
Information Quality Measurement in Data Integration
Schemas

Maria da Conceição Moraes Batista, Ana Carolina Salgado
Centro de Informática, Universidade Federal de Pernambuco

Av. Professor Luis Freire s/n, Cidade Universitária
50740-540 Recife – PE, Brasil

Telephone Number: +55 81 2126.8430

{mcmb, acs}@cin.ufpe.br

ABSTRACT
Integrated access to distributed data is an important problem faced
in many scientific and commercial applications. A data integration
system provides a unified view for users to submit queries over
multiple autonomous data sources. The queries are processed over
a global schema that offers an integrated view of the data sources.
Much work has been done on query processing and choosing
plans under cost criteria. However, not so much is known about
incorporating Information Quality analysis into data integration
systems, particularly in the integrated schema. In this work we
present an approach of Information Quality analysis of schemas in
data integration environments. We discuss the evaluation of
schema quality focusing in minimality, consistency and
completeness aspects and define some schema transformations to
be applied in order to improve schema design and consequently
the quality of data integration query execution.

1. INTRODUCTION
Information quality (IQ) has become a critical aspect in
organizations and, consequently, in Information Systems research.
The notion of IQ has only emerged during the past ten years and
shows a steadily increasing interest. IQ is a multidimensional
aspect and it is based in a set of dimensions or criteria. The role of
each one is to assess and measure a specific IQ aspect. One of
these dimensions is the minimality aspect. This criterion defines
that an element has good quality if it has no redundancies.
A data integration system based on a Global-as-view (GAV)
approach [14] provides to users a unified view of several data
sources, called integrated schema. In this kind of system, data is
spread over multiple, distributed and heterogeneous sources and,
consequently the query execution is an essential feature. To the
best of our knowledge so far, not so much is known about the
important problem of incorporating IQ aspects into usual data
integration components and processes, like query results
integration, schema maintenance, source selection, among others.

The primary contribution of this paper is the proposal of IQ
criteria analysis in a data integration system, mainly related to the

system’s schemas.
The main goal we intend to accomplish is to improve the quality
of query execution. Our hypothesis is that an acceptable
alternative to optimize query execution would be the construction
of good schemas, with high quality scores, and we have based our
approach in this affirmative.

We focused our work in developing IQ analysis mechanisms to
address schema generation and maintenance, specially the
integrated schema. Initially we built a list of IQ criteria related to
data integration aspects, but, due to space limitations, we decided
to formally specify the algorithms and definitions of schema IQ
criteria – minimality, completeness and type consistency – and
guided the presented approach to this aspects. We also defined an
algorithm to perform schema minimality improvements.

The paper is organized as follows: in section 2 we discuss
approaches of Information Quality (IQ) and its use in data
integration and schemas; the section 3 introduces the main issues
related to schemas’ IQ criteria; section 4 discusses the formalism
of schema representation; in section 5 we present the formal
specification of the chosen schemas IQ criteria and in section 6
we discuss some examples of these criteria; section 7 presents the
schema improvement algorithm addressing minimality aspects and
in section 8 is our concluding remarks and the final considerations
about the mentioned topics.

2. APPROACHES OF IQ IN DATA

INTEGRATION SYSTEMS
It has long been recognized that IQ is described or analyzed by
multiple attributes or dimensions. During the past years, more and
more dimensions and approaches were identified in several works
([11], [17]).

Naumann and Leser [17] define a framework addressing the IQ of
query processing in a data integration system. This approach
proposes the interleaving of query planning with quality
considerations and creates a classification with twenty two
dimensions divided into three classes: one related to the user
preferences, the second class concerns the query processing
aspects and the last one is related to the data sources.

Other relevant topic to consider in IQ and data integration is the
set of quality criteria for schemas. These are critical due the
importance of the integrated and data sources schemas for query
processing. Some works are related to IQ aspects of schema
equivalence and transformations. As in [2], where the authors
exploit the use of normalization rules to improve IQ in conceptual
database schemas.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct commercial
advantage, the VLDB copyright notice and the title of the publication and its
date appear, and notice is given that copying is by permission of the Very
Large Database Endowment. To copy otherwise, or to republish, to post on
servers or to redistribute to lists, requires a fee and/or special permissions
from the publisher, ACM.
VLDB ’07, September 23-28, 2007, Vienna, Austria.
Copyright 2007 VLDB Endowment, ACM 978-1-59593-649-3/07/09.

Some works are also relevant because are related to schema based
data integration and schema correspondence definition as in [6],
[15] and [1].

The work proposed by Herden [11] deals with measuring the
quality of conceptual database schemas. In this approach, given a
quality criterion, the schema is reviewed by a specialist in the
mentioned criterion.

In [21] the authors propose IQ evaluation for data warehouse
schemas focusing on the analyzability and simplicity criteria.

The work presented in [9] enhances our consistency point of view
by identifying the measure, column heterogeneity, to quantify the
data quality problems that can arise when merging data from
different sources. Similarly, Halevy in [10] discusses the
importance of detecting data types in handling schema
heterogeneity for some tasks, including data integration
Our proposition is centered in IQ analysis for schemas in data
integration systems with goals of query optimization and it is
described in the next section.

3. SCHEMA QUALITY ISSUES
The main feature of a data integration system is to free the user
from knowing about specific data sources and interact with each
one. Instead, the user submits queries to an integrated schema,
which is a set of views, over a number of data sources, designed
for a particular data integration application. Each source must
publish a data source schema with the representation of its
contents. As a consequence, the data integration system must first
reformulate a user query into queries that refers directly to
schemas on the sources. To the reformulation step, a set of
correspondences, called schema mappings, are required. There are
also the user schemas that represent the requirements of
information defined for one user or a group of users. The user
requirements and their schema are not the focus of this work.

Commonly, the tasks of query processing involving query
submission, planning, decomposition and results integration are
performed by a software module called mediator [27].

As a starting point, we adopted IQ classifications proposed in
previous works ([3], [17], [11], [20], [24], [25]) with discrete
variations: some criteria are not considered (not applicable), and
some were adapted to our environment. In our classification, the
IQ aspects were adapted and associated to the main elements of a
data integration system.

When considering any data integration task, component, process
or element, (for example, a user query execution, data source
selection or integrated schema generation), we perceive that each
one can be associated with one of the three components: data,
schemas and data sources. These components are the core of our
IQ criteria classification. We classify as data, all the data objects
that flow into the system. For example, query results, an attribute
value, and so on. The schemas are the structures exported by the
data sources (source schemas), the structures that are relevant for
users to build queries (users’ schema) and the mediation entities
(integrated schema). The data sources are the origin of all data
and schema items in the system.

All IQ criteria in the data integration system are associated with
one of the three groups of elements according to the Table 1.

 In this paper, we present our approach of schema maintenance
with quality aspects, using three IQ criteria: schema completeness,
minimality and type consistency.

Table 1. Data integration IQ criteria classification

Data Integration Element IQ Criteria

Data Sources Reputation, Verifiability, Availability, Response Time
Schema Schema Completeness, Minimality, Type Consistency
Data Data Completeness, Timeliness, Accuracy

Schema Completeness

The completeness can be measured as the percentage of real-
world objects modeled in the integrated schema that can be found
in the sources. Therefore, the schema completeness criterion is the
number of concepts provided by the schema with respect to the
application domain.

Minimality

Minimality is the extent in which the schema is compactly
modeled and without redundancies. In our point of view, the
minimality concept is very important to data integration systems
because the integrated schema generated by the system may have
redundancies. The key motivation for analyzing minimality is the
statement that the more minimal the integrated schema is, the least
redundancies it contains, and, consequently, the more efficient the
query execution becomes [12]. Thus, we believe that our
minimality analysis will help decreasing the extra time spent by
mediator with access to unnecessary information represented by
redundant schema elements.

Type Consistency

Type consistency is the extent in which the attributes
corresponding to the same real world concept are represented with
the same data type across all schemas of a data integration system.
Table 2 lists each criterion with its definition and the metric used
to calculate scores.

Table 2. IQ Criteria for schemas quality analysis
IQ Criteria Definition Metrics

Schema
Completeness

The extent to which entities
and attributes of the
application domain are
represented in the schema

1 – (#incomplete items /
#total items)1

Minimality The extent in which the
schema is modeled without
redundancies

1 – (#redundant schema
elements/# total schema
elements)1

Type
Consistency

Data type uniformity across
the schemas

1 – (#inconsistent
schema elements / #total
schema elements) 1

The quality analysis is performed by a software module called IQ

Manager. At the moment of integrated schema generation or
update, this module proceeds with the criteria assessment and
then, according to the obtained IQ scores, may execute
adjustments over the schema to improve its design and,
consequently, the query execution. This last step of schema
tuning, after the IQ evaluation, is presented in section 7.

4. SCHEMA REPRESENTATION
Commonly, data integration systems use XML to represent the
data and XML Schema to represent schemas. To provide a high-

level abstraction for XML schema elements, we use a conceptual
data model, called X-Entity [15] described in what follows. We
also present the schema mappings with this notation.

4.1 X-Entity Model
The X-Entity model is an extension of the Entity Relationship
model [8], i.e., it uses some basic features of the ER model and
extends it with some additional ones to better represent XML
schemas.

The main concept of the model is the entity type, which represents
the structure of XML elements composed by other elements and
attributes. In the X-Entity model, relationship types represent
element-subelement relationships and references between
elements. An X-Entity schema S is denoted by S=(E,R), where
E is a set of entity types and R is a set of relationship types.

• Entity type: an entity type E, denoted by
E({A1,…,An},{R1,…,Rm}), is made up of an entity name
E, a set of attributes {A1,…,An} and a set of relationships
{R1,…,Rm}. Each entity type may have attributes {A1,…,An}
that represents either a XML attribute or a simple XML
element. In X-Entity diagrams, entity types are rectangles.1

• Containment relationship: a containment relationship between
two entity types E and E1, specifies that each instance of E
contains instances of E1. It is denoted by
R(E,E1,(min,max)), where R is the relationship name and
(min,max) are the minimum and the maximum number of
instances of E1 that can be associated with an instance of E.

• Reference relationship: a reference relationship, denoted
by R(E1,E2, {A11,…,A1n},{A21,…,A2n}), where R
is the name of the relationship where the entity type E1
references the entity type E2. {A11,…,A1m} and
{A21,…,A2n} are the referencing attributes between
entities E1 and E2 such that the value of A1i, 1 ≤ i ≤ n, in
any entity of E1 must match a value of A2i, 1 ≤ i ≤ n,
in E2.

4.2 Schema Mappings
We use schema mappings to represent the correspondences
between entities and attributes of distinct sources. Schema
mappings, as defined in [22], are constraints used to assert that the
semantics of some components in a schema is somehow related to
the semantics of some components in another schema. In our
approach, they are used to represent correspondences between X-
Entity elements representing the same real world concept called
semantically equivalent.

A data integration system is widely based on the existence of
metadata describing individual sources and integrated schema,
and on schema mappings [22] specifying correspondences
between the integrated schema concepts and the source schemas
concepts. There are several types of schema mappings to formally
describe the associations between the concepts of X-Entity
schemas. We consider an X-Entity element as an entity type, a
relationship type or an attribute:

• Entity schema mappings: if E1 and E2 are entity types, the
schema mapping E1 ≡ E2 specifies that E1 and E2 are

1 # denotes the expression “Number of”

semantically equivalent, i.e., they describe the same real world
concept.

• Attribute schema mappings: are the mappings among
attributes of semantically equivalent entities. The mapping
E1.A1 ≡ E2.A2 indicates that the attributes A1 and A2 are
semantically equivalent (correspond to the same real concept);

• Path mappings: specify special types of mappings between
attributes and subentities of semantically equivalent entity
types with different structures. Before defining a path
mapping, it is necessary to define two concepts: link and path.
A link between two X-Entity elements X1 and X2 (X1.X2)
occurs if X2 is an attribute of the entity type X1, or X1 is an
entity of the relationship type X2 (or vice-versa). If there is a
multiple link, it is called a path. In this case it may occurs a
normal path, X1.....Xn or an inverse path
(X1.X2.....Xn)

-1. Entities attributes and relationships are
represented by paths. A path mapping can occur in four cases
as explained in the following (assuming P1 and P2 as being
two paths):
1. Case 1: P1=X1.X2...Xn and P2=Y1.Y2...Ym, where

X1 ≡ Y1. The mapping P1 ≡ P2 specifies that the entity
types Xn and Ym are semantically equivalent.

2. Case2: P1 = X1.X2...Xn.A and
P2=Y1.Y2....Ym.A’, where X1 ≡ Y1. The mapping P1
≡ P2 specifies that the attribute A ∈ Xn and the attribute

A’ ∈ Ym are semantically equivalent.
3. Case 3: P1 = X1.X2...Xn and P2 = (Y1.Y2...Yn)-

1, where X1 ≡ Yn. The mapping P1 ≡ P2 specifies that the
entity types Xn and Y1 are semantically equivalent.

4. Case 4: P1 = X1.X2...Xn.Ak and P2 =

(Y1.Y2...Yn)
-1
.Ak’, where X1 ≡ Yn. The mapping P1

≡ P2 specifies that the attribute Ak ∈ Xn and the attribute

Ak’ ∈ Y1 are semantically equivalent.
To illustrate the cases, consider the integrated and data source
schemas presented in Figure 1.

Source Schema S
2
 =

({novel
2
({name

2
,year

2
},

 {novel
2
_chapter

2
,novel

2
_publisher

2
}),

 chapter
2
({ch_title

2
},{}),

 publisher
2
({pub_name

2
},{})},

{novel
2
_chapter

2
(novel

2
, chapter

2
,(1,N)),

 novel
2
_publisher

2
(novel

2
, publisher

2
, (1,1))})

publisher
m

title
m

book
m

chapter
m

contains

chapter_title
m

Integrated Schema S
med

 =

({book
m
({title

m
,publisher

m
},{book

m
_chapter

m
}),

chapter
m
({chapter_title

m
},{})},

{book
m
_chapter

m
(book

m
,chapter

m
,(1,N))})

(1,N)

publisher
1

title
1

publication
1

section
1refers

section_title
1

Source Schema S
1
 =

({publication
1
({title

1
,publisher

1
},{}),

section
1
({section_title

1,
book_title

1
},

 {ref_section
1
_publication

1
})},

{ref_section
1
_publication

1

(section
1
,publication

1
,{book_title

1
},{title

1
})})

book
1
_title

1

year
2

name
2

novel
2

chapter
2contains

ch_title
2

(1,N)

publisher
2contains

pub_name
2

(1,1)

Figure 1. Integrated Schema (Smed) and Schemas of data

sources (S1 and S2)

Table 3 presents the relevant schema mappings identified to
compute bookm and chapterm. The mappings MP1 to MP12
specify the semantic equivalences between the integrated and data
source schema elements.

In data integration, the mappings are essential to assure the query
processing over integrated schema. We assume that the mappings
and schema elements equivalences are already defined
automatically by the system or even manually by advanced users.

Particularly, in the environment exploited to experiment the
proposed IQ evaluation ([5], [15]), there is a schema matcher
component responsible to maintain equivalencies and define
mappings among data sources and integrated schema.

Table 3. Schema mappings between the integrated schema

Smed and the source schemas S1 and S2
MP1:bookm ≡ publication1
MP2:bookm.titlem ≡ publication1.title1
MP3:bookm.publisherm≡ publication1.publisher1
MP4:chapterm ≡ section1
MP5:chapterm.chapter_titlem≡ section1.section_title1
MP6:bookm.bookm_chapterm.chapterm ≡
(section1.section_ref_ publication 1.publication 1)

-1

MP7:bookm ≡ novel2
MP8:bookm.titlem ≡ novel2.name2
MP9:chapterm ≡ chapter2
MP10:bookm.bookm_chapterm.chapterm ≡ novel2.
novel2_chapter2.chapter2
MP11:chapterm.chapter_titlem ≡ chapter2.ch_title2
MP12:bookm.publisherm≡ novel2.
novel2_publisher2.publisher2.pub_name2

5. SCHEMA IQ CRITERIA
As previously mentioned, high IQ schemas are essential to
accomplish our goal of improving integrated query execution.
It is important to notice that the proposed approach is not only to
be applied in X-Entity schemas. The IQ aspects may be useful in
any integrated schema to minimize problems acquired from
schema integration processes, for example, the same concept
represented more than once in a schema. The next section
describes some definitions, required to introduce the minimality
criterion.
It is important to point that semantic equivalence specification is
not the focus of this paper. We use the approach presented in [15].
From now on, we assume that the integrated schema is already
created and consequently, the equivalences between entities,
attributes and relationships are already defined.

5.1 Definitions
More formally, a data integration system is defined as follows:

Definition 1 – Data Integration System (Ð)

A data integration system is a 4 element tuple, Ð = <δδδδ,Sm,

ρρρρ,ϕϕϕϕ(Ð)> where:
• δδδδ is the set of Si data sources schemas, i.e. δδδδ =

<S1,S2,…,Sw>, where w is the total number of data sources
participating in Ð;

• Sm is the integrated schema, generated by internal modules of
Ð;

• ρρρρ is the set of user schemas, ρρρρ = <U1,U2,…,Uu> where u is
the total number of users of Ð. Together with the data source
schemas it is the basis of the integrated schema generation;

• The component ϕϕϕϕ(Ð) is the set of all distinct concepts in the
application domain of the data integration system, as stated in
the next definition. This set can be extracted from the schema
mappings between the data source schemas and the integrated
schema.

In Ð, the following statements are true:
• Sm is a X-Entity integrated schema such as Sm =

m1 2 n
<E ,E ,...,E > where Ek is an integration or mediation

entity (1 ≤ k ≤ nm), and nm is the total number of entities
in Sm;

• ∀Ek ∈ Sm,

k kk k1 k2 ka k1 k2 kr
E({A ,A ,...,A },{R ,R ,...,R }), where:

o
kk1 k2 ka

{A ,A ,...,A } is the set of attributes of Ek, ak is

the number of attributes in Ek, (ak > 0);
o

kk1 k2 kr
{R ,R ,...,R } is the set of relationships of Ek, rk

is the number of relationships in Ek (rk ≥ 0).
• If X1 and X2 are schema elements (attributes, relationships or

entities), the schema mapping X1 ≡ X2 specifies that X1 and
X2 are semantically equivalent, i.e., they describe the same
real world concept and have the same semantics. More details
about the definition of semantic equivalences can be found in
[15].

Every information system (even a data integration one) is
constructed from a number of requirements. Moreover,
embedded in this set of requirements is the application
domain information [13], very important to schemas
construction.

Definition 2 – Domain Concepts Set

We define ϕϕϕϕ as the set of domain concepts,
ϕϕϕϕ(ββββ)=

1 2<C ,C ,...,C >
ββββσσσσ

:

 ββββ is even a given integrated schema Sm or a data
 integration system Ð;

 σσσσββββ as the number of real world concepts in ββββ;

 Ck is an application domain concept which is
 represented by an schema element Y in one of the two
 following ways:

i) Y ∈ Sm, if ββββ is a integrated schema or;
ii) Y ∈ δδδδ = <S1,S2,…,Sw>, if ββββ is a the data

integrated system.
Usually, the data integration system has mechanisms to generate
and maintain the schemas. It is very difficult to guarantee that
these mechanisms, specifically those concerning the schema
generation, produce schemas without anomalies, e.g.,
redundancies. In data integration context, we define a schema as
redundant if it has occurrences of redundant entities, attributes or
relationships.
To contextualize schema aspects, we introduce the definitions 3 to
6.

Definition 3 – Redundant attribute in a single entity

An attribute Aki of entity Ek, Aki ∈
kk1 k2 ka

{A ,A ,...,A } is

redundant, i.e., Red(Aki,Ek) = 1, if:
 ∃Ek.Akj, j ≠ i, Akj ∈

kk1 k2 ka
{A ,A ,...,A }

 such as Ek.Aki ≡ Ek.Akj, 1 ≤ i,j ≤ ak

Definition 4 – Redundant attribute in different entities

An attribute Aki of the entity Ek, Aki ∈
kk1 k2 ka

{A ,A ,...,A } is

redundant, i.e. Red(Aki,Ek) = 1, if:
∃Eo, o ≠ k, Eo ∈ Sm, Ek ≡ Eo,

Eo(
oo1 o2 oa

{B ,B ,...,B }), Boj are attributes of Eo

and ∃Eo.Boj, Boj ∈
oo1 o2 oa

{B ,B ,...,B }

 such as Ek.Aki ≡ Eo.Boj,
 1 ≤ i ≤ ak, 1 ≤ j ≤ ao.
If an attribute Aki, Aki ∈

kk1 k2 ka
{A ,A ,...,A }, and

Red(Aki,Ek) = 0, we say that Aki is non-redundant.

Definition 5 – Entity Redundancy Degree
We say that a given entity Ek has a positive redundancy degree in
schema Sm, i.e. Red(Ek,Sm) > 0, if Ek has at least one
redundant attribute. The redundancy degree is calculated by the
following formula:

 Red(Ek,Sm) =

ka

ki k

i = 1

k

Red(A ,E)

a

∑ , where

 ka

ki k

i = 1

Red(A ,E)∑
 is the number of redundant

 attributes in Ek and

 ak is the total number of attributes in Ek.

An entity Ek is considered fully redundant when all of its
attributes are redundant, i.e. Red(Ek,Sm) = 1. In this case, we
assume that the entity Ek may be removed from the original
schema Sm without lost of relevant information. Any existing
relationship from Ek may be associated to a remaining equivalent
entity Eo, as will be shown in section 7.

As an example of redundant attributes and the entity redundancy
degree, suppose the schema and mappings of Figure 2:

movie
m

contains actor
m

ssh
m

age
m

artist
m

address
m

originCountry
m

contains

country
m

 artistm ≡ actorm

 originCountrym ≡ countrym

Figure 2. Schema with redundant attributes

The attribute originCountrym in artistm is redundant
because it has a semantic correspondent in the entity actorm
(attribute countrym), and both the entities artistm and
actorm are semantically equivalent. Thus, we have the
following:

 Red(originCountrym,artistm) = 1
 Red(addressm,artistm) = 0
 Red(countrym,actorm) = 0
 Red(agem,actorm) = 0
 Red(sshm,actorm) = 0

It is interesting to mention that nationalitym ≡ countrym,
but only the first is classified as redundant. This occurs because
only one must be marked as redundant and removed, while the
other has to be kept in the schema to assure that domain
information will not be lost.

The entities in Figure 2 have the following entity redundancy
degrees in schema Sm:

 Red(artistm,Sm) = 1 0

2

+ = 0.5

 Red(actorm,Sm) = 0 0 0

3

+ + = 0

The entity artistm is 50% redundant because it has only two
attributes, and one of them is redundant.

Definition 6 – Redundant Relationship

Consider a relationship R ∈ Sm between the entities Ek and Ey
represented by the path Ek.R.Ey, then: R ∈

kk1 kr
{R ,...,R }

and R ∈
yy1 yr

{T ,...,T },where
kk1 kr

{R ,...,R } is the set of

relationships of the entity Ek and
yy1 yr

{T ,...,T } is the set of

relationships of the entity Ey. Thus, the relationship R connects Ek
and Ey if and only if R ∈

kk1 kr
{R ,...,R } and R ∈

yy1 yr
{T ,...,T }.

We define R as a redundant relationship in Sm, i.e. Red(R,Sm)
= 1 if:
 ∃P1, where P1=Ek.Rj.….Ts.Ey is a path with
 Rj ∈

kk1 kr
{R ,...,R } and

 Ts ∈
yy1 yr

{T ,...,T }

 such as P1 ≡ R.
In other words, a relationship between two entities is redundant if
there are other semantically equivalent relationships which paths
are connecting the same two entities.

Consider the schema and mappings illustrated in Figure 3.

enterprise
m

contains department
m

P
1
 = enterprise

m
.enterprise

m
_department

m
.

department
m
.department

m
_section

m
.section

m

P
2
 = enterprise

m
.enterprise

m
_section

m
.section

m

section
m

contains
contains

 P1 ≡ P2

Figure 3. Schema with redundant relationship

The relationship connecting enterprisem and sectionm is
redundant (Red(enterprisem,sectionm,(1,N))= 1)
because it has a semantically equivalent correspondent
represented by P1.

We agree with the study presented in [28], where Zhang states
that redundancy is not a symmetric metric. An entity Ej may cause
Ek to be assigned as redundant, but if the comparison order is
changed, Ej may not be redundant when related to Ek. A simple
example is the case where an entity E1 is entirely contained in E2,
E1 is redundant but E2 is not.

5.2 Minimality
A major problem of conceptual schema design is to avoid the
generation of a schema with redundancies. A schema is minimal if
all of the domain concepts relevant for the application are
described only once. In other words, a minimal schema may
represent each application requirement only once ([12], [23],
[16], [19]). Thus, we can say that the minimality of a schema is
the degree of absence of redundant elements in the schema.
Likewise our point of view, Kesh [12] argues that a more minimal

(or concise) schema will make itself more efficient, and
consequently improve the effectiveness of operations and queries
over it. We state that if the integrated schema is minimal, query
execution will be improved. Redundant elimination (or minimality
increasing) avoids the query processor to spend extra time
querying redundant elements.

Therefore, to measure the minimality, we must first determine the
redundancy degree of the schema. To each one of the next
redundancy definitions (6 and 7), we assume the following:

• nrel is the total number of relationships in Sm;

• nm is the total number of entities in Sm;

• rk is the number of relationships of each entity Ek in Sm.

Definition 7 – Entity Redundancy of a Schema
The total entity redundancy of a schema Sm is computed by the
formula:

 ER(Sm)=

mn

k m

k 1

m

Re d(E ,S)

n

=

∑ , where Red(Ek,Sm) is the

redundancy degree of each Ek in Sm.

Definition 8 – Relationship Redundancy of a Schema
The relationship redundancy degree of Sm is measured by the
equation:

RR(Sm) =

reln

l m

l 1

rel

Re d(R ,S)

n

=

∑ , where reln

l m

l 1

Re d(R ,S)
=

∑
 is the

number of redundant relationships in Sm as stated in
Definition 6.

Definition 9 – Schema Minimality
We define the overall redundancy of a schema in a data
integration system as the sum of the aforementioned redundancy
values: entities (ER) and relationships (RR). The schema
minimality is measured by the formula:

mS m m
Mi = 1 - [ER(S)+RR(S)]

5.3 Schema Completeness
The schema completeness is the percentage of domain concepts
represented in the integrated schema when related to the concepts
represented in all data source schemas ([12], [23], [16], [19]). For
instance, suppose that a given data integration system has a total
of 10 distinct domain concepts (described by entities and
relationships) in all data sources’ published schemas. If the
integrated schema have only 6 representations of these concepts,
we can say that the integrated schema is 60% complete related to
the current set of data sources.

To introduce schema completeness metrics, we assume that the
data integration system (Ð) has a minimal integrated schema Sm.

As mentioned in Definition 2, a data integration system is
constructed over a domain, and this domain aggregates a number
of real world concepts (obtained from the requirements) that are
represented by the schemas elements. Every relationship, entity or
attribute in a user, data source or integrated schema are (part of) a
real world concept. Sometimes, the same concept can be found in

more than one element, in one or more schemas. In this case the
concept is replicated and the corresponding schema elements are
semantically equivalent. For example, in a given schema A the
name of a movie director can be an attribute director.name
and the same concept may be the element movie.director
(i.e., director.name ≡ movie.director) in other
schema B.

Let consider Ð with two data sources (Sa and Sb) and its
respective schemas and mappings as in Figure 4.

title
a

book
a

author
acontains

Schema of data source S
a
 =

({book
a
({title

a
,price

a
,year

a
},{book

a
_author

a
,book

a
_chapter

a
}),

 author
a
({name

a
, age

a
},{}),

 chapter
a
({size

a
,page

a
},{})},

 {book
a
_author

a
(book

a
,author

a
,(1,N)),

 book
a
_chapter

a
(book

a
,chapter

a
,(1,N))})

(1,N)
year

a

price
a

name
a

age
a

chapter
acontains

(1,N)

size
a

page
a

title
b

publication
b

Schema of data source S
b
 =

({author
b
({name

b
,nationality

b
},{author

b
_publication

b
}),

 publication
b
({title

b
,country

b
,year

b
},{ })},

 {author
b
_publication

b
(author

b
,publication

b
,(1,N))})

year
b

author
b contains

(1,N)

name
b

nationality
b

country
b

Schema Mappings =

 MP
1
: book

a
.year

a
publication

b
.year

b

 MP
2
: book

a
.title

a
publication

b
.title

b

 MP
3
: author

a
.name

a
author

b
.name

b

 MP
4
: book

a
.book

a
_author

a
.author

a

 (author
b
.author

b
_publication

b
.publication

b
)
-1

Figure 4. Data source schemas and schema mappings in Ð

With respect to the schemas in Figure 4, after investigating and
analyzing the schemas and mappings, it is possible to find the set
of distinct concepts (ϕϕϕϕ(Ð)=

Ð1 2<C ,C ,...,C >σσσσ
) as in the

following:

ϕϕϕϕ(Ð) = <book, book.year, book.title,
book.price, author, author.age,

author.name, chapter, chapter.page,

chapter.size, book.country,

(book,author,1,N),(book,chapter,1,N)>

⇒ σσσσÐ = 13, where

σσσσÐ is the number of concepts in Ð (Definition 2)

It is important to emphasize that the relationship (author,
publication,1,N) is not present in the domain set of
concepts because it is equivalent to the relationship
(book,author,1,N) e.g., both represents the same concept.

To determine the schema completeness metrics, we introduce the
following definition.

Definition 10 – Schema Completeness

The overall schema completeness degree in a given schema Sx ∈

Ð is obtained by the following average:

 SC(Sx) =
xS

Ð

 σσσσ

σσσσ
,

 where Sx can be either a data source schema or the
 integrated schema;

xS

σσσσ is the number of distinct concepts in the schema

 Sx and;

 Ðσσσσ is the is the number of distinct concepts contained

 in all the schemas of the data integration system Ð.

5.4 Type Consistency
In databases, the consistency property states that only valid data
will be written to the database. The stored data must adhere to a
number of consistency rules. If, for some reason, a transaction is
executed that violates the database’s consistency rules, the entire
transaction will be rolled back and the database will be restored to
a consistent state according to those rules. On the other hand, if a
transaction successfully executes, it will take the database from a
consistent state with the rules to another state that is also
consistent with the rules. These affirmatives are related to data
consistency, but they can be extended to adequately represent data
type consistency constraints [20].

A data type is a constraint placed upon the interpretation of data
in a type system in computer programming. Common types of
data in programming languages include primitive types (such as
integers, floating point numbers or characters), tuples, records,
algebraic data types, abstract data types, reference types, classes
and function types. A data type describes representation,
interpretation and structure of values manipulated by algorithms
or objects stored in computer memory or other storage device.
The type system uses data type information to check correctness
of computer programs that access or manipulate the data [7].

When an integrated schema management system experiences
problems with consistency, the same data type of information is
recorded in more than one way. The first step in resolving this
consistency problem is to determine which alternative data type is
preferable. This approach would then be defined as the standard,
namely, the accepted way of recording the information.

In this case, a schema element is called consistent if it adheres to
the standard data type. If it not adheres, commonly the data type
conversion is a difficult process performed by mediator, and then
achieving consistency could be both time-consuming and
expensive. As in [4] we have based the consistency metric in an
essential factor: the number of semantically equivalent attributes
in schema that adhere to the standard data type defined for the
attribute.

We approximate consistency rules and data types to create the
Type Consistency IQ concept. The use of different coding
schemes to record the same attribute falls into the lack of IQ in
this category. We use the Type Consistency criterion to investigate
which data elements in the schemas are always represented with
the same type, or adhering to a consistency standard. This is an
indicator of quality and query improvement, once the query
processor is not going to perform type conversions for a schema
element in order to access its correspondences in data sources
schemas. For type consistency measurement, we use a metric
similar to the one presented in [24].

X-Entity is a high level abstraction for XML schema structures, it
is necessary to define the concept of type for an X-Entity attribute.

Definition 11 – X-Entity Attribute Data Type

A data type Tkj for the attribute Akj, where Akj ∈ Ek, is a
domain element or structural metadata associated with the
attribute data as defined in previous works [7]. As the data
integration system is concerned with XML data, then every Tkj
may be one of the valid datatypes defined for XML Schema
(including the user defined ones). From the XML Schema
specification [18], we import the concept of datatype as follows:

A datatype T is a tuple <αααα, λλλλ, γγγγ>, consisting of:

• αααα is a set of distinct values, called the value space,

containing the values that the elements of the type can have;
• λλλλ is a set of lexical representations, called the lexical space

and;
• γγγγ is a set of facets that characterize properties of the value

space, individual values or lexical items;
• T ∈∈∈∈ £, where £ is the set of all XML schema datatypes.
In our work, to use datatypes, it is only necessary to refer to the αααα
set of valid values in the datatype specification.

To determine the type consistency criterion, we define the
following:

Definition 12 – Attribute

∀Ek ∈ Sm, every attribute Akj (Akj ∈ Ek) is defined by the
tuple (Tkj,vkj), where:

• Tkj = <αkj, λkj, γkj> is the datatype of attribute Akj (1
≤ j ≤ ak);

• vkj is the value of attribute Akj (1 ≤ j ≤ ak) and vkj ∈

αkj.

Definition 13 – Data Type Consistency Standard

The data type consistency standard is the alternative data type
which is more appropriate to an attribute. This data type is defined
as the standard, namely, the accepted way of recording the
attribute. Formally, a data type consistency standard is an X-
Entity attribute data type such as:

 ∀Ek.Akj, Ek ∈ Ð, Akj ∈
kk1 k2 ka

{A ,A ,...,A } ^

 ∃∃∃∃Tstd,Tstd=<αstd,λstd,γstd> ^

 ∃Ex.A, Ex ∈ Ð ^ Ex.A ≡ Ek.Akj

A = (Tstd,v) where Tstd is the most frequently data
type used in Ð for attribute A and its equivalents

Definition 14 – Attribute Type Consistency

In a given a set of data source schemas Si (1 ≤ i ≤ w) and a
mediation schema Sm, we say that an attribute Apj = (Tpj,vpj)
(Tpj is a valid datatype as in Definition 12) of an entity Ep ∈ Sp
(Sp=Si or Sp=Sm) is consistent i.e. Con(Apj,Sp)= 1 if it
appears in another entity or even in the same entity with other
datatype: ∃Tstd ∈ Ð, T ∈∈∈∈ £ such as Apj = (Tstd,vpj)

Definition 15 – Schema Data Type Consistency
The overall schema type consistency score in a given data
integration system (Con(Sm,Ð)) is obtained by the following
calculation:

 Con(Sm,Ð) =

m k

m

n a

kj

k 1 j 1

n

k

k 1

Con(A ,Ð)

a

= =

=

∑ ∑

∑

,

where
m kn a

kj

k 1 j 1

Con(A ,Ð)
= =

∑ ∑

is the total number

of consistent attributes in Ð;
Akj ∈ Ð;
nm is the total number of entities in the schema Ð;
ak is the number of attributes of the entity Ek.

6. Examples
In this section we present practical examples of proposed criteria
evaluation in schemas. For each one of the IQ criteria, one schema
with anomalies in the referred aspect is presented, and the
evaluation process is detailed.

6.1 Minimality Analysis
Consider the redundant schema of Figure 5 for minimality
example.

 artistm ≡ actorm
 idm ≡ sshm
 nationalitym ≡ countrym

Figure 5. Schema with redundant elements

The entity artistm, is redundant because it is semantically
equivalent to actorm and all its attributes have a semantically
equivalent correspondent in actorm.

The relationship moviem_artistm

(moviem,artistm,(1,N)) is also redundant because it has a
semantically equivalent relationship
moviem_actorm(moviem,actorm,(1,N))and
actorm≡artistm.

The schema minimality value will be obtained as illustrated in
Figure 6. The minimality of schema Sm is 75%, what means that
the schema has 25% of redundancy that can possibly be
eliminated.

Red(movie
m
,S

m
) = 0

 Red(actor
m
,S

m
) = 0

 Red(theater
m
,S

m
) = 0

 Red(artist
m
,S

m
) = 1

 ER(S
m
)= 1/(4 + 4) = 0,125

 RR(S
m
)= 1/(4 + 4) = 0,125

Mi(S
m
)= 1 -(0,125 + 0.125) = 0,75

Figure 6. Schema minimality score

6.2 Schema Completeness Analysis
For the completeness evaluation, consider the integrated schema
presented in Figure 7 and the data source schemas presented in
Figures 8 to 10.

titlem

moviem actormcontains

Mediation Schema Sm =

({moviem({titlem, genrem, yearm, directorm}, {moviem_actorm}),

 actorm({namem, nationalitym},{})},

 {moviem_actorm(moviem,actorm, (1,N))})

(1,N)

genrem

yearm

directorm namem

nationalitym

Figure 7. Integrated schema Sm

title
1

movie
1

actor
1contains

Schema of data source S
1
 =

({movie
1
({title

1
,runtime

1
,genre

1
},{movie

1
_actor

1
,movie

1
_director

1
}),

 actor
1
({name

1
, nationality

1
},{}),director1({name

1
,nationality

1
},{})},

 {movie
1
_actor

1
(movie

1
,actor

1
,(1,N)),

 movie
1
_director

1
(movie

1
,director

1
,(1,N))})

(1,N)
genre

1

runtime
1

name
1

nationality
1

director
1contains

(1,N) name
1

nationality
1

Figure 8. Data Source schema S1

title2 movie2

Schema of data source S2 =

({movie2({title2,genre2,actor2},{movie2_director2}),

 director2({name2,nationality2},{director2_award2})

 award2({year2,category2},{})},

 {movie2_director2(movie2,director2,(1,N))

 director2_award2(director2,award2,(1,N))})

genre2

actor2

director2contains
(1,N)

name2

nationality2

award2year2

category2

contains

(1,N)

Figure 9. Data Source schema S2

title3

movie3

Schema of data source S3 =

({director3({name3,nationality3},{director3_movie3}),

 movie3({title3,country3,year3},{ })},

 {director3_movie3(director3,movie3,(1,N))})

year3

director3 contains
(1,N)

name3
nationality3 country3

Figure 10. – Data Source schema S3

The schema mappings between the schemas are in Table 4.

Table 4. Schema mappings between the integrated schema Sm

and the source schemas S1 , S2 and S3

SM1:moviem ≡ movie1
SM2:moviem ≡ movie2
SM3:moviem ≡ movie3
SM4:moviem.genrem ≡ movie1.genre1
SM5:moviem.genrem ≡ movie2.genre2
SM6:moviem.titlem ≡ movie1.title1
SM7:moviem.titlem ≡ movie2.title2
SM8:moviem.titlem ≡ movie3.title3
SM9:moviem.yearm ≡ movie3.year3
SM10:moviem.directorm ≡ director1.name1
SM11:moviem.directorm ≡ director2.name2
SM12:moviem.directorm ≡ director3.name3
SM13:moviem.moviem_actorm.actorm ≡
movie1.movie1_actor1.actor1
SM14:moviem.moviem_actorm.actorm.namem ≡
movie1.movie1_actor1.actor1.name1
SM15:moviem.moviem_actorm.actorm.namem ≡
movie2.actor2

SM16:moviem.moviem_actorm.actorm.nationalitym ≡
 movie1.movie1_actor1.actor1.nationality1

Analyzing and compiling the schemas and mappings, it is possible
to say that Ð has the following set of distinct concepts (ϕϕϕϕ(Ð)):

ϕϕϕϕ(Ð) = <movie,
movie.year,movie.title, movie.genre,

movie.runtime, director,

director.name, director.nationality,

actor, actor.name, actor.nationality,

award, award.category, award.year,

(movie,actor,1,N),

(movie,director,N,N),

(director,award,1,N)>

⇒⇒⇒⇒ σσσσÐ = 17

Analogously, examining the integrated schema of Figure 7, it is
possible to identify the following concepts:

ϕϕϕϕ(Sm) = <moviem, moviem.titlem,

moviem.genrem, moviem.yearm,

moviem.directorm, actorm, actorm.namem,

actorm.nationalitym,

(moviem,actorm,1,N)>

⇒⇒⇒⇒
mS

σσσσ = 9

Thus, for our example the overall score of Sm (Figure 7) schema
completeness will be obtained as follows:

 SC(Sm) =
mS

Ð

 σσσσ

σσσσ
= 9

17

 = 0,5294

Therefore, the completeness of Sm is 52,94%, what means that the
schema has a 47,06% of the domain concepts missing in the
integrated schema. Improvements in schema completeness can be
done by the insertion of a set of tasks to investigate the data
source schemas seeking for concepts that are not in the current
integrated schema. After that, the system must generate schema
mappings and propagate the new concepts converted into entities
and relationships to the integrated schema. This can be done, for
example, by applying the techniques presented in [15].

6.3 Type Consistency Analysis
To an example of type consistency evaluation, assume an
hypothetic schema with the following attribute equivalencies:

SM1:actorm.birthdatem ≡ actor1.birth1

SM2:moviem.birthdatem ≡ actor2.birth2
SM3:moviem.birthdatem ≡ actor3.bd3

Suppose that the data type of the attribute actor1.birth1 is
String and the data type of attributes
actorm.birthdatem, actor2.birth2 and actor3.bd3 is
Date. We have three Date occurrences versus one single
occurrence of String data type for the same attribute. Thus, the
IQ Manager will consider the data type Date as the data type
consistency standard:

 Tstd = Date
 Con(actorm.birthdatem,Ð) = 1

 Con(actor1.birth1,Ð) = 0

 Con(actor2.birth2,Ð) = 1

 Con(actor3.bd3,Ð) = 1

The attributes of type Date are consistent and the attribute of type
String is inconsistent. To compute the consistency degree of a
given schema it is necessary to sum the consistency values of each
attributes in the schema, dividing the result by the total number of
attributes as stated in Definition 15.

7. SCHEMA MINIMALITY

IMPROVEMENT
After detecting the schema IQ anomalies, it is possible to
restructure it to achieve better IQ scores [2]. In order to improve
minimality scores, redundant elements must be removed from the
schema. In this section, we present an algorithm with schema
improvement actions to be executed after the integrated schema
generation or update. The sequence of steps is specified in the
algorithm of Table 5.

It is important to declare that we can accomplish a total

minimality schema score, or a schema with no redundancies, by
removing redundant elements until the value of minimality equal
to 1 is achieved.

Table 5. Schema adjustment algorithm

1 Calculate minimality score and if

minimality = 1, then stop;

2 Search for fully redundant entities in Sm;

3 If there are fully redundant entities then

eliminate the redundant entities from Sm;

4 Search for redundant relationships in Sm;

5 If there are redundant relationships

then eliminate the redundant relationships

from Sm;

6 Search for redundant attributes in Sm;

7 If there are redundant attributes then

eliminate the redundant attributes from

Sm;

8 Go to Step 1

The detection of redundant elements processes in steps 2, 4 and 6.
are already described in previous definitions. The next sections
describe the proposed redundancies elimination actions executed
in steps 3, 5 and 7 of the improvement algorithm.

In the following, we present details about schema adjustments,
performed when the IQ Manager has to remove redundant
elements.

7.1 Redundant Entities Elimination
It is important to point that, after removing a redundant entity E,
its relationships must be relocated to a semantic equivalent
remaining entity.

When removing a redundant entity E1 (E1 ≡ E2), the IQ

Manager transfers the relationships of E1 to the remaining
equivalent entity E2. Three different situations may occur when
moving a relationship Rx, Rx ∈ E1:

• If Rx ∈ E2 then Rx is deleted because it is no longer
necessary;

• If Rx ∉ E2 but ∃Ry, Ry ∈ E2 such as Rx ≡ Ry then Rx is
deleted;

• If Rx ∉ E2 and there is no Ry, Ry∈E2 such as Rx ≡ Ry, then
Rx is connected to E2.

The first and second situations are not supposed to cause any
schema modification besides the entity deletion. However, the
third case needs more attention, once the redundant relationships
of the removed entity have to be relocated.

Definition 16 – Substitute Entity:

We say that Ek is a fully redundant entity, if and only if
Red(Ek,Sm) = 1 and Ek has at least one Substitute Entity Es,
i.e. Subst(Ek) = Es, such as:

• Ek
k kk1 ka k1 kr

({A ,...,A },{R ,...,R }) Akx are

attributes and Rky are relationships of Ek and;
• Es

s ss1 sa s1 sr
({A ,...,A },{R ,...,R }) Asz are attributes

and Rst are relationships of Es and
• Ek ≡ Es and ∀Ek.Aki ∈

kk1 ka
{A ,...,A },

• ∃Es.Asj ∈
ss1 sa

{A ,...,A } with Ek.Aki ≡ Es.Asj, 1

≤ i,j ≤ ak
The Definition 16 states that an entity Ek is considered fully
redundant when all of its attributes are redundant (Red(Ek,Sm)
= 1) and it must have a substitute entity Es in Sm. All the
attributes of Ek are contained in Es. In this case, Ek may be
removed from the original schema Sm without lost of relevant
information if it is replaced by its substitute entity Es. Any
existing relationship from Ek may be associated to Es, as stated in
the following definition.

Definition 17 – Relationship Relocation:

In a schema Sm, if Subst(Ek) = Es, then Ek can be eliminated
from Sm. In this case, in order to do not lose any information, Ek
relationships are relocated to Es according to the following rules,
i.e. ∀Ek.Rkj:

i. If Ek.Rkj ∈
ss1 sr

{R ,...,R } then Rkj must be deleted

because it is no longer useful;
ii. If Ek.Rkj ∉

ss1 sr
{R ,...,R } but ∃Es.Rsp, such that

Ek.Rkj ≡ Es.Rsp then Ek.Rkj must be deleted because
it has an equivalent relationship in Es;

iii. If Ek.Rkj ∉
ss1 sr

{R ,...,R } and ∃ Es.Rsp such as

Ek.Rkj ≡ Es.Rsp then, Es is redefined as Es =

s s

' '

s1 sa s1 sr({A ,...,A },{R ,...,R }), Asz are attributes

and '

stR are relationships of Es and

s s

' '

s1 sr s1 sr kj{R ,...,R } {R ,...,R } R= ∪ .

The first and second case above do not imply in schema relevant
changes, only the relationship removal. The third one, where the
relationship relocation occurs, can be exemplified in Figures 11
and 12.

movie
m

contains actor
m

ssh
m

name
m

artist
m

id
m

nationality
m

contains

artist
m

 actor
m

id
m

 ssh
m

nationality
m

 country
m

country
m

award
m

description
m

year
m

edition
m

category
m

contains

(1,N)

(1,N)

(1,N)

=> Red(artist
m,
S
m
) = 1

Figure 11. Redundant entity detection

movie
m

contains actor
m

ssh
m

name
m

country
m

award
m

description
m

year
m

edition
m

category
m

(1,N)

contains

(1,N)

Figure 12. Relationship relocation

The fully redundant entity artistm (with its attributes) is
removed and it is substituted by the semantically equivalent
actorm. Consequently, the relationship
{moviem_artistm(moviem, artistm,(1,N))} may be
deleted because it can be replaced by the remaining equivalent
relationship {moviem_actorm(moviem, actorm,(1,N))}.

The relationship {artistm_awardm(artistm,

awardm,(1,N))} is relocated to actorm, turning into the new
relationship {actorm _awardm(actorm,

awardm,(1,N))}. With this operations, it is possible to obtain
a no redundant schema as illustrated in Figure 12.

7.2 Redundant Relationships Elimination
After removing redundant entities and possibly performing the
necessary relationship relocations, the IQ Manager discovers
remaining redundant relationships to eliminate them. This can be
accomplished by merely deleting from the schema, the
relationships identified as redundant. Considering the example or
Figure 13, the relationship
{enterprisem_sectionm(enterprisem,sectionm,(1

,N))} is redundant because it has a semantically equivalent
correspondent represented by P1.

After eliminating the relationship
{enterprisem_sectionm(enterprisem,

sectionm,(1,N))}, the schema with no relationship
redundancies is showed in Figure 14.

It is important to note that the remaining schema after the
relationship eliminations, do not lose relevant information.
Instead, without redundancies, it has better IQ scores, and
consequently it is more usefulness to assist the query processing.

enterprise
m

contains department
m

P
1
 = enterprise

m
.enterprise

m
_department

m
.

department
m
.department

m
_section

m
.section

m

P
2
 = enterprise

m
.enterprise

m
_section

m
.section

m

P
1

P
2

section
m

contains

contains

(1,N)

(1,N)

(1,N)

=> Red(enterprise
m
_section

m

,
S
m
) = 1

≡

 Figure 13. Redundant relationship detection

enterprise
m

contains department
m

section
m

contains

(1,N)

(1,N)

Figure 14. Redundant relationship elimination

7.3 Redundant Attributes Elimination
The last step of schema improvement algorithm consists in
investigating and eliminating remaining redundant attributes in
schema. Similarly to the redundant relationships removal step,
these attributes may merely be deleted from schema. This occurs
because the schema always has semantically equivalent attributes
to substitute the redundant ones. In Figure 15, the attribute
nationalitym is removed because there is a semantically
equivalent attribute countrym, which will substitute it.

After executing the schema improvement steps, the IQ Manager
can recalculate and analyze minimality scores in order to
determine if the desired IQ is accomplished.

movie
m contains actor

m

ssh
m

age
m

artist
m

address
m

nationality
m

contains

artist
m

 actor
m

nationality
m

 country
m

country
m

name
m

Figure 15. Redundant attribute detection

7.4. Implementation Issues
We implemented the IQ Manager as a module of an existing
mediator-based data integration system. More details about the
system can be found in [5]. The module was written in Java and
the experiment used two databases – MySQL and PostgreSQL –
to store the data sources. As mentioned before, the data in the
system is XML and the schemas are represented with XML
Schema.

The experiment was done in the following steps: (i) initially, the
queries were submitted over an integrated schema 26% redundant
and the execution times were measured; (ii) the redundancy
elimination algorithm was executed over the redundant integrated
schema generating a minimal schema (100% of minimality); (iii)
the same queries of step (i) were executed. The results obtained
with these experiments have been satisfactory.

8. CONCLUSION
Data integration systems may suffer with lack of quality in
produced query results. They can be outdated, erroneous,
incomplete, inconsistent, redundant and so on. As a consequence,
the query execution can become rather inefficient. To minimize
the impact of these problems, we propose a quality approach that
serves to analyze and improve the integrated schema definition
and consequently, the query execution.
It is known that a major problem in data integration systems is to
execute user queries efficiently. The main contribution of the
presented approach is the specification of IQ criteria assessment
methods for the maintenance of high quality integrated schemas
with objectives of achieving better integrated query execution. We
also proposed an algorithm used to improve the schema’s
minimality score.

We have specified the IQ Manager module to proceed with all
schemas IQ analysis and also the execution of improvement
actions by eliminating the redundant items.

As future work, similarly as done with the minimality criterion,
we must formally describe and implement the algorithms to
evaluate the others IQ criteria and to execute the schema IQ
improvement actions for each one.

9. REFERENCES
[1] ANHAI, D., DOMINGOS, P. and HALEVY, A. Learning to

Match the Schemas of Data Sources: A Multistrategy.
Machine Learning, 50(3), 2003.

[2] ASSENOVA, P. and JOHANNESON, P. Improving quality
in conceptual modeling by the use of schema
transformations, Proceedings 15th Int. Conf. of Conceptual
Modeling (ER´96), Cottbus, Germany, 1996.

[3] BALLOU, D.P. and PAZER, H.L. Modeling data and
process quality in multi-input, multi-output information
systems. Management Science 1985.

[4] BALLOU, D. P. and PAZER H.: Modeling Completeness
versus Consistency Tradeoffs in Information Decision
Contexts. IEEE Transactions on Knowledge and Data
Engineering , vol. 15, no. 1, 2003.

[5] BATISTA, M. C., LÓSCIO, B. F. AND SALGADO, A. C.
Optimizing Access in a Data Integration System with
Caching and Materialized Data. In Proc. of 5th ICEIS, 2003.

[6] CALI, A., CALVANESE, D., DE GIACOMO, G. and
LENZERINI, M. Data integration Under Integrity
Constraints. In Proc. Conference on Advanced Information
Systems Engineering, 2002.

[7] CARDELLI, L. and WEGNER, P. On Understanding Types,
Data Abstraction, and Polymorphism. ACM Computing
Surveys, Vol.17, No.4, Dec. 1985.

[8] CHEN, P.P. The Entity-Relationship Model: Toward a
unified view of data, ACM Transactions on Database
Systems, 1976.

[9] DAI, B., T., KOUDAS, N., OOI, B. C., SRIVASTAVA, D.
and VENKATASUBRAMANIAN, S. Column Heterogeneity
as a Measure of Data Quality, in proceedings of 1st Int'l
VLDB Workshop on Clean Databases, 2006.

[10] HALEVY, A. Why Your Data Don't Mix. ACM Queue, 3(8),

2005.
[11] HERDEN, O. Measuring Quality of Database Schema by

Reviewing - Concept, Criteria and Tool. In Proc. 5th Intl
Workshop on Quantitative Approaches in Object-Oriented
Software Engineering, 2001.

[12] KESH, S. Evaluating the Quality of Entity Relationship
Models. Inform. Software Technology. 1995.

[13] KOTONYA, G and SOMMERVILLE, I. Requirements
Engineering: Processes and Techniques. 1st Edition, Wiley &
Sons, 1997.

[14] LENZERINI, Maurizio. Data integration: A theoretical
perspective. In Proc. of the 21st ACM SIGACT SIGMOD

SIGART Symp. on Principles of Database Systems (PODS

2002), pages 233–246, 2002.
[15] LÓSCIO, B. F., Managing the Evolution of XML-Based

Mediation Queries. Tese de Doutorado. Curso de Ciência da
Computação. Centro de Informática, UFPE, Recife, 2003.

[16] MOODY, D. Measuring the Quality of Data Models: An
Empirical Evaluation of the Use of Quality Metrics in
Practice, New Paradigms in Organizations, Markets &
Society: Proc. of the 11th European Conference on
Information Systems, 2003.

[17] NAUMANN, F. and LESER, U. Quality-dri ven Integration
of Heterogeneous Information Systems. In Proc. of the 25th
VLDB. 1999.

[18] PETERSON, D., BIRON, P. V., MALHOTRA, A. and
SPERBERG-MCQUEEN., C. M. XML Schema 1.1 Part 2:

Data Types – W3C Working Draft, 2006.
http://www.w3.org/TR/xmlschema11-2/.

[19] PIATTINI, M., GENERO, M. and CALERO, C. Data Model
Metrics. In Handbook of Software Engineering and
Knowledge Engineering: Emerging Technologies, World
Scientific, 2002.

[20] SCANNAPIECO, M. Data quality at a glance. Datenbank-
Spektrum 14, 6–14.

[21] SI-SAID, S. C. and PRAT, N. Multidimensional Schemas
Quality: Assessing and Balancing Analyzability and
Simplicity, Lecture Notes in Computer Science, Springer
Berlin / Heidelberg, 2814, 140—151. 2003.

[22] SPACCAPIETRA, S. and PARENT, C. View integration: a
step forward in solving structural conflicts, IEEE
Transactions on Knowledge and Data Engineering, 1994.

[23] VARAS, M. Diseño Conceptual de Bases de Datos: Un
enfoque Basado en la Medición de la Calidad", Actas Primer

Workshop Chileno de Ingeniería de Software, Punta Arenas,
2001.

[24] WAND, Y. and WANG, R.Y.: Anchoring data quality
dimensions in ontological foundations. Communications
of the ACM 39(11), 86--95. (1996).

[25] WANG R.Y. and STRONG D.M.: Beyond Accuracy: What
Data Quality Means to Data Consumers. Journal of
Management Information Systems,1996.

[26] WANG, Y. and HU, J. Detecting tables in HTML
documents. In Lecture Notes in Computer Science, volume
2423, pages 249–260. Springer-Verlag, 2002.

[27] WIEDERHOLD, G., 1992. Mediators in the Architecture of
Future Information Systems. IEEE Computer. 2.

[28] ZHANG, Y., CALLAN, J. and MINKA. T. Novelty and
Redundancy Detection in Adaptive Filtering. In Proc. of the
25 Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval
(SIGIR), 2002.

