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ABSTRACT 
Integrated access to distributed data is an important problem faced 
in many scientific and commercial applications. A data integration 
system provides a unified view for users to submit queries over 
multiple autonomous data sources. The queries are processed over 
a global schema that offers an integrated view of the data sources. 
Much work has been done on query processing and choosing 
plans under cost criteria. However, not so much is known about 
incorporating Information Quality analysis into data integration 
systems, particularly in the integrated schema. In this work we 
present an approach of Information Quality analysis of schemas in 
data integration environments. We discuss the evaluation of 
schema quality focusing in minimality, consistency and 
completeness aspects and define some schema transformations to 
be applied in order to improve schema design and consequently 
the quality of data integration query execution. 

1. INTRODUCTION 
Information quality (IQ) has become a critical aspect in 
organizations and, consequently, in Information Systems research. 
The notion of IQ has only emerged during the past ten years and 
shows a steadily increasing interest. IQ is a multidimensional 
aspect and it is based in a set of dimensions or criteria. The role of 
each one is to assess and measure a specific IQ aspect. One of 
these dimensions is the minimality aspect. This criterion defines 
that an element has good quality if it has no redundancies.  
A data integration system based on a Global-as-view (GAV) 
approach [14] provides to users a unified view of several data 
sources, called integrated schema. In this kind of system, data is 
spread over multiple, distributed and heterogeneous sources and, 
consequently the query execution is an essential feature. To the 
best of our knowledge so far, not so much is known about the 
important problem of incorporating IQ aspects into usual data 
integration components and processes, like query results 
integration, schema maintenance, source selection, among others. 

The primary contribution of this paper is the proposal of IQ 
criteria analysis in a data integration system, mainly related to the 

system’s schemas. 
The main goal we intend to accomplish is to improve the quality 
of query execution. Our hypothesis is that an acceptable 
alternative to optimize query execution would be the construction 
of good schemas, with high quality scores, and we have based our 
approach in this affirmative.   

We focused our work in developing IQ analysis mechanisms to 
address schema generation and maintenance, specially the 
integrated schema. Initially we built a list of IQ criteria related to  
data integration aspects, but, due to space limitations, we decided 
to formally specify the algorithms and definitions of schema IQ 
criteria – minimality, completeness and type consistency – and 
guided the presented approach to this aspects. We also defined an 
algorithm to perform schema minimality improvements. 

The paper is organized as follows: in section 2 we discuss 
approaches of Information Quality (IQ) and its use in data 
integration and schemas; the section 3 introduces the main issues 
related to schemas’ IQ criteria; section 4 discusses the formalism 
of schema representation; in section 5 we present the formal 
specification of the chosen schemas IQ criteria and in section 6 
we discuss some examples of these criteria; section 7 presents the 
schema improvement algorithm addressing minimality aspects and 
in section 8 is our concluding remarks and the final considerations 
about the mentioned topics. 

2. APPROACHES OF IQ IN DATA 

INTEGRATION SYSTEMS 
It has long been recognized that IQ is described or analyzed by 
multiple attributes or dimensions. During the past years, more and 
more dimensions and approaches were identified in several works 
([11], [17]).   

Naumann and Leser [17] define a framework addressing the IQ of 
query processing in a data integration system. This approach 
proposes the interleaving of query planning with quality 
considerations and creates a classification with twenty two 
dimensions divided into three classes: one related to the user 
preferences, the second class concerns the query processing 
aspects and the last one is related to the data sources. 

Other relevant topic to consider in IQ and data integration is the 
set of quality criteria for schemas. These are critical due the 
importance of the integrated and data sources schemas for query 
processing. Some works are related to IQ aspects of schema 
equivalence and transformations. As in [2], where the authors 
exploit the use of normalization rules to improve IQ in conceptual 
database schemas. 
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Some works are also relevant because are related to schema based 
data integration and schema correspondence definition as in [6], 
[15] and [1].  

The work proposed by Herden [11] deals with measuring the 
quality of conceptual database schemas. In this approach, given a 
quality criterion, the schema is reviewed by a specialist in the 
mentioned criterion.  

In [21] the authors propose IQ evaluation for data warehouse 
schemas focusing on the analyzability and simplicity criteria. 

The work presented in [9] enhances our consistency point of view 
by identifying the measure, column heterogeneity, to quantify the 
data quality problems that can arise when merging data from 
different sources. Similarly, Halevy in [10] discusses the 
importance of detecting data types in handling schema 
heterogeneity for some tasks, including data integration   
Our proposition is centered in IQ analysis for schemas in data 
integration systems with goals of query optimization and it is 
described in the next section. 

3. SCHEMA QUALITY ISSUES 
The main feature of a data integration system is to free the user 
from knowing about specific data sources and interact with each 
one. Instead, the user submits queries to an integrated schema, 
which is a set of views, over a number of data sources, designed 
for a particular data integration application. Each source must 
publish a data source schema with the representation of its 
contents. As a consequence, the data integration system must first 
reformulate a user query into queries that refers directly to 
schemas on the sources. To the reformulation step, a set of 
correspondences, called schema mappings, are required. There are 
also the user schemas that represent the requirements of 
information defined for one user or a group of users. The user 
requirements and their schema are not the focus of this work.  

Commonly, the tasks of query processing involving query 
submission, planning, decomposition and results integration are 
performed by a software module called mediator [27]. 

As a starting point, we adopted IQ classifications proposed in 
previous works ([3], [17], [11], [20], [24], [25]) with discrete 
variations: some criteria are not considered (not applicable), and 
some were adapted to our environment. In our classification, the 
IQ aspects were adapted and associated to the main elements of a 
data integration system.   

When considering any data integration task, component, process 
or element, (for example, a user query execution, data source 
selection or integrated schema generation), we perceive that each 
one can be associated with one of the three components: data, 
schemas and data sources. These components are the core of our 
IQ criteria classification. We classify as data, all the data objects 
that flow into the system. For example, query results, an attribute 
value, and so on. The schemas are the structures exported by the 
data sources (source schemas), the structures that are relevant for 
users to build queries (users’ schema) and the mediation entities 
(integrated schema). The data sources are the origin of all data 
and schema items in the system.  

All IQ criteria in the data integration system are associated with 
one of the three groups of elements according to the Table 1. 

 In this paper, we present our approach of schema maintenance 
with quality aspects, using three IQ criteria: schema completeness, 
minimality and type consistency. 

Table 1. Data integration IQ criteria classification 

Data Integration Element IQ Criteria 

Data Sources Reputation, Verifiability, Availability, Response Time 
Schema Schema Completeness, Minimality, Type Consistency 
Data Data Completeness, Timeliness, Accuracy 

 

Schema Completeness 

The completeness can be measured as the percentage of real-
world objects modeled in the integrated schema that can be found 
in the sources. Therefore, the schema completeness criterion is the 
number of concepts provided by the schema with respect to the 
application domain.  
 

Minimality 

Minimality is the extent in which the schema is compactly 
modeled and without redundancies. In our point of view, the 
minimality concept is very important to data integration systems 
because the integrated schema generated by the system may have 
redundancies.  The key motivation for analyzing minimality is the 
statement that the more minimal the integrated schema is, the least 
redundancies it contains, and, consequently, the more efficient the 
query execution becomes [12]. Thus, we believe that our 
minimality analysis will help decreasing the extra time spent by 
mediator with access to unnecessary information represented by 
redundant schema elements. 
 

Type Consistency 

Type consistency is the extent in which the attributes 
corresponding to the same real world concept are represented with 
the same data type across all schemas of a data integration system. 
Table 2 lists each criterion with its definition and the metric used 
to calculate scores. 

Table 2. IQ Criteria for schemas quality analysis 
IQ Criteria Definition Metrics 

Schema 
Completeness 

The extent to which entities 
and attributes of the 
application domain are 
represented in the schema 

1 – (#incomplete items  / 
#total items)1  

Minimality The extent in which the 
schema is modeled without 
redundancies 

1 – (#redundant schema 
elements/# total schema 
elements )1 

Type 
Consistency 

Data type uniformity across 
the schemas   

1 – (#inconsistent 
schema elements / #total 
schema elements) 1 

The quality analysis is performed by a software module called IQ 

Manager. At the moment of integrated schema generation or 
update, this module proceeds with the criteria assessment and 
then, according to the obtained IQ scores, may execute 
adjustments over the schema to improve its design and, 
consequently, the query execution. This last step of schema 
tuning, after the IQ evaluation, is presented in section 7. 

 

4. SCHEMA REPRESENTATION 
Commonly, data integration systems use XML to represent the 
data and XML Schema to represent schemas. To provide a high-



level abstraction for XML schema elements, we use a conceptual 
data model, called X-Entity [15] described in what follows.  We 
also present the schema mappings with this notation. 

4.1 X-Entity Model 
The X-Entity model is an extension of the Entity Relationship 
model [8], i.e., it uses some basic features of the ER model and 
extends it with some additional ones to better represent XML 
schemas.  

The main concept of the model is the entity type, which represents 
the structure of XML elements composed by other elements and 
attributes. In the X-Entity model, relationship types represent 
element-subelement relationships and references between 
elements. An X-Entity schema S is denoted by S=(E,R), where 
E is a set of entity types and R is a set of relationship types.  

• Entity type: an entity type E, denoted by 
E({A1,…,An},{R1,…,Rm}), is made up of an entity name 
E, a set of attributes {A1,…,An} and a set of relationships 
{R1,…,Rm}. Each entity type may have attributes {A1,…,An} 
that represents either a XML attribute or a simple XML 
element. In X-Entity diagrams, entity types are rectangles.1 

• Containment relationship: a containment relationship between 
two entity types E and E1, specifies that each instance of E 
contains instances of E1. It is denoted by 
R(E,E1,(min,max)), where R is the relationship name and 
(min,max) are the minimum and the maximum number of 
instances of E1 that can be associated with an instance of E.  

• Reference relationship: a reference relationship, denoted 
by R(E1,E2, {A11,…,A1n},{A21,…,A2n}), where R 
is the name of the relationship where the entity type E1 
references the entity type E2. {A11,…,A1m} and 
{A21,…,A2n} are the referencing attributes between 
entities E1 and E2 such that the value of A1i, 1 ≤  i ≤ n, in 
any entity of E1 must match a value of A2i, 1 ≤  i  ≤  n, 
in E2. 

4.2 Schema Mappings 
We use schema mappings to represent the correspondences 
between entities and attributes of distinct sources. Schema 
mappings, as defined in [22], are constraints used to assert that the 
semantics of some components in a schema is somehow related to 
the semantics of some components in another schema. In our 
approach, they are used to represent correspondences between X-
Entity elements representing the same real world concept called 
semantically equivalent. 

A data integration system is widely based on the existence of 
metadata describing individual sources and integrated schema, 
and on schema mappings [22] specifying correspondences 
between the integrated schema concepts and the source schemas 
concepts. There are several types of schema mappings to formally 
describe the associations between the concepts of X-Entity 
schemas. We consider an X-Entity element as an entity type, a 
relationship type or an attribute: 

• Entity schema mappings: if E1 and E2 are entity types, the 
schema mapping E1 ≡ E2 specifies that E1 and E2 are 

                                                                 
1 # denotes the expression “Number of” 

semantically equivalent, i.e., they describe the same real world 
concept.   

• Attribute schema mappings: are the mappings among 
attributes of semantically equivalent entities. The mapping 
E1.A1 ≡ E2.A2 indicates that the attributes A1 and A2 are 
semantically equivalent (correspond to the same real concept); 

• Path mappings: specify special types of mappings between 
attributes and subentities of semantically equivalent entity 
types with different structures. Before defining a path 
mapping, it is necessary to define two concepts: link and path. 
A link between two X-Entity elements X1 and X2 (X1.X2) 
occurs if X2 is an attribute of the entity type X1, or X1 is an 
entity of the relationship type X2 (or vice-versa). If there is a 
multiple link, it is called a path. In this case it may occurs a 
normal path, X1.....Xn or an inverse path 
(X1.X2.....Xn)

-1. Entities attributes and relationships are 
represented by paths. A path mapping can occur in four cases 
as explained in the following (assuming P1 and P2 as being 
two paths): 
1. Case 1: P1=X1.X2...Xn and P2=Y1.Y2...Ym, where 

X1 ≡ Y1. The mapping P1 ≡ P2 specifies that the entity 
types Xn and Ym are semantically equivalent.  

2. Case2: P1 = X1.X2...Xn.A and 
P2=Y1.Y2....Ym.A’, where X1 ≡ Y1. The mapping P1 
≡ P2 specifies that the attribute A ∈ Xn and the attribute 

A’ ∈ Ym are semantically equivalent.  
3. Case 3: P1 = X1.X2...Xn and P2 = (Y1.Y2...Yn)-

1, where X1 ≡ Yn. The mapping P1 ≡ P2 specifies that the 
entity types Xn and Y1 are semantically equivalent. 

4. Case 4: P1 = X1.X2...Xn.Ak and P2 = 

(Y1.Y2...Yn)
-1
.Ak’, where X1 ≡ Yn. The mapping P1 

≡ P2 specifies that the attribute Ak ∈ Xn and the attribute 

Ak’ ∈ Y1 are semantically equivalent.  
To illustrate the cases, consider the integrated and data source 
schemas presented in Figure 1.  
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Figure 1. Integrated Schema (Smed) and Schemas of data 

sources (S1 and S2) 

Table 3 presents the relevant schema mappings identified to 
compute bookm and chapterm. The mappings MP1 to MP12 
specify the semantic equivalences between the integrated and data 
source schema elements. 

In data integration, the mappings are essential to assure the query 
processing over integrated schema. We assume that the mappings 
and schema elements equivalences are already defined 
automatically by the system or even manually by advanced users. 



Particularly, in the environment exploited to experiment the 
proposed IQ evaluation ([5], [15]), there is a schema matcher 
component responsible to maintain equivalencies and define 
mappings among data sources and integrated schema. 

Table 3.  Schema mappings between the integrated schema 

Smed and the source schemas S1 and S2 
MP1:bookm ≡ publication1  
MP2:bookm.titlem ≡ publication1.title1 
MP3:bookm.publisherm≡ publication1.publisher1 
MP4:chapterm ≡ section1 
MP5:chapterm.chapter_titlem≡ section1.section_title1 
MP6:bookm.bookm_chapterm.chapterm ≡ 
(section1.section_ref_ publication 1.publication 1)

-1 

MP7:bookm ≡ novel2 
MP8:bookm.titlem ≡ novel2.name2 
MP9:chapterm ≡ chapter2 
MP10:bookm.bookm_chapterm.chapterm ≡ novel2. 
novel2_chapter2.chapter2 
MP11:chapterm.chapter_titlem ≡ chapter2.ch_title2 
MP12:bookm.publisherm≡  novel2. 
novel2_publisher2.publisher2.pub_name2

 

5. SCHEMA IQ CRITERIA 
As previously mentioned, high IQ schemas are essential to 
accomplish our goal of improving integrated query execution.  
It is important to notice that the proposed approach is not only to 
be applied in X-Entity schemas. The IQ aspects may be useful in 
any integrated schema to minimize problems acquired from 
schema integration processes, for example, the same concept 
represented more than once in a schema. The next section 
describes some definitions, required to introduce the minimality 
criterion. 
It is important to point that semantic equivalence specification is 
not the focus of this paper. We use the approach presented in [15]. 
From now on, we assume that the integrated schema is already 
created and consequently, the equivalences between entities, 
attributes and relationships are already defined. 

5.1 Definitions 
More formally, a data integration system is defined as follows: 

Definition 1 – Data Integration System (Ð) 

A data integration system is a 4 element tuple, Ð = <δδδδ,Sm, 

ρρρρ,ϕϕϕϕ(Ð)> where:  
• δδδδ is the set of Si data sources schemas, i.e. δδδδ = 

<S1,S2,…,Sw>, where w is the total number of data sources 
participating in Ð; 

• Sm is the integrated schema, generated by internal modules of 
Ð; 

• ρρρρ is the set of user schemas, ρρρρ = <U1,U2,…,Uu> where u is 
the total number of users of Ð. Together with the data source 
schemas it is the basis of the integrated schema generation;  

• The component ϕϕϕϕ(Ð) is the set of all distinct concepts in the 
application domain of the data integration system, as stated in 
the next definition. This set can be extracted from the schema 
mappings between the data source schemas and the integrated 
schema.  

In Ð, the following statements are true: 
• Sm is a X-Entity integrated schema such as Sm = 

m1 2 n
<E ,E ,...,E > where Ek is an integration or mediation 

entity (1 ≤ k ≤ nm), and nm is the total number of entities 
in Sm; 

• ∀Ek ∈ Sm, 

k kk k1 k2 ka k1 k2 kr
E({A ,A ,...,A },{R ,R ,...,R }), where: 

o 
kk1 k2 ka

{A ,A ,...,A } is the set of attributes of Ek, ak is 

the number of attributes in Ek, (ak > 0); 
o 

kk1 k2 kr
{R ,R ,...,R } is the set of relationships of Ek, rk 

is the number of relationships in Ek (rk ≥ 0). 
• If X1 and X2 are schema elements (attributes, relationships or 

entities), the schema mapping X1 ≡ X2 specifies that X1 and 
X2 are semantically equivalent, i.e., they describe the same 
real world concept and have the same semantics. More details 
about the definition of semantic equivalences can be found in 
[15].   

 
Every information system (even a data integration one) is 
constructed from a number of requirements. Moreover, 
embedded in this set of requirements is the application 
domain information [13], very important to schemas 
construction. 

Definition 2 – Domain Concepts Set 

We define ϕϕϕϕ as the set of domain concepts, 
ϕϕϕϕ(ββββ)=

1 2<C ,C ,...,C >
ββββσσσσ

: 

 ββββ is even a given integrated schema Sm or a data              
 integration system Ð; 

 σσσσββββ as the number of real world concepts in ββββ; 

 Ck is an application domain concept which is 
 represented by an schema element Y in one of the two 
 following ways: 

i) Y ∈ Sm,  if ββββ is a integrated schema or; 
ii) Y ∈ δδδδ = <S1,S2,…,Sw>,  if ββββ is a the data 

integrated system.  
Usually, the data integration system has mechanisms to generate 
and maintain the schemas. It is very difficult to guarantee that 
these mechanisms, specifically those concerning the schema 
generation, produce schemas without anomalies, e.g., 
redundancies. In data integration context, we define a schema as 
redundant if it has occurrences of redundant entities, attributes or 
relationships.  
To contextualize schema aspects, we introduce the definitions 3 to 
6. 

 

Definition 3 – Redundant attribute in a single entity 

An attribute Aki of entity Ek, Aki ∈ 
kk1 k2 ka

{A ,A ,...,A } is 

redundant, i.e., Red(Aki,Ek) = 1, if: 
  ∃Ek.Akj, j ≠ i, Akj ∈ 

kk1 k2 ka
{A ,A ,...,A }  

 such as Ek.Aki ≡ Ek.Akj, 1 ≤ i,j ≤ ak 

Definition 4 – Redundant attribute in different entities 

An attribute Aki of the entity Ek, Aki ∈ 
kk1 k2 ka

{A ,A ,...,A } is 

redundant, i.e. Red(Aki,Ek) = 1, if:  
∃Eo, o ≠ k, Eo ∈ Sm,  Ek ≡ Eo,                         

Eo(
oo1 o2 oa

{B ,B ,...,B }), Boj are attributes of Eo 

and ∃Eo.Boj, Boj ∈ 
oo1 o2 oa

{B ,B ,...,B }  



 such as Ek.Aki  ≡ Eo.Boj, 
 1 ≤ i ≤ ak, 1 ≤ j ≤ ao. 
If an attribute Aki, Aki ∈ 

kk1 k2 ka
{A ,A ,...,A }, and 

Red(Aki,Ek) = 0, we say that Aki is non-redundant. 

Definition 5 – Entity Redundancy Degree 
We say that a given entity Ek has a positive redundancy degree in 
schema Sm, i.e. Red(Ek,Sm) > 0, if Ek has at least one 
redundant attribute. The redundancy degree is calculated by the 
following formula: 

 Red(Ek,Sm) =

ka

ki k

i = 1

k

Red(A ,E )

a

∑ , where 

  ka

ki k

i = 1

Red(A ,E )∑
 is the number of redundant 

 attributes in Ek and  

 ak is the total number of attributes in Ek. 

An entity Ek is considered fully redundant when all of its 
attributes are redundant, i.e. Red(Ek,Sm) = 1. In this case, we 
assume that the entity Ek may be removed from the original 
schema Sm without lost of relevant information. Any existing 
relationship from Ek may be associated to a remaining equivalent 
entity Eo, as will be shown in section 7. 

As an example of redundant attributes and the entity redundancy 
degree, suppose the schema and mappings of Figure 2: 

movie
m
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m
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m

age
m

artist
m

address
m

originCountry
m

contains

country
m

 
  artistm ≡ actorm 

  originCountrym ≡ countrym 

Figure 2. Schema with redundant attributes 

The attribute originCountrym in artistm is redundant 
because it has a semantic correspondent in the entity actorm 
(attribute countrym), and both the entities artistm and 
actorm are semantically equivalent. Thus, we have the 
following: 

  Red(originCountrym,artistm) = 1 
  Red(addressm,artistm) = 0 
  Red(countrym,actorm) = 0  
  Red(agem,actorm) = 0 
  Red(sshm,actorm) = 0 

It is interesting to mention that nationalitym ≡ countrym, 
but only the first is classified as redundant. This occurs because 
only one must be marked as redundant and removed, while the 
other has to be kept in the schema to assure that domain 
information will not be lost.  

The entities in Figure 2 have the following entity redundancy 
degrees in schema Sm: 

 Red(artistm,Sm) =  1 0

2

+  = 0.5  

 Red(actorm,Sm) =  0 0 0

3

+ +  = 0 

The entity artistm is 50% redundant because it has only two 
attributes, and one of them is redundant. 

Definition 6 – Redundant Relationship 

Consider a relationship R ∈ Sm between the entities Ek and Ey 
represented by the path Ek.R.Ey, then: R ∈ 

kk1 kr
{R ,...,R } 

and R ∈ 
yy1 yr

{T ,...,T },where 
kk1 kr

{R ,...,R } is the set of 

relationships of the entity Ek and 
yy1 yr

{T ,...,T } is the set of 

relationships of the entity Ey. Thus, the relationship R connects Ek 
and Ey if and only if R ∈ 

kk1 kr
{R ,...,R } and  R ∈ 

yy1 yr
{T ,...,T }. 

We define R as a redundant relationship in Sm, i.e. Red(R,Sm) 
= 1 if: 
  ∃P1, where P1=Ek.Rj.….Ts.Ey is a path with  
 Rj ∈ 

kk1 kr
{R ,...,R } and  

 Ts ∈ 
yy1 yr

{T ,...,T } 

  such as P1 ≡ R. 
In other words, a relationship between two entities is redundant if 
there are other semantically equivalent relationships which paths 
are connecting the same two entities.  

Consider the schema and mappings illustrated in Figure 3. 
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     P1 ≡ P2 

Figure 3. Schema with redundant relationship 

The relationship connecting enterprisem and sectionm is 
redundant (Red(enterprisem,sectionm,(1,N))= 1) 
because it has a semantically equivalent correspondent 
represented by P1. 

We agree with the study presented in [28], where Zhang states 
that redundancy is not a symmetric metric. An entity Ej may cause 
Ek to be assigned as redundant, but if the comparison order is 
changed, Ej may not be redundant when related to Ek. A simple 
example is the case where an entity E1 is entirely contained in  E2, 
E1 is redundant but E2 is not.   

 

5.2 Minimality 
A major problem of conceptual schema design is to avoid the 
generation of a schema with redundancies. A schema is minimal if 
all of the domain concepts relevant for the application are 
described only once. In other words, a minimal schema may 
represent each application requirement only once ([12], [23], 
[16], [19]). Thus, we can say that the minimality of a schema is 
the degree of absence of redundant elements in the schema. 
Likewise our point of view, Kesh [12] argues that a more minimal 



(or concise) schema will make itself more efficient, and 
consequently improve the effectiveness of operations and queries 
over it. We state that if the integrated schema is minimal, query 
execution will be improved. Redundant elimination (or minimality 
increasing) avoids the query processor to spend extra time 
querying redundant elements.  

Therefore, to measure the minimality, we must first determine the 
redundancy degree of the schema. To each one of the next 
redundancy definitions (6 and 7), we assume the following:  

• nrel is the total number of relationships in Sm;  

• nm is the total number of entities in Sm;  

• rk is the number of relationships of each entity Ek in Sm. 

Definition 7 – Entity Redundancy of a Schema 
The total entity redundancy of a schema Sm is computed by the 
formula:  

 ER(Sm)=  

mn

k m

k 1

m

Re d(E ,S )

n

=

∑ , where Red(Ek,Sm) is the 

redundancy degree of each Ek in  Sm.  

Definition 8 – Relationship Redundancy of a Schema 
The relationship redundancy degree of Sm is measured by the 
equation:   

RR(Sm) = 

reln

l m

l 1

rel

# Re d(R ,S )

n

=

∑ , where reln

l m

l 1

# Re d(R ,S )
=

∑
 is the 

number of redundant  relationships in Sm as stated in 
Definition 6. 

Definition 9 – Schema Minimality 
We define the overall redundancy of a schema in a data 
integration system as the sum of the aforementioned redundancy 
values: entities (ER) and relationships (RR). The schema 
minimality is measured by the formula:  

 
 

mS m m
Mi = 1 - [ER(S )+RR(S )] 

5.3 Schema Completeness 
The schema completeness is the percentage of domain concepts 
represented in the integrated schema when related to the concepts 
represented in all data source schemas ([12], [23], [16], [19]). For 
instance, suppose that a given data integration system has a total 
of 10 distinct domain concepts (described by entities and 
relationships) in all data sources’ published schemas. If the 
integrated schema have only 6 representations of these concepts, 
we can say that the integrated schema is 60% complete related to 
the current set of data sources.  

To introduce schema completeness metrics, we assume that the 
data integration system (Ð) has a minimal integrated schema Sm.  

As mentioned in Definition 2, a data integration system is 
constructed over a domain, and this domain aggregates a number 
of real world concepts (obtained from the requirements) that are 
represented by the schemas elements. Every relationship, entity or 
attribute in a user, data source or integrated schema are (part of) a 
real world concept. Sometimes, the same concept can be found in 

more than one element, in one or more schemas. In this case the 
concept is replicated and the corresponding schema elements are 
semantically equivalent. For example, in a given schema A the 
name of a movie director can be an attribute director.name 
and the same concept may be the element movie.director 
(i.e., director.name ≡ movie.director) in other 
schema B.   

Let consider Ð with two data sources (Sa and Sb) and its 
respective schemas and mappings as in Figure 4. 
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Figure 4. Data source schemas and schema mappings in Ð 

With respect to the schemas in Figure 4, after investigating and 
analyzing the schemas and mappings, it is possible to find the set 
of distinct concepts (ϕϕϕϕ(Ð)=

Ð1 2<C ,C ,...,C >σσσσ
) as in the 

following: 

ϕϕϕϕ(Ð) = <book, book.year, book.title, 
book.price, author, author.age, 

author.name, chapter, chapter.page, 

chapter.size, book.country, 

(book,author,1,N),(book,chapter,1,N)>   

⇒  σσσσÐ = 13, where  

σσσσÐ is the number of concepts in Ð (Definition 2)   

It is important to emphasize that the relationship (author, 
publication,1,N) is not present in the domain set of 
concepts because it is equivalent to the relationship 
(book,author,1,N) e.g., both represents the same concept. 

To determine the schema completeness metrics, we introduce the 
following definition. 

Definition 10 – Schema Completeness 

The overall schema completeness degree in a given schema Sx ∈  

Ð is obtained by the following average: 

 SC(Sx) = 
xS

Ð

 σσσσ

σσσσ
, 



 where Sx can be either a data source schema or the 
 integrated schema; 

 
xS

σσσσ is the number of distinct concepts in the schema 

 Sx and; 

 Ðσσσσ is the is the number of distinct concepts contained 

 in all the schemas of the data integration system Ð. 

5.4 Type Consistency 
In databases, the consistency property states that only valid data 
will be written to the database. The stored data must adhere to a 
number of consistency rules. If, for some reason, a transaction is 
executed that violates the database’s consistency rules, the entire 
transaction will be rolled back and the database will be restored to 
a consistent state according to those rules. On the other hand, if a 
transaction successfully executes, it will take the database from a 
consistent state with the rules to another state that is also 
consistent with the rules. These affirmatives are related to data 
consistency, but they can be extended to adequately represent data 
type consistency constraints [20].  

A data type is a constraint placed upon the interpretation of data 
in a type system in computer programming. Common types of 
data in programming languages include primitive types (such as 
integers, floating point numbers or characters), tuples, records, 
algebraic data types, abstract data types, reference types, classes 
and function types. A data type describes representation, 
interpretation and structure of values manipulated by algorithms 
or objects stored in computer memory or other storage device. 
The type system uses data type information to check correctness 
of computer programs that access or manipulate the data [7]. 

When an integrated schema management system experiences 
problems with consistency, the same data type of information is 
recorded in more than one way. The first step in resolving this 
consistency problem is to determine which alternative data type is 
preferable. This approach would then be defined as the standard, 
namely, the accepted way of recording the information.  

In this case, a schema element is called consistent if it adheres to 
the standard data type. If it not adheres, commonly the data type 
conversion is a difficult process performed by mediator, and then 
achieving consistency could be both time-consuming and 
expensive. As in [4] we have based the consistency metric in an 
essential factor: the number of semantically equivalent attributes 
in schema that adhere to the standard data type defined for the 
attribute.  

We approximate consistency rules and data types to create the 
Type Consistency IQ concept. The use of different coding 
schemes to record the same attribute falls into the lack of IQ in 
this category. We use the Type Consistency criterion to investigate 
which data elements in the schemas are always represented with 
the same type, or adhering to a consistency standard. This is an 
indicator of quality and query improvement, once the query 
processor is not going to perform type conversions for a schema 
element in order to access its correspondences in data sources 
schemas. For type consistency measurement, we use a metric 
similar to the one presented in [24]. 

X-Entity is a high level abstraction for XML schema structures, it 
is necessary to define the concept of type for an X-Entity attribute.   

Definition 11 – X-Entity Attribute Data Type 

A data type Tkj for the attribute Akj, where Akj ∈ Ek, is a 
domain element or structural metadata associated with the 
attribute data as defined in previous works [7]. As the data 
integration system is concerned with XML data, then every Tkj 
may be one of the valid datatypes defined for XML Schema 
(including the user defined ones). From the XML Schema 
specification [18], we import the concept of datatype as follows: 

A datatype T is a tuple <αααα, λλλλ, γγγγ>, consisting of:   

• αααα is a set of distinct values, called the value space, 

containing the values that the elements of the type can have; 
•  λλλλ is a set of lexical representations, called the lexical space 

and; 
•  γγγγ is a set of facets that characterize properties of the value 

space, individual values or lexical items;  
• T ∈∈∈∈ £, where £ is the set of all XML schema datatypes.  
In our work, to use datatypes, it is only necessary to refer to the αααα 
set of valid values in the datatype specification.   

To determine the type consistency criterion, we define the 
following: 

Definition 12 – Attribute  

∀Ek ∈ Sm, every  attribute  Akj   (Akj ∈ Ek) is  defined  by  the  
tuple  (Tkj,vkj), where: 

• Tkj = <αkj, λkj, γkj> is the datatype of attribute Akj (1 
≤ j ≤ ak); 

• vkj is the value of attribute Akj (1 ≤ j ≤ ak) and  vkj ∈ 

αkj. 

 

Definition 13 – Data Type Consistency Standard 

The data type consistency standard is the alternative data type 
which is more appropriate to an attribute. This data type is defined 
as the standard, namely, the accepted way of recording the 
attribute. Formally, a data type consistency standard is an X-
Entity attribute data type such as: 

    ∀Ek.Akj, Ek ∈ Ð, Akj ∈ 
kk1 k2 ka

{A ,A ,...,A } ^   

    ∃∃∃∃Tstd,Tstd=<αstd,λstd,γstd> ^   

         ∃Ex.A, Ex ∈ Ð ^ Ex.A ≡ Ek.Akj  

A = (Tstd,v) where Tstd is the most frequently data 
type used in Ð for attribute A and its equivalents    

Definition 14 – Attribute Type Consistency  

In a given a set of data source schemas Si (1 ≤ i ≤ w) and a 
mediation schema Sm, we say that an attribute Apj = (Tpj,vpj) 
(Tpj is a valid datatype as in Definition 12) of an entity Ep ∈ Sp 
(Sp=Si or Sp=Sm) is consistent i.e. Con(Apj,Sp)= 1 if it 
appears in another entity or even in the same entity with other 
datatype: ∃Tstd ∈ Ð, T ∈∈∈∈ £ such as  Apj = (Tstd,vpj) 

 

Definition 15 – Schema Data Type Consistency 
The overall schema type consistency score in a given data 
integration system (Con(Sm,Ð)) is obtained by the following 
calculation: 
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m k

m

n a

kj

k 1 j 1

n

k

k 1

Con(A ,Ð)

a

= =

=

∑ ∑

∑

, 

where  
m kn a

kj

k 1 j 1

Con(A ,Ð)
= =

∑ ∑

 

is the total number   

of consistent attributes in Ð; 
Akj ∈ Ð; 
nm is the total number of entities in the schema Ð; 
ak is the number of attributes of the entity Ek. 

6. Examples 
In this section we present practical examples of proposed criteria 
evaluation in schemas. For each one of the IQ criteria, one schema 
with anomalies in the referred aspect is presented, and the 
evaluation process is detailed. 

6.1 Minimality Analysis 
Consider the redundant schema of Figure 5 for minimality 
example.  

  artistm ≡ actorm 
  idm ≡ sshm 
  nationalitym ≡ countrym 

Figure 5.  Schema with redundant elements 

The entity artistm, is redundant because it is semantically 
equivalent to actorm and all its attributes have a semantically 
equivalent correspondent in actorm. 

The relationship moviem_artistm 

(moviem,artistm,(1,N))  is also redundant because it has a 
semantically equivalent relationship 
moviem_actorm(moviem,actorm,(1,N))and 
actorm≡artistm.  

The schema minimality value will be obtained as illustrated in 
Figure 6. The minimality of schema Sm is 75%, what means that 
the schema has 25% of redundancy that can possibly be 
eliminated. 
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Figure 6. Schema minimality score 

 

6.2 Schema Completeness Analysis 
For the completeness evaluation, consider the integrated schema 
presented in Figure 7 and the data source schemas presented in 
Figures 8 to 10. 
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Figure 7. Integrated schema Sm 
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Figure 8. Data Source schema S1 

title2 movie2

Schema of data source S2 =

({movie2({title2,genre2,actor2},{movie2_director2}),

  director2({name2,nationality2},{director2_award2})

  award2({year2,category2},{})},
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Figure 9. Data Source schema S2 
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Figure 10. – Data Source schema S3 

 

The schema mappings between the schemas are in Table 4. 

Table 4. Schema mappings between the integrated schema Sm 

and the source schemas S1 , S2 and S3 

SM1:moviem ≡ movie1 
SM2:moviem ≡ movie2 
SM3:moviem ≡ movie3 
SM4:moviem.genrem ≡ movie1.genre1 
SM5:moviem.genrem ≡ movie2.genre2 
SM6:moviem.titlem ≡ movie1.title1 
SM7:moviem.titlem ≡ movie2.title2 
SM8:moviem.titlem ≡ movie3.title3 
SM9:moviem.yearm ≡ movie3.year3 
SM10:moviem.directorm ≡ director1.name1 
SM11:moviem.directorm ≡ director2.name2 
SM12:moviem.directorm ≡ director3.name3 
SM13:moviem.moviem_actorm.actorm ≡ 
movie1.movie1_actor1.actor1  
SM14:moviem.moviem_actorm.actorm.namem ≡ 
movie1.movie1_actor1.actor1.name1 
SM15:moviem.moviem_actorm.actorm.namem ≡  
movie2.actor2 

SM16:moviem.moviem_actorm.actorm.nationalitym ≡ 
     movie1.movie1_actor1.actor1.nationality1

 



Analyzing and compiling the schemas and mappings, it is possible 
to say that Ð has the following set of distinct concepts (ϕϕϕϕ(Ð)): 

ϕϕϕϕ(Ð) = <movie, 
movie.year,movie.title, movie.genre, 

movie.runtime, director, 

director.name, director.nationality, 

actor, actor.name, actor.nationality, 

award, award.category, award.year, 

(movie,actor,1,N), 

(movie,director,N,N), 

(director,award,1,N)>    

⇒⇒⇒⇒  σσσσÐ = 17 

Analogously, examining the integrated schema of Figure 7, it is 
possible to identify the following concepts: 

ϕϕϕϕ(Sm) = <moviem, moviem.titlem, 

moviem.genrem, moviem.yearm, 

moviem.directorm, actorm, actorm.namem, 

actorm.nationalitym, 

(moviem,actorm,1,N)>   

⇒⇒⇒⇒  
mS

σσσσ  = 9 

Thus, for our example the overall score of Sm (Figure 7) schema 
completeness will be obtained as follows: 

      SC(Sm) = 
mS

Ð

 σσσσ

σσσσ
= 9

17

 = 0,5294 

Therefore, the completeness of Sm is 52,94%, what means that the 
schema has a 47,06% of the domain concepts missing in the 
integrated schema. Improvements in schema completeness can be 
done by the insertion of a set of tasks to investigate the data 
source schemas seeking for concepts that are not in the current 
integrated schema. After that, the system must generate schema 
mappings and propagate the new concepts converted into entities 
and relationships to the integrated schema. This can be done, for 
example, by applying the techniques presented in [15]. 

6.3 Type Consistency Analysis 
To an example of type consistency evaluation, assume an 
hypothetic schema with the following attribute equivalencies: 

SM1:actorm.birthdatem ≡ actor1.birth1 

SM2:moviem.birthdatem ≡ actor2.birth2 
SM3:moviem.birthdatem ≡ actor3.bd3 

Suppose that the data type of the attribute actor1.birth1 is 
String  and the data type of attributes 
actorm.birthdatem, actor2.birth2 and actor3.bd3 is 
Date. We have three Date occurrences versus one single 
occurrence of String data type for the same attribute. Thus, the 
IQ Manager will consider the data type Date as the data type 
consistency standard: 

 Tstd = Date  
  Con(actorm.birthdatem,Ð) = 1 

 Con(actor1.birth1,Ð) = 0 

 Con(actor2.birth2,Ð) = 1 

 Con(actor3.bd3,Ð) = 1 

The attributes of type Date are consistent and the attribute of type 
String is inconsistent. To compute the consistency degree of a 
given schema it is necessary to sum the consistency values of each 
attributes in the schema, dividing the result by the total number of 
attributes as stated in Definition 15.         

7. SCHEMA MINIMALITY 

IMPROVEMENT 
After detecting the schema IQ anomalies, it is possible to 
restructure it to achieve better IQ scores [2]. In order to improve 
minimality scores, redundant elements must be removed from the 
schema. In this section, we present an algorithm with schema 
improvement actions to be executed after the integrated schema 
generation or update. The sequence of steps is specified in the 
algorithm of Table 5. 

It is important to declare that we can accomplish a total 

minimality schema score, or a schema with no redundancies, by 
removing redundant elements until the value of minimality equal 
to 1 is achieved. 

Table 5.  Schema adjustment algorithm 

1 Calculate minimality score and if 

minimality = 1, then stop; 

2 Search for fully redundant entities in Sm; 

3 If there are fully redundant entities then 

eliminate the redundant entities from Sm; 

4 Search for redundant relationships in Sm; 

5 If there are redundant relationships   

then eliminate the redundant relationships 

from Sm; 

6 Search for redundant attributes in Sm; 

7 If there are redundant attributes     then 

eliminate the redundant attributes from 

Sm; 

8 Go to Step 1 

The detection of redundant elements processes in steps 2, 4 and 6. 
are already described in previous definitions.  The next sections 
describe the proposed redundancies elimination actions executed 
in steps 3, 5 and 7 of the improvement algorithm. 

In the following, we present details about schema adjustments, 
performed when the IQ Manager has to remove redundant 
elements. 

7.1 Redundant Entities Elimination   
It is important to point that, after removing a redundant entity E, 
its relationships must be relocated to a semantic equivalent 
remaining entity.   

When removing a redundant entity E1 (E1 ≡ E2), the IQ 

Manager transfers the relationships of E1 to the remaining 
equivalent entity E2.  Three different situations may occur when 
moving a relationship Rx, Rx ∈ E1: 

• If Rx ∈ E2 then Rx is deleted because it is no longer 
necessary; 

• If Rx ∉ E2 but ∃Ry, Ry ∈ E2 such as Rx ≡ Ry then Rx is 
deleted; 

• If Rx ∉ E2 and there is no Ry, Ry∈E2 such as Rx ≡ Ry, then 
Rx is connected to E2. 

 
The first and second situations are not supposed to cause any  
schema modification besides the entity deletion. However, the 
third case needs more attention, once the redundant relationships 
of the removed entity have to be relocated. 



Definition 16 – Substitute Entity: 

We say that Ek is a fully redundant entity, if and only if 
Red(Ek,Sm) = 1 and Ek has at least one Substitute Entity Es, 
i.e. Subst(Ek) =  Es, such as: 

• Ek 
k kk1 ka k1 kr

({A ,...,A },{R ,...,R }) Akx are 

attributes and Rky are relationships of Ek  and; 
• Es 

s ss1 sa s1 sr
({A ,...,A },{R ,...,R }) Asz are attributes 

and Rst are relationships of Es  and    
• Ek ≡ Es and ∀Ek.Aki ∈ 

kk1 ka
{A ,...,A },  

• ∃Es.Asj ∈ 
ss1 sa

{A ,...,A } with Ek.Aki ≡ Es.Asj, 1 

≤ i,j ≤ ak  
The Definition 16 states that an entity Ek is considered fully 
redundant when all of its attributes are redundant (Red(Ek,Sm) 
= 1) and it must have a substitute entity Es in Sm. All the 
attributes of Ek are contained in Es. In this case, Ek may be 
removed from the original schema Sm without lost of relevant 
information if it is replaced by its substitute entity Es. Any 
existing relationship from Ek may be associated to Es, as stated in 
the following definition. 

Definition 17 –  Relationship Relocation: 

In a schema Sm, if Subst(Ek) = Es, then  Ek can be eliminated 
from Sm. In this case, in order to do not lose any information, Ek 
relationships are relocated to Es according to the following rules, 
i.e. ∀Ek.Rkj: 

i. If Ek.Rkj ∈ 
ss1 sr

{R ,...,R } then Rkj must be deleted 

because it is no longer useful; 
ii. If Ek.Rkj ∉ 

ss1 sr
{R ,...,R } but ∃Es.Rsp, such that 

Ek.Rkj ≡ Es.Rsp then Ek.Rkj must be deleted because 
it has an equivalent relationship in Es; 

iii. If Ek.Rkj ∉ 
ss1 sr

{R ,...,R } and ∃ Es.Rsp such as 

Ek.Rkj ≡ Es.Rsp then, Es is redefined as Es = 

s s

' '

s1 sa s1 sr({A ,...,A },{R ,...,R }), Asz are attributes 

and '

stR  are relationships of Es and 

s s

' '

s1 sr s1 sr kj{R ,...,R } {R ,...,R } R= ∪ . 

The first and second case above do not imply in schema relevant 
changes, only the relationship removal. The third one, where the 
relationship relocation occurs, can be exemplified in Figures 11 
and 12.  
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Figure 12. Relationship relocation 

The fully redundant entity artistm (with its attributes) is 
removed and it is substituted by the semantically equivalent 
actorm. Consequently, the relationship 
{moviem_artistm(moviem, artistm,(1,N))} may be 
deleted because it can be replaced by the remaining equivalent 
relationship {moviem_actorm(moviem, actorm,(1,N))}. 

The relationship {artistm_awardm(artistm, 

awardm,(1,N))} is relocated to actorm, turning into the new 
relationship {actorm _awardm(actorm, 

awardm,(1,N))}. With this operations, it is possible to obtain 
a no redundant schema as illustrated in Figure 12. 

7.2  Redundant Relationships Elimination   
After removing redundant entities and possibly performing the 
necessary relationship relocations, the IQ Manager discovers 
remaining redundant relationships to eliminate them. This can be 
accomplished by merely deleting from the schema, the 
relationships identified as redundant. Considering the example or 
Figure 13, the relationship 
{enterprisem_sectionm(enterprisem,sectionm,(1

,N))} is redundant because it has a semantically equivalent 
correspondent represented by P1. 

After eliminating the relationship 
{enterprisem_sectionm(enterprisem, 

sectionm,(1,N))}, the schema with no relationship 
redundancies is showed in Figure 14. 

It is important to note that the remaining schema after the 
relationship eliminations, do not lose relevant information. 
Instead, without redundancies, it has better IQ scores, and 
consequently it is more usefulness to assist the query processing. 
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Figure 14. Redundant relationship elimination 



 

7.3  Redundant Attributes Elimination   
The last step of schema improvement algorithm consists in 
investigating and eliminating remaining redundant attributes in 
schema. Similarly to the redundant relationships removal step, 
these attributes may merely be deleted from schema. This occurs 
because the schema always has semantically equivalent attributes 
to substitute the redundant ones. In Figure 15, the attribute 
nationalitym is removed because there is a semantically 
equivalent attribute countrym, which will substitute it. 

After executing the schema improvement steps, the IQ Manager 
can recalculate and analyze minimality scores in order to 
determine if the desired IQ is accomplished. 
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Figure 15. Redundant attribute detection 

7.4. Implementation Issues 
We implemented the IQ Manager as a module of an existing 
mediator-based data integration system. More details about the 
system can be found in [5]. The module was written in Java and 
the experiment used two databases – MySQL and PostgreSQL – 
to store the data sources. As mentioned before, the data in the 
system is XML and the schemas are represented with XML 
Schema.   

The experiment was done in the following steps: (i) initially, the 
queries were submitted over an integrated schema 26% redundant 
and the execution times were measured; (ii) the redundancy 
elimination algorithm was executed over the redundant integrated 
schema generating a minimal schema (100% of minimality); (iii) 
the same queries of step (i) were executed. The results obtained 
with these experiments have been satisfactory. 

8. CONCLUSION 
Data integration systems may suffer with lack of quality in 
produced query results. They can be outdated, erroneous, 
incomplete, inconsistent, redundant and so on. As a consequence, 
the query execution can become rather inefficient. To minimize 
the impact of these problems, we propose a quality approach that 
serves to analyze and improve the integrated schema definition 
and consequently, the query execution.  
It is known that a major problem in data integration systems is to 
execute user queries efficiently. The main contribution of the 
presented approach is the specification of IQ criteria assessment 
methods for the maintenance of high quality integrated schemas 
with objectives of achieving better integrated query execution. We 
also proposed an algorithm used to improve the schema’s 
minimality score. 

We have specified the IQ Manager module to proceed with all 
schemas IQ analysis and also the execution of improvement 
actions by eliminating the redundant items. 

As future work, similarly as done with the minimality criterion, 
we must formally describe and implement the algorithms to 
evaluate the others IQ criteria and to execute the schema IQ 
improvement actions for each one.  
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