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■ Lectures 

□DBS I (Bachelor) 

□Data Profiling 

■Seminars 

□Bachelor: Text Mining 
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Other courses in this semester 
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■ Lectures 

□Mondays 15:15 – 16:45 

□Thursdays 13:30 – 15:00 

■Exercises 

□ In parallel 

■ First lecture 

□20.4.2017 

■ Last lecture 

□27.7.2017 

■See Web for timetable updates! 

■Exam 

□Oral or written exam 

□ Probably first week after lectures 

■ Prerequisites 

□To participate 

– Background in databases and 
their implementation 
(e.g. DBS I and II) 

□ For exam 

– Attend lectures 

– Active participation in exercises 

– “Successfully” complete exercise 
tasks 
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Dates and exercises 



■Evaluation at end of semester 

 

■Question any time please! 

□During lectures 

□During consultation: Tuesdays 13-15 

□ Email: naumann@hpi.de 

 

■Also: Give feedback about 

□ improving lectures 

□ informational material 

□ organization 
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Feedback 



■No single textbook 

■References to various papers during lecture 

■All papers are available either via email from me or (preferred) from 

□Google Scholar: http://scholar.google.com/  

□DBLP: http://www.informatik.uni-trier.de/~ley/db/index.html  

□CiteSeer: http://citeseer.ist.psu.edu/ 

□ACM Digital Library: www.acm.org/dl/  

□Homepages of authors 

 

■ Profiling relational data: a survey. Ziawasch Abedjan, Lukasz Golab, Felix 
Naumann, VLDB Journal, vol. 24(4):557-581 2015 

□ https://hpi.de/fileadmin/user_upload/fachgebiete/naumann/publications/20
15/dataprofiling_main.pdf 
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Literature 
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■Algorithm design and programming exercises 

□Data profiling (emphasis on efficiency and scalability) 

□Unique column combinations 

□ Inclusion dependencies 

□ Functional dependencies 

 

■Self-motivation wrt. good solutions! 
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Exercise 



■Which semester? 

■HPI or UP? 

■Erasmus o.ä.? 

□ English? 

■Database knowledge? 

□Which other related lectures? 

■Your motivation? 
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Introduction: Audience 
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We’re now entering what I call the “Industrial Revolution of Data,” where the 
majority of data will be stamped out by machines: software logs, cameras, 
microphones, RFID readers, wireless sensor networks and so on.  
These machines generate data a lot faster than people can, and their 
production rates will grow exponentially with Moore’s Law. Storing this data is 
cheap, and it can be mined for valuable information. 

■ Joe Hellerstein 
http://gigaom.com/2008/11/09/mapreduce-leads-the-way-for-parallel-
programming/  

Big Data Motivation 
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Military Projection of Sensor Data Volume (later refuted) 
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Bob Gourley: Thoughts on the future of Information Sharing Technology 



Big Data trends 
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big data data warehouse hadoop 

Quelle: Google trends, Apr. 2017 



Big data is a collection of data sets so large and complex that it becomes 
difficult to process using on-hand database management tools or traditional 
data processing applications.  

Defining Big Data 
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If data is too big, too fast, or too hard for 
existing tools to process, it is Big Data. 

Capture 

Extraction 

Curation Storage 

Search 

Sharing Querying 

Analysis 

Visualization 



■Volume 

□12 terabytes of Tweets: product sentiment analysis 

□350 billion annual meter readings: predict power consumption 

■Velocity 

□5 million daily trade events: identify potential fraud 

□500 million daily call detail records: predict customer churn faster 

■Variety 

□100’s of live video feeds from surveillance cameras 

□80% data growth in images, video and documents to improve customer 
satisfaction 

■Veracity (Wahrhaftigkeit) 

□1 in 3 business leaders don’t trust the information they use to make 
decisions. 
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Gartner’s 3 (+ 1) V’s – 
Properties of Big Data 

http://www.ibm.com/software/data/bigdata/ 



■Viscosity 

□ Integration and dataflow friction 

■Venue 

□Different locations that require different access & extraction methods 

■Vocabulary 

□Different language and vocabulary 

■Value 

□Added-value of data to organization and use-case 

■Virality 

□Speed of dispersal among community 

■Variability 

□Data, formats, schema, semantics change 

Felix Naumann                         

Data Profiling                      

Summer 2017 

17 

More V‘s 



■Big Data can be very small  

□Streaming data from aircraft sensors 

□Hundred thousand sensors on an aircraft is “big data” 

□ Each producing an eight byte reading every second 

□ Less than 3GB of data in an hour of flying  

– (100,000 sensors x 60 minutes x 60 seconds x 8 bytes). 

■Not all large datasets are “big”. 

□Video streams plus metadata 

□ Telco calls and internet connections 

□Can be parsed extremely quickly if content is well structured. 

□ From http://mike2.openmethodology.org/wiki/Big_Data_Definition  

■The task at hand makes data “big”. 
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Big and Small 

http://mike2.openmethodology.org/wiki/Big_Data_Definition


■Has been used to sell more hardware and software. 

■Has become a shallow buzzword. 

 

■But: The actual big data is there, has added-value, and can be used 
effectively. 

□Data mining 

□Marketing / advertising 

□Collaborative filtering 

□Raytheon’s RIOT software 

□NSA, etc.  

□Kreditech, Lenddo, Klout, … 

□… 
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„Big data“ in business 



■Amazon.com 

□Millions of back-end operations every day 

□Catalog, searches, clicks, wish lists, shopping carts, 
third-party sellers, … 

■Walmart 

□> 1 million customer transactions per hour 

□2.5 petabytes (2560 terabytes) 

■ Facebook  

□250 PB, 600TB added daily (2013) 

□1 billion photos on one day (Halloween) 

■ FICO Credit Card Fraud Detection 

□ Protects 2.1 billion active accounts 
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„Big data“ in business 



■Big Data Research and Development Initiative 

□Explored how big data addresses important problems 
facing the government. 

□84 different big data programs spread across six 
departments 

■Data.gov 

□> 104.000 datasets 

■Government owns six of the ten most powerful 
supercomputers in the world. 

■NASA Center for Climate Simulation 

□32 petabytes of climate observations and simulations Felix Naumann                         
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Big Government Data (USA) 



■ Large Hadron Collider 

□150 million sensors; 40 million deliveries per second 

□600 million collisions per second 

□ Theoretically: 500 exabytes per day (500 quintillion bytes) 

□ Filtering: 100 collisions of interest per second  

– Reduction rate of 99.999% of these streams 

□25 petabytes annual rate before replication (2012) 

□200 petabytes after replication 
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Examples from Wikipedia – Big Science 



■Sloan Digital Sky Survey (SDSS) 

□Began collecting astronomical data in 2000 

□Amassed more data in first few weeks than all data collected in the history 
of astronomy.  

□200 GB per night 

□Stores 140 terabytes of information 

□ Large Synoptic Survey Telescope, successor to SDSS 

– Online in 2016 

– Will acquire that amount of data every five days. 

■Human genome  

□Originally took 10 years to process;  

□Now it can be achieved in one day. 
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Examples from Wikipedia - Science 



■The End of Theory: The Data Deluge Makes the Scientific Method Obsolete 
(Chris Anderson, Wired, 2008) 

□All models are wrong, but some are useful.  (George Box) 

□All models are wrong, and increasingly you can succeed without them. 
(Peter Norvig, Google) 

 

■Before Big Data: Correlation is not causation! 

■With Big Data: Who cares?  

□ Traditional approach to science — hypothesize, model, test — is becoming 
obsolete.  

 

■ Petabytes allow us to say: "Correlation is enough."  
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Big Data = Science? 

http://www.wired.com/science/discoveries/magazine/16-07/pb_theory 



Correlation vs. Causation 
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Quelle: Spurious correlations (www.tylervigen.com) 



Correlation vs. Causation 
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■ Long tradition in databases 

■Vertical and horizontal partitioning 

■Shared nothing 

■Each machine runs same single-machine program 

 

■Other trends 

□Map/Reduce / Hadoop 

□Multicore CPUs 

□GPGPUs 
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Addressing Big Data: Parallelization 



■ Instruction-level Parallelism 

□Single instructions are automatically processed in parallel 

□ Example: Modern CPUs with multiple pipelines and instruction units. 

■Data Parallelism 

□Different data can be processed independently 

□ Each processor executes the same operations on its share of the input data. 

□ Example: Distributing loop iterations over multiple processors 

□ Example: GPU processing 

■Task Parallelism 

□Different tasks are distributed among the processors/nodes 

□ Each processor executes a different thread/process.  

□ Example: Threaded programs. 
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Levels of Parallelism on Hardware 



Data profiling and data cleansing are prerequisites for all of these! 

Other technologies to approach big data / data sciences 

Big 
Data 

Rule  
Mining Classif. 

Cluster analysis 

Crowd 

Integration 

Sentiment 
Analysis 

Signal 
Processing 

Pattern 
recognition 

Anomalies 

Predictive 
modeling ML 

NLP 

Simulation 

Time series 

Visualization 

Parallel databases 

Distributed 
databases 

Search 

Distributed file 
systems 

Cloud 
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■ Industry keynote speakers on credit ratings using big data 

□ “If the data is out there, we will find it.” 

□ “… and that is why I closed my Twitter account.” 

□ “… and that is why I had my son close his Twitter account.” 
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Big Data and Ethics 
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■ Linked data 

□ http://linkeddata.org/ 

■ Government data 

□ data.gov, data.gov.uk 

□ Eurostat 

■ Scientific data 

□ Genes, proteins, chemicals 

□ Scientific articles 

□ Climate 

□ Astronomy 

■ Published data 

□ Tweet (limited) 

□ Crawls 

■ Historical data 

□ Stock prices 

■ Transactional data 

□ Music purchases 

□ Retail-data 

■ Social networks 

□ Tweets, Facebook data 

□ Likes, ratings 

■ E-Mails 

■ Web logs 

□ Per person 

□ Per site 

■ Sensor data 

■ Military data 
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Open vs. closed source 

Open Closed 

http://linkeddata.org/


The Linking Open Data cloud diagram 
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Linking Open Data cloud diagram 2017, by 
Andrejs Abele, John P. McCrae, Paul Buitelaar, 
Anja Jentzsch and Richard Cyganiak. 
http://lod-cloud.net/ 



Wikipedia Infoboxes 
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■ From 125 languages of Wikipedia 

■3 billion triples 

□580 million English 

■English DBpedia 

□4.6 million things 

□1,445,000 persons 

□735,000 places 

□411,000 creative works 

□241,000 organizations 

□251,000 species 

□… 

 

■http://wiki.dbpedia.org/about/facts-figures  

Felix Naumann                         

Data Profiling                      

Summer 2017 

35 

DBpedia statistics 

http://wiki.dbpedia.org/about/facts-figures
http://wiki.dbpedia.org/about/facts-figures
http://wiki.dbpedia.org/about/facts-figures


■Government data 

□www.data.gov 
(380k data sets) 

□ data.gov.uk (9k) 

□ ec.europa.eu/eurostat 

■ Finance / business data 

■Scientific databases 

□www.uniprot.org 

□ skyserver.sdss.org 

■The Web 

□HTML tables and lists: billions 

□General sources: Dbpedia (3.7m), freebase (23m), microformats… 

□Domain-specific sources: IMDB,  
Gracenote, isbndb, … 

Felix Naumann                         

Data Profiling                      

Summer 2017 

36 

And more sources 



■Download 

□Data volumes make this increasingly infeasible 

□ Fedex HDDs 

□ Fedex tissue samples instead of sequence data 

■Generating big (but synthetic) data 

1. Automatically insert interesting features and properties 

2. Then „magically“ detect them 

■Sharing data 

□Repeatability of experiments 

□Not possible for commercial organizations Felix Naumann                         
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Getting the data 



■ Store basic demographic information about each person 

□ age, sex, income, ethnicity, language, religion, housing status, location 

□ Packed in a 128-bit record 

■ World population: 6.75 billion rows, 10 columns, 128 bit each 

□ About 150 GB 

■ What is the median age by sex for each country? 

□ Algorithmic solution 

– 500$ Desktop: I/O-bound; 15min reading the table 

– 15,000$ Server with RAM: CPUI-bound; <1min 

□ Database solution 

– Aborted bulk load to PostgreSQL – disk full  
(bits vs. integer and DBMS inflation) 

□ Small database solution (3 countries, 2% of data) 

– SELECT country,age,sex,count(*)  
FROM people GROUP BY country,age,sex; 

– > 24h, because of poor analysis: Sorting instead of hashing 

– “PostgreSQL’s difficulty here was in analyzing [=profiling] the stored data, not in storing 
it.” 

■ From http://queue.acm.org/detail.cfm?id=1563874  
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Pathologies of Big Data 

http://queue.acm.org/detail.cfm?id=1563874


Big data in Wikipedia 
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http://en.wikipedia.org/wiki/File:Viegas-UserActivityonWikipedia.gif 

Visualization of edits by user „Pearle“ 
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■ Data profiling is the process of examining the data available in an existing data 
source [...] and collecting statistics and information about that data.  

■ Wikipedia 03/2013 

■ Data profiling refers to the activity of creating small but informative summaries of 
a database. 

■ Ted Johnson, Encyclopedia of Database Systems 

 

■ Data profiling vs. data mining 

□ Data profiling gathers technical metadata to support data management 

□ Data mining and data analytics discovers non-obvious results to support 
business management 

□ Data profiling results: information about columns and column sets 

□ Data mining results: information about rows or row sets (clustering, 
summarization, association rules, etc.) 

 

■ Define as a set of data profiling tasks / results 
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Definition Data Profiling 



Classification of Profiling Tasks 
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Single column 

Cardinalities 

Patterns and  
data types 

Value  
distributions 

Multiple 
columns 

Uniqueness  

Key discovery 

Conditional 

Partial 

Inclusion 
dependencies 

Foreign key 
discovery 

Conditional 

Partial 

Functional 
dependencies 

Conditional 

Partial 



■Query optimization 

□Counts and histograms 

■Data cleansing 

□ Patterns and violations 

■Data integration 

□Cross-DB inclusion dependencies 

■Scientific data management 

□Handle new datasets 

■Data analytics and mining 

□ Profiling as preparation to decide on models and questions 

■Database reverse engineering 

 

■Data profiling as preparation for any other data management task 
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Use Cases for Profiling 



■Computational complexity 

□Number of rows 

– Sorting, hashing 

□Number of columns 

– Number of column combinations 

■ Large solution space 

■ I/O-bound due to large data sets and distribution 

 

■New data types (beyond strings and numbers) 

■New data models (beyond relational): RDF, XML, etc. 

■New requirements 

□User-oriented 

□Streaming 

□ Etc. – see next slide set 
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Challenges of (Big) Data Profiling 



■Size of lattice: 2n-1 (empty set not considered) 

■Nodes at level 1: n 

■Nodes at level n: 1 

■Nodes at level k: 
𝑛
𝑘

=
𝑛!

𝑛−𝑘 !𝑘!
 

■ Largest level at n/2: 
𝑛
𝑛/2 =

𝑛!

𝑛

2
!
2 

■
𝑛
𝑘

∈ Θ 𝑛𝑘  , i.e., bounded from above and below 
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Large solution space 
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■Big Data (today) and Data Profiling Introduction 

■Data Stuctures 

□ Lattices, Apriori traversal, complexity, agree-sets/evidence sets, PLIs, 
Bloom filters 

■Unique Column Combinations (UCCs)  

□A-Priori, DUCC, HCA?, Gordian?, Swan? 

■Scientific experiments 

■ Functional Dependencies (FDs) 

□ TANE, FD-Mine, FDep, HyFD + approximate TANE 

□ FD-measures for ranking (g1-3, support & confidence) 

■ Inclusion Dependencies (INDs)  

□Spider, Binder, Find2, zigzag, SINDY?, MANY, cINDs? 

■Semantics 

□Key & FK detection, normalization, interpretation 
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Schedule 



■Order Dependencies (ODs) 

□ORDER, Szlichta-paper 

■Denial Constraints  

□ FastDC, Hydra 

■Data Synopses 

■Column Uniqueness: Approximately counting number of unique values 

■Approximation 

□ partial, conditional, approximate as concepts, selected approaches 

■RDF-Profiling (optional) 

■Outlook 

 

■Guest lectures 

□ Thomas Bläsius 

□Giuseppe Polese 
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Schedule 


