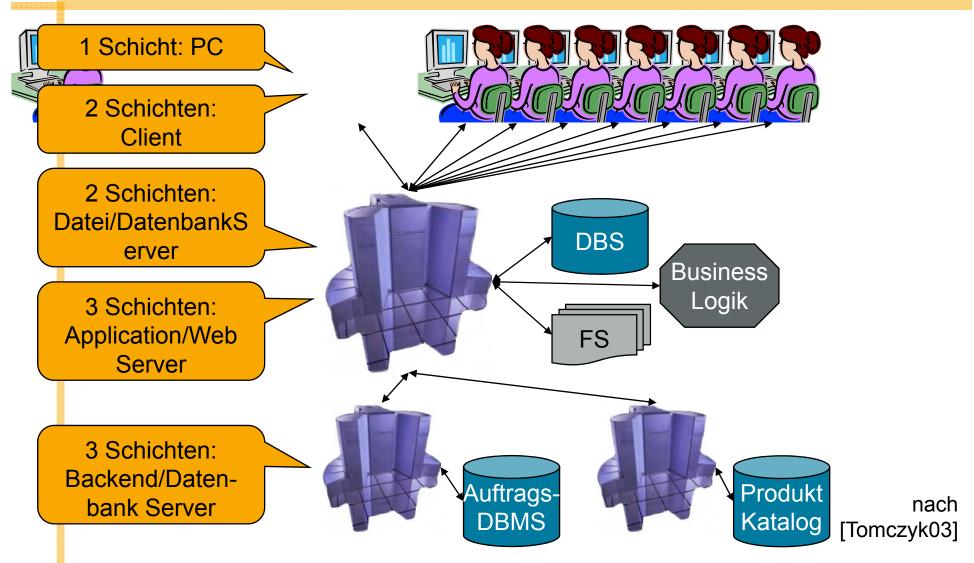


IT Systems Engineering | Universität Potsdam

Datenbanksysteme 1
Organisatorisches und Einführung


20.4.2009

Felix Naumann

Mehr-Schichtenarchitekturen

Felix Naumann | VL Datenbanksysteme I | Sommer 2009

Überblick

4

- Vorstellung der Arbeitsgruppe
- Organisatorisches
- Datenbanken und Informationssysteme
- Das Semester an einem Beispiel
- Ausblick auf das Semester

5

Information systems team

project ViQTOR

DQ Annotation & Assessment

Katrin **Heinrich**

Prof. Felix Naumann

Jens Bleiholder

Data Fusion

Christoph Böhm

project fusem

Data Profiling & Cleaning

Paul Führing

Information Integration

Information Quality

Armin Roth project System P

Peer Data Management **Systems**

Matching

Service-Oriented Systems

Felix Naumann | VL Datenbanksysteme I |

Mohammed AbuJarour

Frank Kaufer

Data Integration for

Life Science Data Sources

Jana Bauckmann Sommer 2009

ETL Management

Alexander Albrecht

Data Profiling for Schema Management

Other courses in this semester

Lectures

- DBS I
- Search engines

Seminars

- Bachelor: Beauty is our Business
- Bachelor: Map/Reduce Algorithms on Hadoop
- Master: Linked Data Profiling
- Forschungsseminar

Bachelorproject

ETL Management

Extending the Database Relational Model to Capture More Meaning

E. F. CODD

IBM Research Laboratory

During the last three or four years several investigators have been exploring "semantic models" for contains two mass three in your peace accept investigators have over expressing accounts moreous on formatted databases. The intent is to capture (in a more or less formal way) more of the meaning of rormatten distantances. Lee oncur is to capture un a more ve non notions ways since or one concenting or the data so that detabase chaigh can become more systematic and the database system inself can believe more intelligently. Two major thrusts are clear:

- (i) the search for meaningful units that are as small as possible—atomic semantics;
- 10 the search for meaningful units that are larger than the usual n-ary relation—moleculor

In this paper we propose extensions to the relational model to support certain atomic and molecular is suppose we program extensions to the reactions induce to suppose terrano account and suppose terrano account and suppose terrano. These extensions represent a synthesis of many ideas from the published work in semantic residences, a cross recognises represent a symmetric of many when ever processed were in semental modelling plus the introduction of new rules for insertion, update, and deletion, as well as new alsobraic

Key Words and Phrases: relation, relational database, relational model, relational scheme, database rely rouse any racence resource, reasons untinouse, resistorias moore, transvens experime, starabuse, data extrantica, semantic model, knowledge representativa, knowledge CR Categories: 3.70, 3.73, 4.22, 4.29, 4.33, 4.34, 4.39

T. INTRODUCTION

The relational model for formacted databases [5] was conceived ten years ago, primarily as a tool to free users from the frustrations of having to deal with the clutter of storage representation details. This implementation independence coupled with the power of the algebraic operators on n-ary relations and the open coupees was use power or the agentate operators out that y tempose one one operators concerning dependencies (functional, multivalued, and join) within and between relations have stimulated research in database management (see [30]). The relational model has also provided an architectural focus for the design of databases and some general-purpose database management systems such as databases and some general-purpose translages management systems out as MACAIMS [13], PRTV [38], RDMS(GM) [41], MAGNUM [19], INGRES [37], During the last few years numerous investigations have been aimed at capturing

Permission to copy without fee all or part of this material is granted provided that the copies are not Permission to cupy without ree as in pury or time observar is granted provined that the copies are too inade or distributed for direct commercial advantage, the ACM copyright notice and the title of the make or observation for direct commercial advantage, we act a cupying a make any one one or publication and its date appear, and notice is given that copying is by permission of the Association promissions and he user appears and notice is given that copying is by permission of the Association for Computing Mechinery. To copy otherwise, or to republish, requires a fee and/or specific

permission.

A version of this work was presented at the 1979 International Conference on Management of Data A version of this work was presented at the 1979 International Conference on Management of SIGCMOD). Son, Man., May 50.-June 1, 1975.

Author's address. IBM Research Laboratory K01/289, 5609 Cottle Road, San Jose, CA 90193.

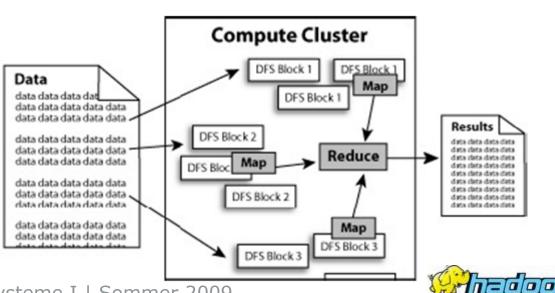
D 1978 ACM 0362-5915/79/1970-0367 800.75.

ACM Transactions on Batanaus Systems, Vol. 4, No. 4, Detember 1970, Daser 397. 404.

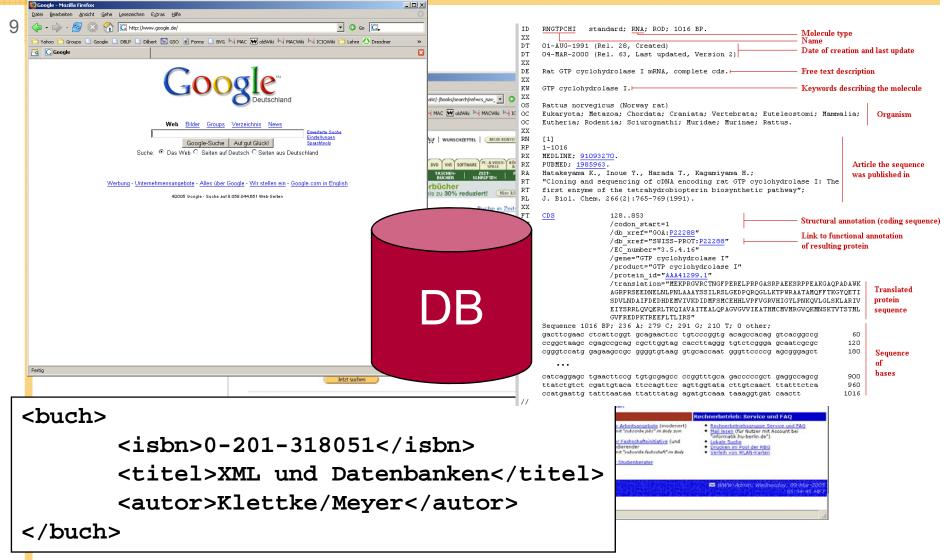
Proseminar

Beauty is our Business

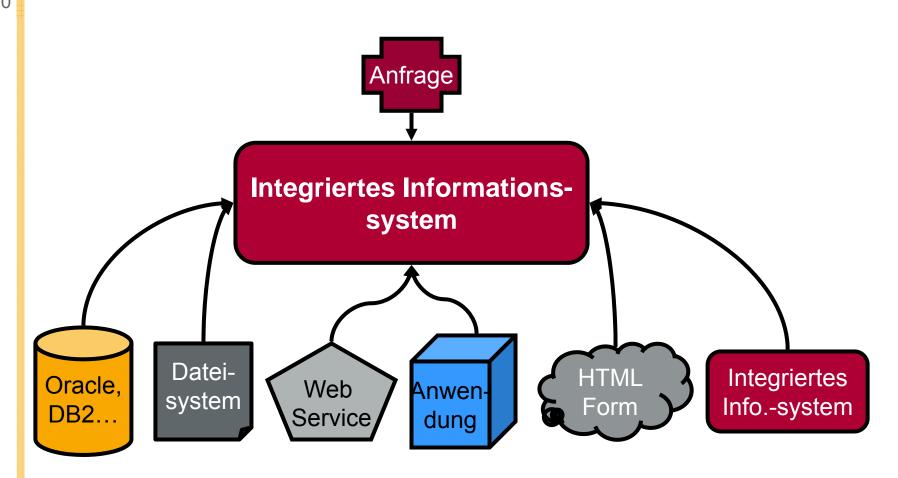
"Wenn wir uns klarmachen, daß der Kampf gegen Chaos, Durcheinander und unbeherrschte Kompliziertheit eine der größten Herausforderungen der Informatik ist, müssen wir zugestehen: Beauty is our Business." Edsger W. Dijkstra, 1978


Termin	Thema	Vortrag
22.10.2007	Einführung	Felix Naumann
t.b.d.	Wissenschaftliche Texte Lesen	Felix Naumann
12.11.2007	Literaturkritik / Diskussion	Alle
19.11.2007	Vortragstechniken	Felix Naumann
3.12.2007	Vortrag 1: Mariposa (<u>pdf</u>)	
	Vortrag 2: Trio (pdf)	
10.12.2007	Einführung in LaTeX	Felix Naumann
17.12.2007	Vortrag 3: Fagins Algorithmus (<u>pdf</u>)	
	Vortrag 4: Enough Already in SQL (pdf)	
7.1.2008	Vortrag 5: Sorted Neighborhood (pdf)	
	Vortrag 6: Data Mining (<u>pdf</u>)	
14.1.2008	Vorstellung der Gliederungen & Tipps zur	Alle
	Ausarbeitung	Alle
29.2.2008	Abgabe der Ausarbeitungen	Alle

Bachelorseminar "Map/Reduce on Hadoop"


- We have a small but neat cluster of real worn-out commodity PCs
- We bundle their power and try to solve large-scale computation problems
 - Data Join
 - Clustering

 - □ and declarative languages



Was sind Informationssysteme?

Integrierte Informationssysteme

11

Schematische und Daten-Heterogenität

Variante 1

Frauen		
Vorname	Nachname	
Melanie	Weis	
Jana	Bauckmann	

Variante 2

Percenan			
Vorname	Nachname	Männl.	Weibl.
Felix	Naumann	Ja	Nein
Jens	Bleiholder	Ja	Nein
Melanie	Weis	Nein	Ja
Jana	Bauckmann	Nein	Ja

Variante 3

Personen	Personen		
Vorname	Nachname	Geschlecht	
Felix	Naumann	Männlich	
Jens	Bleiholder	Männlich	
Melanie	Weis	Weiblich	
Jana	Bauckmann	Weiblich	

Felix Naumann | VL Datenbanksysteme I | Sommer 2009

12

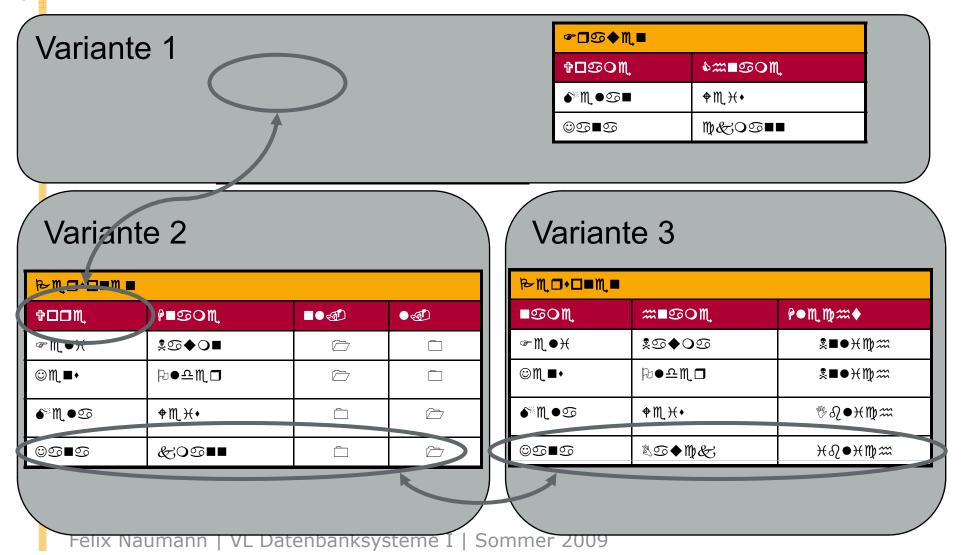
Schematische und Daten-Heterogenität

Variante 1		Frauen	
variante i		Vorname	Nachname
		Melanie	Weis
	†	Jana	Bauckmann

Variante 2

Personen			
FirstNa	Name	male	femal
Felix	Naumann	Ja	Nein
Jnes	Bleiho.	Ja	Nein
Melanie	Weiß	Nein	Ja
Jana	baukman	Nein	Ja

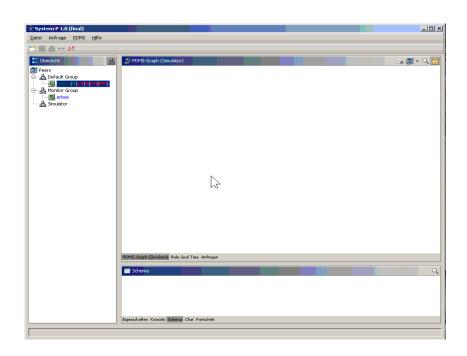
Variante 3


Personen		
VN	NN	SEX
F.	Naumann	Männlich
J.	Bleiholder	Männlich
М.	Weis	Weiblich
1.	Bauckmann	Weiblich

Felix Naumann | VL Datenbanksysteme I | Sommer 2009

Schematische und Daten-Heterogenität

13



Weitere Forschungsthemen

- Informationsintegra
 - Schema Matchii
 - Duplikaterkennung
 - Datenfusion
- Datenqualität
- Peer Data Management
- Life Sciences: Aladin
- Search

Verschiebung der Vorlesung

- Vormals: Drittes Semester
- In Zukunft: Zweites Semester
 - Überbrückung durch Forschungsfreisemester
- Jetzt: Zweites und viertes Semester
 - Ein Experiment
 - Gegenseitige Hilfe
 - □ Viele Übungsgruppen
 - Streamlining

Vorstellung – Hörer

- Welches Semester?
 - □ 2. bzw 4. Semester
- Erasmus o.ä.?
- Berlin/Brandenburg oder anderswo?
- Berührung mit Datenbanken?
 - □ Wie?

Überblick

- Vorstellung der Arbeitsgruppe
- Organisatorisches
- Datenbanken und Informationssysteme
- Das Semester an einem Beispiel
- Ausblick auf das Semester

18

Termine

- Montags 9:15 10:45 (müde)
 - □ Hörsaal 1
- Mittwochs 11:00 12:45 (hungrig)
 - Hörsaal 1
- Erste Vorlesung
 - 20.4.2009
- Letzte Vorlesung
 - 22.7.2009
- Feiertage
 - Pfingstmontag am 1. Juni

- Übungen
 - Ungefähr 1 SWS
 - Verteilt auf Doppelstunden im Semester
 - Fünf paralleleÜbungsgruppen
- Übungsleitung: Jana Bauckmann
- Tutoren-Team
 - Christoph Thiele
 - Ralf Gehrer
 - Felix Elliger
 - Matthias Richly
- Klausur
 - Erste Woche nach Semester
 - □ 240(!) Minuten

Übung: Termine

- 5 identische Übungstermine pro Woche
 - Mo 11:00-12:30 Uhr & 13:30-15:00 Uhr in A-1.1
 - □ Di 13:30-15:00 in A-2.2
 - Mi 11:00-12:30 Uhr & 13:30-15:00 Uhr in A-2.2

Anmeldung

- □ Email bis 26.4. an <u>dbs1-2009@hpi.uni-potsdam.de</u> mit Wunschliste für drei Termine
- First come, first served!
- □ Wir ordnen die Übungstermine fest zu und veröffentlichen das Ergebnis unter \\fs3\lehrveranstaltungen\DBSI_naumann

Übung: Aufgabenblätter

- Insgesamt 6 Aufgabenblätter (Übungen)
 - "Theoretische" Übungen
 - Auf Papier
 - Praktische Übungen
 - DB2 im Studentenpool
 - Ergebnisse auf Papier
- Bearbeitung der Aufgabenblätter in 2er Gruppen
- Prüfungszulassung:
 - Maximal ein Aufgabenblatt mit mind. 25% der Punkte bewertet
 - Alle weiteren Aufgabenblätter mit mind. 50% der Punkte bewertet
- Abgabe
 - Abgabetermin: mittwochs, 11:00 Uhr
 - per Email an dbs1-2009@hpi.uni-potsdam.de
 - Pro Aufgabe eine Datei mit Dateiname:
 blatt<aufgabenblattNr>aufgabe<aufgabenNr><Namen>.pdf

Übung: Hilfe bei Problemen

- Sprechstunde (in den Übungswochen)
 - Freitags 13:00-14:00 Uhr in A-1.2
- Mailverteiler für Fragen zur Übung: fragen-dbs1-2009@hpi...
 - Hilfe zur Selbsthilfe: Fragen gegenseitig beantworten
 - Mitarbeiter lesen (und antworten) auch mit
 - Admins tragen alle DBS1-Studenten auf der Liste ein, sobald die Teilnehmer der VL feststehen

22

Feedback

- Folien
 - □ Vor der VI im WWW
 - ♦ ASAP
 - Datiert wegen updates
- Anregungen zur Verbesserung:
 - Gebrauch der Folien
 - □ Infos im WWW
 - Übungsbetrieb
 - ...

- Fragen bitte jederzeit!
 - In der Vorlesung
 - Sprechstunde
 - ♦ Dienstags 15:00 -16:00
 - ◆ Raum A-1.13
 - Am liebsten mit Anmeldung
 - Email: naumann@hpi.unipotsdam.de

Feedback

HPI Hasso Plattner Institut

- gut gelaunt und engagiert
- vermittelt positive Stimmung
- aber redet ein wenig zu schnell und zu viel

Die Bewertung bzw.
Korrigierung der
Übungsaufgaben ist seht
schön, durch das genaue
Korrigieren erhält man ein
guten Feedback.

Es ist beruhigend, wenn man merkt, wenn der Dozent bei einem bestimmten Problem auch nicht 100% sicher ist.

Vote Naumann for Best-Prof-WS-06/07

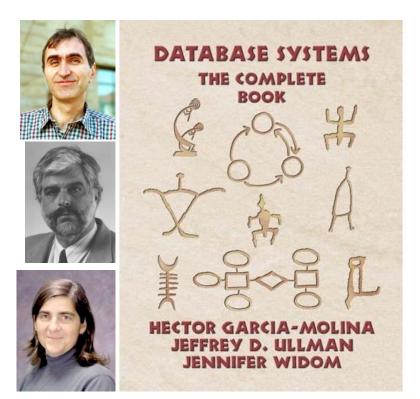
Bitte kein DB2 mehr! Bitte bitte!

Die Vorlesung war sehr angenehm, auch theoretische Teile wurden so dargestellt, dass man nicht gleich eingepennt ist.

Dozent könnte sein Sprechtempo ab und zu etwas herabsetzen

Es wäre schön wenn Sie in Zukunft langsamer sprechen könnten bzw. manchmal eine Kunstpause einschieben könnten

Literatur


Database Systems - The Complete Book

- Hector Garcia-Molina, Jeffrey D.
 Ullman, Jennifer Widom:, Pearson
 Education International, 2002.
- Viele Exemplare in Bibliothek
- Auch für DBS II!

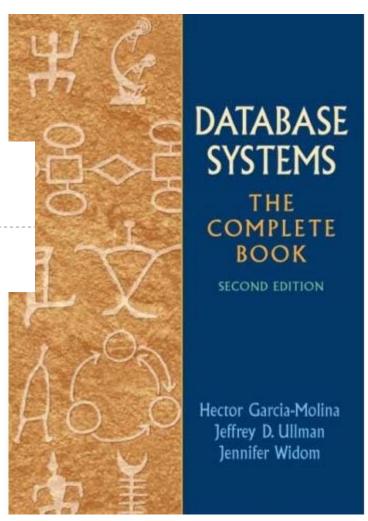
Ebenfalls empfehlenswert

- Datenbanken Konzepte und Sprachen Andreas Heuer, Gunter Saake ISBN: 3826606191
- Grundlagen von Datenbanksystemen.
 Ausgabe Grundstudium.
 Ramiz Elmasri, Shamkant B. Navathe

Und viele andere mehr...

Neue Auflage

25


Database Systems: The Complete Book (Gebundene Ausgabe)

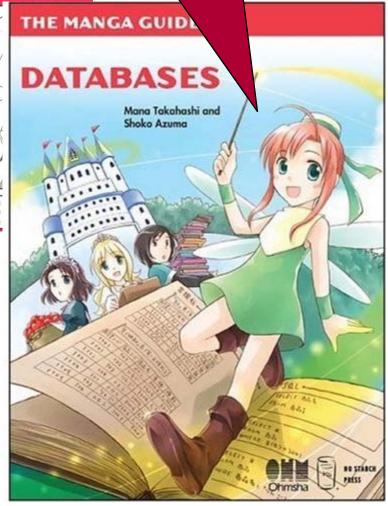
von Hector Garcia-Molina (Autor), Jeffrey D. Ullman (Autor), Jennifer Widom (Autor) ★★★★ ▼ (2 Kundenrezensionen)

US-Preisempfehlung* \$132.00

Preis: EUR 90,90 Kostenlose Lieferung. Siehe Details.

* Unverb. Preisempfehlung

Weitere Literatur


UNLEASH THE POWER OF THE DATABASE!

Magical database fairy

PRINCESS RURUNA AND CAIN HAVE A PROBLEM: THEIR FRUIT-SELLING EMPIRE IS A TANGLE OF CONFLICTING AND DUPLICATED DATA, AND SORTING THE MELONS FROM THE APPLES AND STRAWBERRIES IS CAUSING REAL DIFFICULTIES. BUT WHAT CAN THEY DO?

WHY, BUILD A RELATIONAL DATABASE OF COURSE, WITH THE HELP OF TICO, THE MAGICAL DATABASE FAIRY. FOLLOW ALONG IN THE MANGA GUIDE TO DATABASES AS TICO TEACHES RURUNA AND CAIN HOW TO BUILD A DATABASE TO MANAGE THEIR KINGDOM'S SALES, MERCHANDISE, AND EXPORTS. YOU'LL LEARN HOW DATABASES WORK AND THE MEANING OF TERMS LIKE SCHEMAS, KEYS, NORMALIZATION, AND TRANSACTIONS.

Überblick

- Vorstellung der Arbeitsgruppe
- Organisatorisches
- Datenbanken und Informationssysteme
- Das Semester an einem Beispiel
- Ausblick auf das Semester

Was sind Daten?

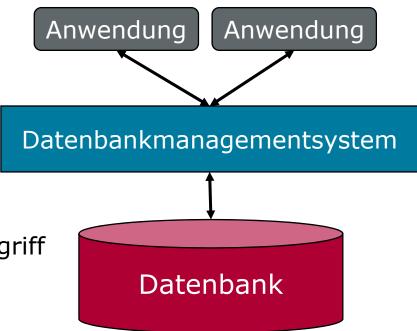
Digitale Repräsentation von

- Dingen
- Entitäten
- Wissen
- Information

in der wirklichen Welt.

Kernfragen:

- Welche Daten speichere ich?
- Wie speichere ich die Daten?
- Wie frage ich Daten ab?
- Wie erledige ich all dies effizient und sicher?


Unterstützung durch Datenbanksystem

Datenbanksysteme

Bestandteile

- Datenbank
 - □ Die Daten selbst
 - + Metadaten (Beschreibung der Daten)
- Datenbankmanagementsystem (DBMS)
 - Softwarekomponente zum Zugriff auf eine oder mehrere Datenbanken.
 - Server-basiert
- (Anwendungen)

DBMS Beispiele

DBMS

- OLTP (Online Transaction Processing)
- Oracle, DB2, SQL-Server
- Informix, Sybase
- Teradata
- PostGreSQL, Interbase
- mySQL, ...
- Data Warehouses

DBMS

OLAP (Online Analytical Processing)

- Alle großen Softwaresysteme nutzen ein, mehrere oder sehr viele DBMS.
 - □ SAP
 - Siebel
 - SABRE
 - Sogar (zwischenzeitlich) das geplante Microsoft Windows File-System (Longhorn)

HPI Hasso Plattner Institut

DBMS Aufgaben

- Unterstützung des Datenmodells
- Bereitstellung einer Anfragesprache (DDL & DML)
- Effiziente Anfragebearbeitung
- Robustheit
 - Wahrung der Datenintegrität (Konsistenz etc.)
 - Abfangen von Systemfehlern
- Speicherverwaltung (RAM & Disk)
- Transaktionsmanagement
 - Auch im Mehr-Benutzer-Betrieb
- Nutzerverwaltung & Zugangskontrolle

- Dateisystem
 - Informationseinheit:Flat file
 - Anfrage:File search, RegEx
 - Struktur:Flach oder hierarchisch

- Beispiele
 - □ NTFS
 - NIS
 - FTP Zugriff
- Einsatzgebiete
 - WWW (HTML Dateien)
 - Desktop-Anwendungen (Textverarbeitung, etc.)

Datei

- Informationseinheit:
 Zeile /Token
- Anfrage: Parser
- Struktur: Flach

Beispiele

- Komma-delimited files
- Annotated files

Einsatzgebiete

SwissProt

```
ID
                 standard; RNA; ROD; 1016 BP.
                                                                     Molecule type
XX
DT
     01-AUG-1991 (Rel. 28, Created)
                                                                     Date of creation and last update
DT
     04-MAR-2000 (Rel. 63, Last updated, Version 2)
XX
DE
      Rat GTP cyclohydrolase I mRNA, complete cds.
                                                                     Free text description
XX
KW
      GTP cyclohydrolase I.
                                                                     Keywords describing the molecule
XX
os
      Rattus norvegicus (Norway rat)
      Eukaryota; Metazoa; Chordata; Craniata; Vertebrata; Euteleostomi; Mammalia;
                                                                                       Organism
OC
      Eutheria; Rodentia; Sciurognathi; Muridae; Murinae; Rattus.
XX
RN
     [1]
RP
     1-1016
RX
     MEDLINE; 91093270.
      PUBMED; 1985963.
                                                                                 Article the sequence
      Hatakeyama K., Inoue Y., Harada T., Kagamiyama H.;
                                                                                 was published in
      "Cloning and sequencing of cDNA encoding rat GTP cyclohydrolase I: The
      first enzyme of the tetrahydrobiopterin biosynthetic pathway";
RL
      J. Biol. Chem. 266(2):765-769(1991).
XX
FT
                                                                     Structural annotation (coding sequence)
FT
                      /codon start=1
FT
                      /db xref="GOA:P22288"
                                                                     Link to functional annotation
FT
                      /db xref="SWISS-PROT:P22288
                                                                     of resulting protein
FT
                      /EC number="3.5.4.16"
                      /gene="GTP cyclohydrolase I"
                      /product="GTP cyclohydrolase I"
                      /protein id="AAA41299.1"
                      /translation="MEKPRGVRCTNGFPERELPRPGASRPAEKSRPPEAKGAQPADAWK
                                                                                       Translated
                                                                                       protein
FT
                      SDVLNDAIFDEDHDEMVIVKDIDMFSMCEHHLVPFVGRVHIGYLPNKOVLGLSKLARIV
FΤ
                      EIYSRRLQVQERLTKQIAVAITEALQPAGVGVVIEATHMCMVMRGVQKMNSKTVTSTML
                                                                                       sequence
                      GVFREDPKTREEFLTLIRS"
     Sequence 1016 BP; 236 A; 279 C; 291 G; 210 T; 0 other;
                                                                                 60
      gaettegaae eteatteggt geagaaetee tgteeeggtg acageeacag gteaeggeeg
                                                                                120
      ccggctaagc cgagccgcag cgcttggtag caccttaggg tgtctcggga gcaatcgcgc
                                                                                180
      cgggtccatg gagaagccgc ggggtgtaag gtgcaccaat gggttccccg agcgggagct
                                                                                       Sequence
                                                                                       bases
                                                                                900
      catcaggage tgaactteeg tgtgegagee ceggtttgea gaceeeeget gaggeeageg
                                                                                960
      ttatctqtct cqattqtaca ttccaqttcc aqttqqtata cttqtcaact ttatttctca
      ccatgaattg tatttaataa ttatttatag agatgtcaaa taaaggtgat caactt
                                                                                1016
17
```


- Markup Datei
 - Informationseinheit: Tagged text
 - Anfrage:Parser, Anfragesprache
 - Struktur:Flach, hierarchisch oder graph-basiert

- Beispiele

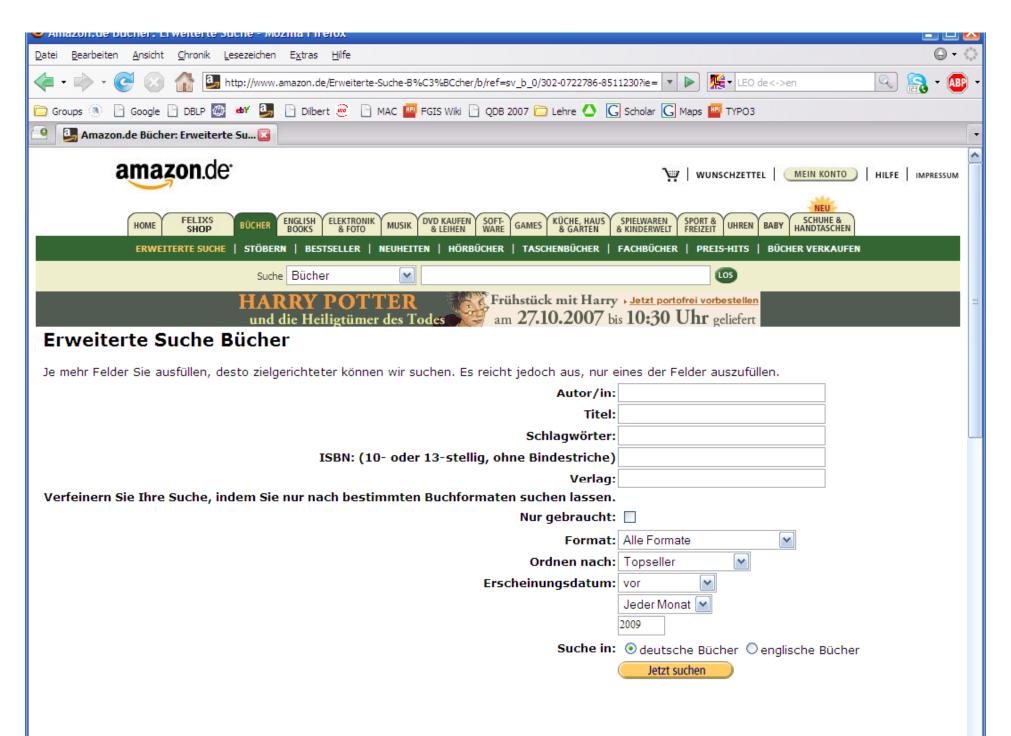
 - HTML
- Einsatzgebiete
 - Web Services
 - Messages
 - InteroperationaleAnwendungen

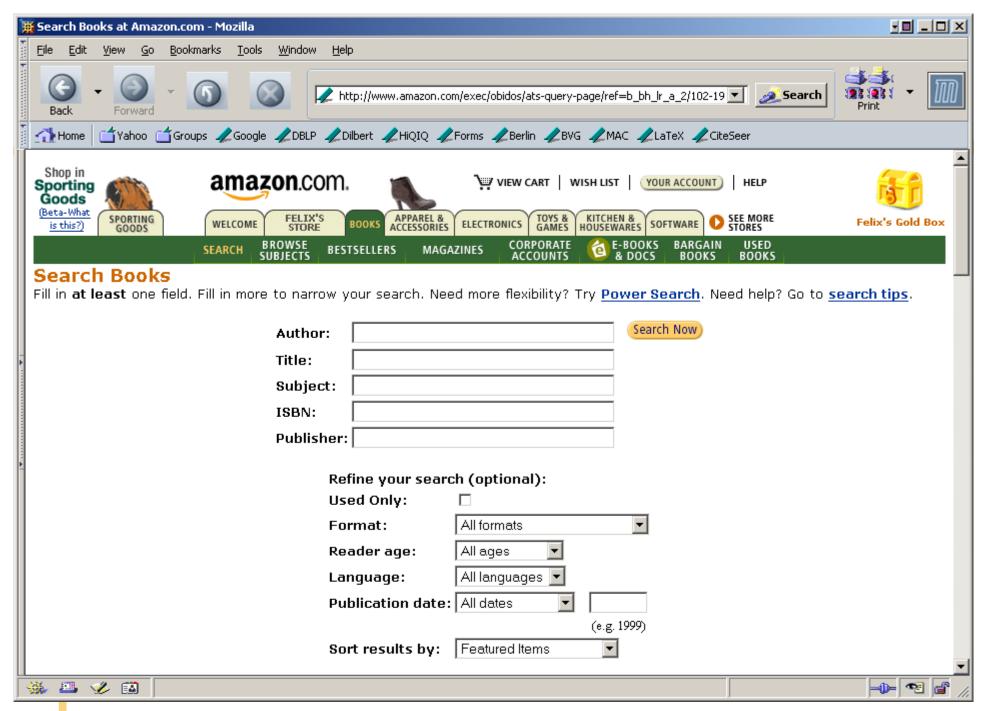
Beispiel: XML-Dokument

```
<?xml version="1.0" encoding="UTF-8"?>
<rechnung kundennummer="k333063143">
          <monatspreis>0,00</monatspreis>
          <einzelverbindungsnachweis>
                     <verbindung>
                               <datum>26.2.</datum>
                               <zeit>19:47</zeit>
                               <nummer>200xxxx</nummer>
                               <einzelpreis waehrung="Euro">0,66</einzelpreis>
                     </verbindung>
                     <verbindung>
                               <datum>27.2.</datum>
                               <zeit>19:06</zeit>
                               <nummer>200xxxx</nummer>
                               <einzelpreis waehrung="Euro">0.46</einzelpreis>
                     </verbindung>
                     <verbindungskosten_gesamt waehrung="Euro">2.19</verbindungskosten_gesamt>
          </einzelverbindungsnachweis>
</rechnung>
```


- Datenbank
 - Anfrage:Komplexe Sprache, z.B.SQL
 - Informationseinheit:Tupel / Attribut, Objekt
 - Struktur:Relational, OO,Hierarchisch

- Beispiele
 - Relationale DBMS
 - OO DBMS
 - Auch: XML DBMS
- Einsatzgebiete
 - Data Warehouses
 - OLTP
 - Banken/Versicherungen




Beispiele für Informationssysteme

- HTML Formular
 - Informationseinheit: HTML Seite, Text
 - Anfrage:Suchworte, Formular (inkl.Radiobutton, dropdown-list, etc.)
 - Struktur:
 wie Markup Datei: Flach,
 hierarchisch oder graph basiert
 I.d.R. flach

- Beispiele
 - Einfache Suchformulare
 - Komplexe Anfrageformulare
- Einsatzgebiete
 - Suchmaschinen
 - Reisedienste
 - Kataloge

Dahinter: Fast immer ein DBMS!

Beispiele für Informationssysteme

- Web Service
 - Informationseinheit:XML Dokument
 - AnfrageXML Dokument
 - Struktur:Wie XML: Flach,hierarchisch, graph-basiert

- Beispiele
 - Einfach:Temperaturdienst, etc
 - Komplex: Reservierungen (Schachtelung und Verknüpfung von Web Services)
- Einsatzgebiete
 - Intra-organisatorischeWorkflows
 - E-Marketplaces
 - Datenaustausch

Dahinter: Fast immer ein DBMS!

Full Service List

Also accessible via XML Interfaces: DISCO WS-Inspection RSS See the interfaces section for more information.

List is ordered by submission time, with most recent services listed first.

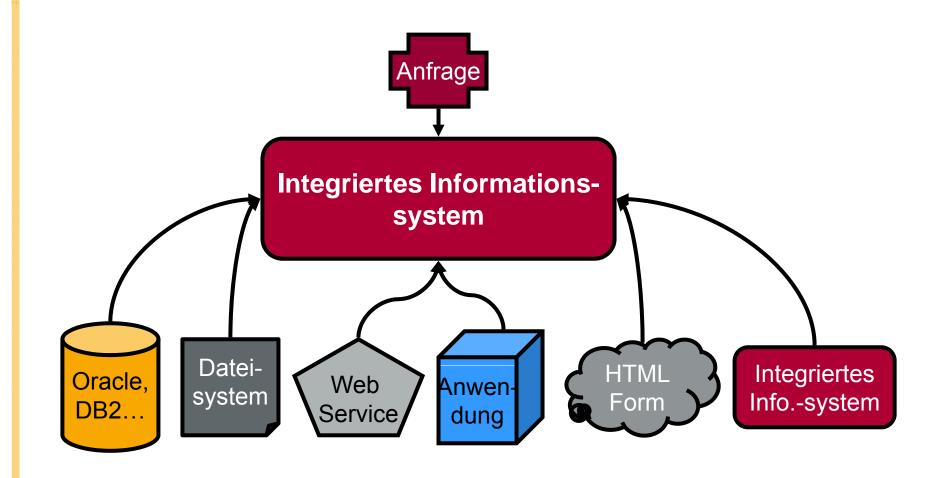
Publisher	Style Ser	rvice Name	Description	Implementation
aandreu	$RPC = \frac{Try}{\underline{It}} \underline{nev}$	uroFuzz Crypto Service	A simple demonstration of AES encryption and decryption via SOAP.	NuSOAP
XWebServices	DOC $\frac{\text{Try}}{\underline{\text{It}}}$	WebBlog	XML/SOAP based Web Service which provides Content Management integration of a Weblog (Blog) to client applications.	MS .NET
StrikeIron	$RPC = \frac{Try}{It} \underline{LM}$	<u> ISecurities</u>	Latest stock quotes from Warsaw Stock Exchange	
kylehayes	RPC Try Am	nortization Calculator	Calculates amortization given principal, periodic interest rate, total number of payments	
jbardin	RPC $\frac{\text{Try}}{\text{It}}$ Inte	erconnect	Initiates calls between one or more phones	SOAP4R
StrikeIron	DOC $\frac{\text{Try}}{\text{It}}$ $\underline{\text{U.S}}$	S. Yellow Pages	Access to yellow pages listings for 17 million U.S. businesses	
71eapcom	RPC $\frac{\text{Try}}{\text{It}}$	nversão de IP para País	Converts an IP do it's country origin, retrieves not only country name, as well iso code, region, capital, and coin	¹ NuSOAP
71eapcom	RPC TryCus	sto de Envio de Encomendas pelo T	S Calculates shipping costs from Portugal via nacional CTT post offices	NuSOAP
agenteel	RPC $\frac{\text{Try}}{\text{It}}$	digos Postales de Mexico	Codigos Postales de Mexico is a client/server implementation to lookup Postal Codes in Mexico.	gSOAP
Xignite	DOC Try Xig	gniteCompensation	Biographical and Compensation information for more than 100,000 US executives.	MS .NET
Xignite	DOC Try Xig	gniteWatchLists	Provide for the management of financial watchlists (stocks, currencies, rates)	MS .NET
Xignite	DOC Try Xig	gniteOFAC	Enables OFAC Compliance against the Specially Designed Nationals	MS .NET

Beispiele für Informationssysteme

- Anwendung
 - Informationseinheit:Java Objekt, Text
 - Anfrage:via Anwendungs-schnittstelle oder GUI
 - Struktur:Objekt (Interface)Display (GUI)

- Beispiele
 - □ Java, C++, etc
 - LegacyInformationssysteme
- Einsatzgebiete
 - Komplexe Analysen (Data Mining, Statistik)

Dahinter: Fast immer ein DBMS!


Beispiele für Informationssysteme

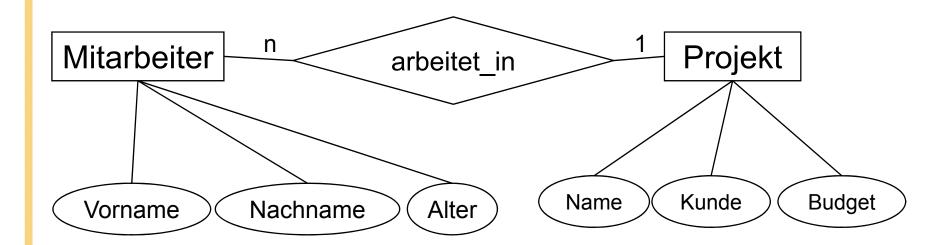
- Integriertes Informationssystem
 - Verhält sich in Anfrage,Struktur undInformationseinheit je nachDesign:
 - ♦ DBMS
 - ♦ HTML Formular
 - Web Service
 - **\lambda** ...

- Beispiele
 - Data Warehouses
 - Föderierte Datenbanken
 - Portale
- Einsatzgebiete:
 - Meta Search
 - Life Sciences
 - Int. Unternehmen
 - Intranets

Integrierte Informationssysteme

Überblick

- Vorstellung der Arbeitsgruppe
- Organisatorisches
- Datenbanken und Informationssysteme
- Das Semester an einem Beispiel
- Ausblick auf das Semester



Datenbankentwurf

46

Mitarbeiter und Projekte

Relationales Modell - Relationen

```
mitarbeiter
  p_id
                                     proj_id
                   nachname
                              alter
          vorname
                          CREATE TABLE mitarbeiter(
                                 p id
                                               INTEGER,
                                               CHAR(25),
                                 vorname
                                 nachname
                                               CHAR(50),
                                 alter
                                               INTEGER,
                                 proj_id
                                               INTEGER,
                                 PRIMARY KEY(p_id),
                                 FOREIGN KEY proj_id
                                  REFERENCES projekte )
projekte
proj_id
                     kunde
                            budget
            name
```


Relationales Modell - Extension

mitarbeiter

p_id	vorname	nachname	alter	proj_id
1	Peter	Müller	32	1
2	Stefanie	Meier	34	1
5	Petra	Weger	28	2
7	Andreas	Zwickel	44	5

projekte

proj_id	name	kunde	budget
1	DWH	BMW	400000
2	eCommerce	Metro	20000
5	SAP	RAG	50000

Felix Naumann | VL Datenbanksysteme I | Sommer 2009

Integrität

- Datentypen
- Schlüssel
- Fremdschlüssel
- Rechte
- Transaktionen

mitarbeiter

p_id	vorname	nachname	alter	proj_id
1	Peter	Müller	32	1
2	Stefanie	Meier	34	1
5	Petra	Weger	28	2
7	Andreas	Zwickel	44	5

projekte

proj_id	name	kunde	budget
1	DWH	BMW	400000
2	eCommerce	Metro	20000
5	SAP	RAG	50000

Anfragen

50

- Deklarativ:
 - Nicht "Wie erzeuge ich ein Anfrageergebnis?"
 - Sondern "Was soll im Anfrageergebnis stehen?"
- Sprachlich
 - Nachnamen aller Personen, die in kleinen Projekten arbeiten
- Relationale Algebra
 - \square $\Pi_{\text{m.nachn.}} \sigma_{\text{p.budget} < 40000} (\sigma_{\text{m.proj_id}} = p.\text{proj_id} (\text{mit. x proj.}))$
- SQL
 - **SELECT** m.nachname FROM Mitarbeiter m, Projekte p WHERE p.budget < 40000 AND m.proj id = p.proj id

Anfragebearbeitung – Problem

Anfragen

- Anfragen sind deklarativ.
- Anfragen müssen in eine ausführbare (prozedurale) Form transformiert werden.

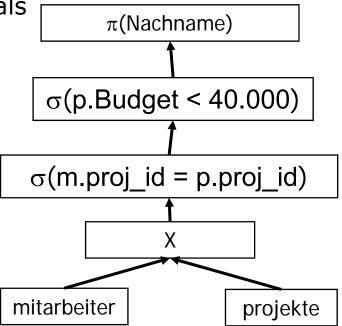
Ziele

- QEP prozeduraler Query Execution Plan
- Optimierung (Effizienz)
 - Schnell
 - Wenig Ressourcenverbrauch (CPU, I/O, RAM, Bandbreite)

Anfragebearbeitung

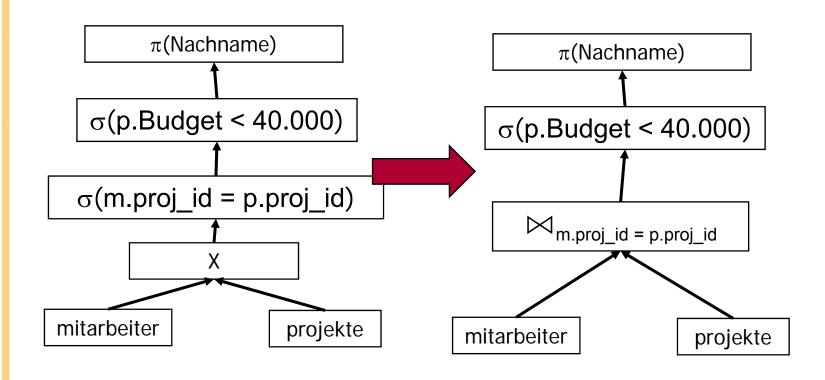
Genereller Ablauf

- Parsen der Anfrage (Syntax)
- 2. Überprüfen der Elemente (Semantik)
- 3. Berechnung von möglichen Ausführungsplänen
 - Exponentiell viele
- 4. Wahl des optimalen Ausführungsplans
 - Regelbasierter Optimierer
 - Kostenbasierter Optimierer
- 5. Anfrageausführung

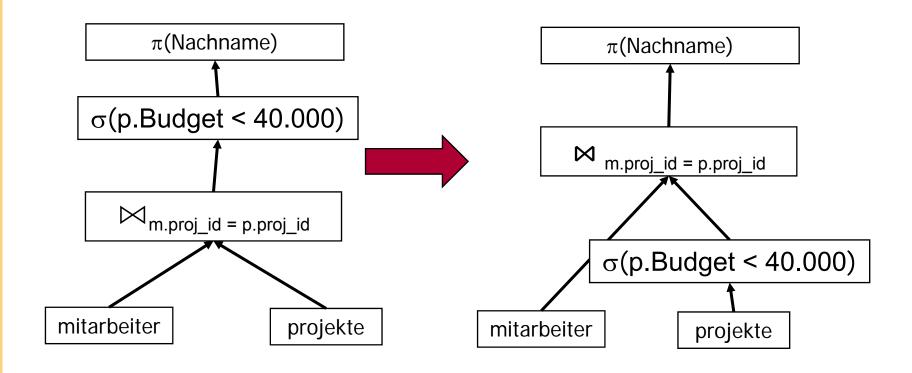


Anfragebearbeitung – Ausführung

Interpretation des Ausführungsplans als Baum


- 1. Kartesisches Produkt
- Zwei Selektionen
- 3. Projektion

Sehr aufwendig!



Anfragebearbeitung – Beispiel

Anfragebearbeitung – Beispiel


```
■ CREATE VIEW MA_MiniProjekte AS (
 SELECT m.nachname
 FROM
        Mitarbeiter m, Projekte p
 WHERE
        p.budget < 40000
        m.proj_id = p.proj_id )
 AND
```

- **SELECT** * **FROM** MA_MiniProjekte
- Probleme:
 - Anfrageplanung
 - Materialisierung
 - Updates durch Sichten hindurch

Transaktionsmanagement

Problem: Mehrbenutzerbetrieb

- INSERT INTO mitarbeiter VALUES (Hans, Müller, 36, 5)
- **DELETE FROM** projekte **WHERE** proj_id = 5

Reihenfolge der Operationen ist nicht unabhängig

- Serialisierbarkeit
- Sperren

XML & Datenbanken

- XML und XML Schema
- Speicherung datenzentrierter XML-Dokumente
- Speicherung dokumentzentrierter XML-Dokumenten
- Speicherung von XML in bestehende Datenbank
- XPath und XQuery
- Indizierung

Überblick

- Vorstellung der Arbeitsgruppe
- Organisatorisches
- Datenbanken und Informationssysteme
- Das Semester an einem Beispiel

Ausblick auf das Semester

60

Kurzüberblick

- Einführung & Beispiel
- Datenbanksysteme Historie
- ER-Modellierung Ubung 1: ER-Modellierung
- Relationaler Datenbankentwurf ■ Übung 2: Datenbankentwurf
- Relationale Algebra Ubung 3: Relationale Algebra
- SQL _____ Übung 4: SQL
- Integrität, Trigger und JDBC Übung 5: JDBC
- Anfragebearbeitung und optimierung
- Transaktionsmanagement _____ Übung 7: Transaktionen
- XML
- Data Warehouses

Übung: Klausurvorbereitung

Die Themen im Einzelnen

- Was sind Datenbanken?
 - Motivation, Historie, Datenunabhängigkeit, Einsatzgebiete
- Datenbankentwurf im ER-Modell
 - Entities, Relationships, Kardinalitäten, Diagramme
- Relationaler Datenbankentwurf
 - Relationales Modell, ER -> Relational, Normalformen,
 Transformationseigenschaften
- Relationale Algebra
 - Kriterien für Anfragesprachen, Operatoren, Transformationen
- SQL
 - □ SQL DDL, SQL DML, SELECT ... FROM ... WHERE ...

Die Themen

- Integrität und Trigger
 - □ Fremdschlüssel, weitere Bedingungen, Trigger
 - Datenbankprogrammierung
 - JDBC
 - Sichten und Zugriffskontrolle
 - Sichtenkonzept, Änderungen auf Sichten, Rechtevergabe
 - Anfragebearbeitung und -optimierung
 - Anfragebäume, Kostenmodell, Transformationen, Dynamische Programmierung
 - Transaktionsverwaltung
 - Mehrbenutzerbetrieb, Serialisierbarkeit, Sperrprotokolle, Fehlerbehandlung, Isolationsebenen in SQL
 - XML
 - Ausblicke
 - Data Warehouses, Data Mining, Informationsintegration, DBS II

63

Fragen bitte jederzeit!

In der VL

Sprechstunde: Dienstags 15 - 16 Uhr

Email: naumann@hpi.uni-potsdam.de

■ Telefon: (0331) 5509 280

Anregungen zur Verbesserung!

