and parts, while every sales point 
keeps data for the customers and the orders. The schemata of the 
sources and the data warehouse are depicted in Figure 4. 
 

Data Warehouse: 

PART (rkey s_partkey, name, mfgr, brand, type, size, container, 

comment) 

SUPPLIER (s_suppkey, name, address, nationkey, phone, 

acctbal, comment, totalcost) 

PARTSUPP (s_partkey, s_suppkey, availqty, supplycost, comment) 

CUSTOMER (s_custkey, name, address, nationkey, phone, 

acctball, mktsegment, comment) 

ORDER (s_orderkey, custkey, orderstatus, totalprice, orderdate, 

orderpriority, clerk, shippriority, comment) 

LINEITEM (s_orderkey, partkey, suppkey, linenumber, quantity, 

extendedprice, discount, tax, returnflag, linestatus, shipdate, 

commitdate, receiptdate, shipinstruct, shipmode, comment, profit) 

Storage House: 

PART (partkey, name, mfgr, brand, type, size, container, comment) 

SUPPLIER (suppkey, name, address, nationkey, phone, acctbal, 

comment) 

PARTSUPP (partkey, suppkey, availqty, supplycost, comment) 

Sales Point: 

CUSTOMER (custkey, name, address, nationkey, phone, acctball, 

mktsegment, comment) 

ORDER (orderkey, custkey, orderstatus, totalprice, orderdate, 

orderpriority, clerk, shippriority, comment) 

LINEITEM (orderkey, partkey, suppkey, linenumber, quantity, 

extendedprice, discount, tax, returnflag, linestatus, shipdate, 

commitdate, receiptdate, shipinstruct, shipmode, comment) 

Figure 4. Database schemata 

4.2 ETL Scenarios 
In this subsection, we propose a set of ETL scenarios, which are 
depicted in Figure 5, while some statistics are shown in Table 1. 
We consider the butterfly cases discussed in section 2 to be 
representative of a large number of ETL scenarios and thus, we 

propose a specific scenario for each kind. We provide only 
small-size scenarios indicatively (thus, a right-deep scenario is 
not given); the rigorous definition of medium and large size 
scenarios is still open. 

The line workflow has a simple form since it applies a set of 
filters, transformations, and aggregations to a single table. This 
scenario type is used to filter source tables and assure that the 
data meet the logical constraints of the data warehouse. In the 
proposed scenario, we start with an extracted set of new source 
rows LineItem.D+ and push them towards the warehouse as 
follows: 

1. First, we check the fields "partkey", "orderkey" and 
"suppkey" for NULL values. Any NULL values are replaced 
by appropriate special values. 

2. Next, a calculation of a value "profit" takes place. This value 
is locally derived from other fields in a tuple as the amount 
of "extendedprice" subtracted by the values of the "tax" and 
"discount" fields. 

3. The third activity changes the fields "extendedprice", "tax", 
"discount" and "profit" to a different currency.  

4. The results of this operation are loaded first into a delta table 
DW.D+ and subsequently into the data warehouse DWH. 
The first load simply replaces the respective recordset, 
whereas the second involves the incremental appending of 
these rows to the warehouse. 

5. The workflow is not stopped after the completion of the left 
wing, since we would like to create some materialized views. 
The next operation is a filter that keeps only records whose 
return status is "False". 

6. Next, an aggregation calculates the sum of "extendedprice" 
and "profit" fields grouped by "partkey" and "linestatus". 

7. The results of the aggregation are loaded in view View01 by 
(a) updating existing rows and (b) inserting new groups 
wherever appropriate. 

8. The next activity is a router, sending the rows of view 
View01 to one of its two outputs, depending on the 
"linestatus" field has the value "delivered" or not. 

9. The rows with value “delivered” are further aggregated for 
the sum of "profit" and "extendedprice" fields grouped by 
"partkey". 

10. The results are loaded in view View02 as in the case for view 
View01. 

11. The rows with value different than “delivered” are further 
aggregated for the sum of "profit" and "extendedprice" fields 
grouped by "partkey". 

12. The results are loaded in view View03 as in the case for view 
View01. 

A wishbone workflow joins two parallel lines into one. This 
scenario is preferred when two tables in the source database 
should be joined in order to be loaded to the data warehouse or 
in the case where we perform similar operations to different data 
that are later joined. In our exemplary scenario, we track the 
changes that happen in a source containing customers. We 
compare the customers of the previous load to the ones of the 
current load and search for new customers to be loaded in the 
data warehouse. 
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Figure 5. Specific ETL workflows (cont’d) 

Table 1. Summarized statistics of the constituents of the ETL workflows depicted in Figure 5 

 Filters Functions Routers Aggr Holistic f. Joins Diff Unions Load Body Load Views
Line 1+1 2+0 0+1 0+3     INCR INCR 
Wishbone 1+0 4+0    1+0   INCR - 
Pr. Flow      3+0   I/U - 
Tree    0+1 1+0 1+0  1+0 I/U I/U 
Fork  3+0  0+4     INCR INCR 
BB(1)  4+0  0+4  1+0   INCR FULL 
BB(2)  0+2     1  - I/U 
 2+1 13+2 0+1 0+12 1+0 6+0 1 1+0   



 

1. The first activity on the new data set checks for NULL 
values in the "custkey" field. The problematic rows are kept 
in an error log file for further off-line processing. 

2. Both previous and old data are passed through a surrogate 
key transformation. We assume a domain size that fits in 
main memory for this source; therefore, the transformation 
is not performed as a join with a lookup table, but rather as 
a lookup function call invoked per row.  

3. Moreover, the next activity converts the phone numbers in 
a numeric format, removing dashes and replacing the '+' 
character with the "00" equivalent. 

4. The transformed recordsets are persistently stored in 
relational tables or files which are subsequently compared 
through a difference operator (typically implemented as a 
join variant) to detect new rows.  

5. The new rows are stored in a file C.D+ which is kept for the 
possibility of failure. Then the rows are appended in the 
warehouse dimension table Customer. 

The primary flow scenario is a common scenario in cases where 
the source table must be enriched with surrogate keys. This 
exemplary primary flow that we use has as input the Orders 
table. The scenario is simple: all key-based values 
(“orderstatus”, “custkey”, “orderkey”) pass through surrogate 
key filters that lookup (join) the incoming records in the 
appropriate lookup table. The resulting rows are appended to the 
relation DW.Orders. If incoming records exist in the DW.Orders 
relation and they have changed values then they are overwritten 
(thus, the Slowly Changing Dimension Type 1 tag in the figure); 
otherwise, a new entry is inserted in the warehouse relation. 

The tree scenario joins several source tables and applies 
aggregations on the result recordset. The join can be performed 
over either heterogeneous relations, whose contents are 
combined, either over homogeneous relations, whose contents 
are integrated into one unified (possible sorted) data set. In our 
case, the exemplary scenario involves three sources for the 
warehouse relation PartSupp. The scenario evolves as follows: 

1. Each new version of the source is sorted by its primary key 
and checked against its past version for the detection of new 
or updated records. The DIFFI,U operator checks the two 
inputs for the combination of pkey, suppkey matches. If a 
match is not found, then a new record is found. If a match is 
found and there is a difference in the field “availqty” then an 
update needs to be performed. 

2. These new records are assigned surrogate keys per source 

3. The three streams of tuples are united in one flow and they 
are also sorted by “pkey” since this ordering will be later 
exploited. Then, a delta file PS.D is produced. 

4. The contents of the delta file are appended in the warehouse 
relation DW.PS. 

5. At the same time, the materialized view View04 is refreshed 
too. The delta rows are summarized for the available 
quantity per pkey and then, the appropriate rows in the view 
are either updated (if the group exists) or (inserted if the 
group is not present). 

The fork scenario applies a set of aggregations on a single 
source table. First the source table is cleaned, just like in a line 

scenario and the result table is used to create a set of 
materialized views. Our exemplary scenario uses the Lineitem 
table as the butterfly’s body and starts with a set of extracted 
new records to be loaded. 

1. First, surrogate keys are assigned to the fields "partkey", 
"orderkey" and "suppkey". 

2. We convert the dates in the "shipdate" and "receiptdate" 
fields into a “dateId”, a unique identifier for every date. 

3. The third activity is a calculation of a value "profit". This 
value is derived from other fields in every tuple as the 
amount of "extendedprice" subtracted by the values of the 
"tax" and "discount" fields. 

4. This activity changes the fields "extendedprice", "tax", 
"discount" and "profit" to a different currency. The result of 
this actvity is stored at a delta table D+.LI. The records are 
appended to the data warehouse LineItem table and they are 
also reused for a number of aggregations at the right wing of 
the butterfly. All records pushed towards the views, either 
update or insert new records in the views, depending on the 
existence (or not) of the respective groups. 

5. The aggregator for View05 calculates the sum of the "profit" 
and "extendedprice" fields grouped by the "partkey" and 
"linestatus" fields. 

6. The aggregator for View06 calculates the sum of the "profit" 
and "extendedprice" fields grouped by the "linestatus" fields. 

7. The aggregator for View07 calculates the sum of the "profit" 
field and the average of the "discount" field grouped by the 
"partkey" and "suppkey" fields. 

8. The aggregator for View08 calculates the average of the 
"profit" and "extendedprice" fields grouped by the "partkey" 
and "linestatus" fields. 

The most general-purpose scenario type is a butterfly scenario. 
It joins two or more source tables before a set of aggregations is 
performed on the result of the join. The left wing of the butterfly 
joins the source tables, while the right wing performs the desired 
aggregations producing materialized views.  

Our first exemplary scenario uses new source records 
concerning Partsupp and Supplier as its input. 

1. Concerning the Partsupp source, we generate surrogate key 
values for the "partkey" and "suppkey" fields. Then, the 
"totalcost" field is calculated and added to each tuple. 

2. Then, the transformed records are saved in a delta file 
D+.PS and appended to the relation DW.Partsupp. 

3. Concerning the Supplier source, a surrogate key is generated 
for the “suppkey” field and a second activity transforms the 
"phone" field. 

4. Then, the transformed records are saved in a delta file D+.S 
and appended to the relation DW.Supplier. 

5. The delta relations are subsequently joined on the 
"ps_suppkey" and "s_suppkey" fields and populate the view 
View09, which is augmented with the new records. Then, 
several views are computed from scratch, as follows. 

6. View View10 calculates the maximum and the minimum 
value of the "supplycost" field grouped by the "nationkey" 
and "partkey" fields.  



 

7. View View12 calculates the maximum and the minimum of 
the "supplycost" field grouped by the "partkey" fields. 

8. View View11 calculates the sum of the "totalcost" field 
grouped by the "nationkey" and "suppkey" fields. 

9. View View13 calculates the sum of the "totalcost" field 
grouped by the "suppkey" field. 

A second exemplary scenario introduces a Slowly Changing 
Dimension plan, populating the dimension table PART and 
retaining its history at the same time. The trick is found in the 
combination of the “rkey”, “s_partkey” attributes. The 
“s_partkey” assigns a surrogate key to a certain tuple (e.g., 
assume it assigns 10 to a product X). If the product changes in 
one or more attributes at the source (e.g., X’s “size” changes), 
then a new record is generated, with the same “s_partkey” and a 
different “rkey” (which can be a timestamp-based key, or 
similar). The proposed scenario, works as follows: 

1. A new and an old version of the source table Part are 
compared for changes. Changes are directed to P.D++ (for 
new records) and P.DU for updates in the fields “size” and 
“container” 

2. Surrogate and recent keys are assigned to the new records 
that are propagated to the table PART for storage. 

3. An auxiliary table MostRecentPART holding the most 
recent “rkey” per “s_partkey” is appropriately updated. 

Observe that in this scenario the body of the butterfly is an 
activity. 

5. OPEN ISSUES  
Although we have structured the proposed test suites to be as 
representative as possible, there are several other tunable 
parameters of a benchmark that are not thoroughly explored. We 
discuss these parameters in this section. 

Nature of data. Clearly, the proposed benchmark is constructed 
on the basis of a relational understanding of the data involved. 
Neither the sources, nor the warehouse deal with semi-structured 
or web data. It is clear, that a certain part of the benchmark can 
be enriched a part of the warehouse schema that (incrementally) 
refresh the warehouse contents with HTML / XML source data. 

Active vs. off-line modus operandi. We do not specify different 
test suites for active and off-line modus operandi of the 
refreshment process. The construction of the test suites is 
influenced by an off-line understanding of the process. Although 
these test suites can be used to evaluate strategies for active 
warehousing, (since there can be no compromise with respect to 
the transformations required for the loading of source data), it is 
understood that an active process (a) should involve some 
tuning for the micro-volumes of data that are dispatched from 
the sources to the warehouse in every load and (b) could involve 
some load shedding activities if the transmitted volumes are 
higher that the ETL workflow can process. 

Tuning of the values for the data sizes, workflow selectivity, 
failure rate and workflow size. We have intentionally avoided 
providing specific numbers for several problem parameters; we 
believe that a careful assignment of values based on a large 
number of real-world case studies (that we do not possess) 
should be a topic for a full-fledged benchmark. Still, we would 
like to mention here what we think as reasonable numbers. 

Concerning data sizes, the numbers given by TPC-H can be a 
valid point of reference for data warehouse contents. Still, in our 
point of view, a more important factor is the fraction of source 
data over the warehouse contents. In our research we have used 
fractions that range from 0.01 to 0.7. We also think numbers 
between 0.5 and 1.2 to be reasonable for the selectivity of the 
left wing of a butterfly. Selectivity refers to both detected dirty 
data that are placed in quarantine and newly produced data due 
to some transformation (e.g., unpivot). A low value of 0.5 means 
an extremely dirty (50%) data population, whereas a high value 
means an intense data generation population. In terms of failure 
rates, we think that the probability for a failure during a 
workflow execution can range between the reasonable rates of 
10-4 and 10-2. Concerning workflow size, although we provide 
scenarios of small scale, medium–size and large-size scenarios 
are also needed. 

Auxiliary structures and processes. We have intentionally 
avoided backup and maintenance processes in our test suites. We 
have also avoided delving too deep in physical details of our 
test suites. A clear consequence of this is the lack of any 
discussion on indexes of any type in the warehouse. Still, we 
would like to point out that if an experiment should require the 
existence of special structures such as indexes, it is quite 
straightforward to separate the computation of elapsed time or 
resources for their refreshment and to compute the throughput or 
the consumed resources appropriately.  

Parallelism and Partitioning. Although the benchmark is 
currently not intended to be used for system comparison, the 
underlying physical configuration in terms of parallelism, 
partitioning and platform can play an important role for the 
performance of an ETL process. In general, there exist two 
broad categories of parallel processing: pipelining and 
partitioning. In pipeline parallelism, the various activities are 
operating simultaneously in a system with more than one 
processor. This scenario performs well for ETL processes that 
handle a relative small volume of data. For large volumes of 
data, a different parallelism policy should be devised: the 
partitioning of the dataset into smaller sets. Then, we use 
different instances of the ETL process for handling each 
partition of data. In other words, the same activity of an ETL 
process would run simultaneously by several processors, each 
processing a different partition of data. At the end of the 
process, the data partitions should be merged and loaded to the 
target recordset(s). Frequently, a combination of the two policies 
is used to achieve maximum performance. Hence, while an 
activity is processing partitions of data and feeding pipelines, a 
subsequent activity may start operating on a certain partition 
before the previous activity had finished. 

In Figure 6, the execution of an abstract ETL process is 
pictorially depicted. In Figure 6(a), the execution is performed 
sequentially. In this case, only one instance of it exists. Figures 
6(b) and 6(c) show the parallel execution of the process in a 
pipelining and a partitioning fashion, respectively. In the latter 
case, larger volumes of data may be handled efficiently by more 
than one instance of the ETL process; in fact, there are as many 
instances as the partitions used.  

Platform. Depending on the system architecture and hardware, 
the parallel processing may be either symmetric multiprocessing 
– a single operating system, the processors communicate



 

 

Figure 6. (a) Sequential, (b) pipelining, and (c) partitioning execution of ETL processes 

through shared memory – or clustered processing – multiple 
operating systems, the processors communicate through the 
network. The choice of an appropriate strategy for the execution 
of an ETL process, apart from the availability of resources, relies 
on the nature of the activities, which are participating in it.  

In terms of performance, an activity is bounded by three main 
factors: CPU, memory, and/or disk I/O. For an ETL process that 
includes mainly CPU-limited activities, the choice of a 
symmetric multiprocessing strategy would be beneficial. For 
ETL processes containing mainly activities with memory or disk 
I/O limitations – sometimes, even with CPU limitations – the 
clustering approach may improve the total performance due to 
usage of multiple processors, which have their own dedicated 
memory and disk access. However, the designer should confront 
with the trade-off between the advantages of the clustering 
approach and the potential problems that may occur due to 
network traffic. For example, a process that needs frequent 
repartitioning of data should not use clusters in the absence of a 
high-speed network. 

6. RELATED WORK 
Several benchmarks have been proposed in the database 
literature, in the past. Most of the benchmarks that we have 
reviewed make careful choices: (a) on the database schema & 
instance they use, (b) on the type of operations employed and (c) 
on the measures to be reported. Each benchmark has a guiding 
goal, and these three parts of the benchmark are employed to 
implement it.  

To give an example of the above, we mention two benchmarks 
mainly coming from the Wisconsin database group. The OO7 
benchmark was one of the first attempts to provide a 
comparative platform for object-oriented DBMS’s [3]. The OO7 
benchmark had the clear target to test as many aspects as 
possible of the efficiency of the measured systems (speed of 
pointer traversal, update efficiency, query efficiency). The 
BUCKY benchmark had a different viewpoint: the goal was to 
narrow down the focus only on the aspects of an OODBMS that 
were object-oriented (or object-relational): queries over 
inheritance, set-valued attributes, pointer navigation, methods 
and ADTS [4]. Aspects covered by relational benchmarks were 
not included in the BUCKY benchmark.  

TPC has proposed two benchmarks for the case of decision 
support. The TPC-H benchmark [13 is a decision support 
benchmark that consists of a suite of business-oriented ad-hoc 
queries and concurrent data modifications. The database 
describes a sales system, keeping information for the parts and 
the suppliers, and data about orders and the supplier's customers. 

The relational schema of TPC-H consists of eight separate tables 
with 5 of them being clearly dimension tables, one being a clear 
fact table and a couple of them combinations of fact and 
dimension tables. Unfortunately, the refreshment operations 
provided by the benchmark are primitive and not particularly 
useful as templates for the evaluation of ETL scenarios.  

TPC-DS is a new Decision Support (DS) workload being 
developed by the TPC [10]. This benchmark models the 
decision support system of a retail product supplier, including 
queries and data maintenance. The relational schema of this 
benchmark is more complex than the schema presented in TPC-
H. There are three sales channels: store, catalog and the web. 
There are two fact tables in each channel, sales and returns, and 
a total of seven fact tables. In this dataset, the row counts for 
tables scale differently per table category: specifically, in fact 
tables the row count grows linearly, while in dimension tables 
grows sub-linearly. This benchmark also provides refreshment 
scenarios for the data warehouse. Still, all these scenarios 
belong to the category of primary flows, in which surrogate and 
global keys are assigned to all tuples. 

7. CONCLUSIONS 
In this paper, we have dealt with the challenge of presenting a 
unified experimental playground for ETL processes. First, we 
have presented a principled way for constructing ETL 
workflows and we have identified their most prominent 
elements. We have classified the most frequent ETL operations 
based on their special characteristics. We have shown that this 
classification adheres to the built-in operations of three popular 
commercial ETL tools; we do not anticipate any major 
deviations for other tools. Moreover, we have proposed a 
generic categorization of ETL workflows, namely butterflies, 
which covers frequent design cases. We have identified the main 
parameters and measures that are crucial in ETL environment 
and we have discussed how parallelism affects the execution of 
an ETL process. Finally, we have proposed specific ETL 
scenarios based on the aforementioned analysis, which can be 
used as an experimental testbed for the evaluation of ETL 
methods or tools. 

The main message from our work is the need for a commonly 
agreed benchmark that realistically reflects real-world scenarios, 
both for research purposes and, ultimately, for the comparison of 
ETL tools. Feedback from the industry is necessary (both with 
respect to the complexity of the workflows and the frequencies 
of typically encountered ETL operations) in order to further tune 
the benchmark to reflect the particularities of real world ETL 
workflows more precisely. 
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APPENDIX  

Table A1. Taxonomy of activities at the micro level and similar built-in transformations provided by commercial ETL tools 

 
Transformation 

Category* 
SQL Server Information 

Services SSIS [7] 
DataStage [2] Oracle Warehouse Builder [9] 

Row-level: Function that 
can be applied locally to a 
single row 

− Character Map 
− Copy Column 
− Data Conversion 
− Derived Column 
− Script Component 
− OLE DB Command 
− Other filters (not null, 

selections, etc.) 

− Transformer (A generic 
representative of a broad range of 
functions: date and time, logical, 
mathematical, null handling, 
number, raw, string, utility, type 
conversion/casting, routing.) 

− Remove duplicates 
− Modify (drop/keeps columns or 

change their types) 

− Deduplicator (distinct) 
− Filter 
− Sequence 
− Constant 
− Table function (it is applied on a set of 

rows for increasing the performance) 
− Data Cleansing Operators (Name and 

Address, Match-Merge) 
− Other SQL transformations (Character, 

Date, Number, XML, etc.) 
Routers: Locally decide, for 
each row, which of the many 
outputs it should be sent to 

− Conditional Split 
− Multicast 

− Copy 
− Filter 
− Switch 

− Splitter 

Unary Grouper: 
Transform a set of rows to 
a single row 

− Aggregate 
− Pivot/Unpivot 

− Aggregator  
− Make/Split subrecord 
− Combine/Promote records 
− Make/Split vector 

− Aggregator 
− Pivot/Unpivot 

Unary Holistic: Perform a 
transformation to the entire 
data set (blocking) 

− Sort 
− Percentage Sampling 
− Row Sampling 

− Sort (sequential, parallel, total) − Sorter 
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Binary or N-ary: 
Combine many inputs into 
one output 

Union-like: 
− Union All 
− Merge  
Join-like: 
− Merge Join (MJ) 
− Lookup (SKJ) 
− Import Column (NLJ) 
 

Union-like: 
− Funnel (continuous, sort, 

sequence) 
Join-like: 
− Join 
− Merge 
− Lookup 
Diff-like: 
− Change capture/apply 
− Difference (record-by-record) 
− Compare (column-by-column) 

Union-like: 
− Set (union, union all, intersect, minus) 
Join-like: 
− Joiner 
− Key Lookup (SKJ) 

E
xt

r.
 

 − Import Column 
Transformation 

− Compress/Expand 
− Column import 

− Merge 
− Import 

L
oa

d 

 − Export Column 
− Slowly Changing Dimension 

− Compress/Expand 
− Column import/export 

− Merge 
− Export  
− Slowly Changing Dimension 

     

  * All ETL tools provide a set of physical operations that facilitate either the extraction or the loading phase. Such operations include: extraction   
    from hashed/sequential files, delimited/fixed width/multi-format flat files, file set, ftp, lookup, external sort, compress/uncompress, and so on. 
 


