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Case Report

e Patient with pneumonia and cough
e Normal dosage of codeine
e Patient not responding any more at day 4

e What's going on?
- PubMed ,,Codeine intoxication“ -> 170 abstracts
- Aren’t there better ways?

Case report from Univ. Hospital Geneva, thanks to Christian Meisel, Roche
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Case Report

e Patient with pneumonia and cough

e Normal dosage of codeine

e Patient not responding any more at day 4
e What's going on?

- PubMed ,, Codeine intoxication*“ -> —170 abstracts
- Aren’t there better ways?

e Alibaba

- Potential cause is found quickly
- Link to evidence provided

e Original article is at position 28 in PubMed result list
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Finding Relevant Knowledge

e “Find information about ...”
e Much knowledge is in text (and only text)

Find articles with information about ...

- PubMed/Medline Pubkmed

- Information Retrieval

Find information ... inside each article
- Reading many abstracts is tedious
- What about a “summarize results” button?
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Question

“Which proteins are associated to RAB5?

|

Class of terms;
not a term
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Outline of This Talk

e Text Mining (Information Extraction)

e Named Entity Recognition
- Using Machine Learning

e Evaluation
e Disambiguation
e AliBaba Walk Through

e Conclusions
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What we need to do

Z-100 is an arabinomannan extracted from Mycobacterium tuberculosis that has various
immunomodulatory activities, such as the induction of interleukin 12, interferon gamma
(IFN-gamma) and beta-chemokines. The effects of Z-100 on human immunodeficiency
virus type 1 (HIV-1) replication in human monocyte-derived macrophages (MDMs) are
investigated in this paper. In MDMs, Z-100 markedly suppressed the replication of not only
macrophage-tropic (M-tropic) HIV-1 strain (HIV-1JR-CSF), but also HIV-1 pseudotypes
that possessed amphotropic Moloney murine leukemia virus or vesicular stomatitis virus G
envelopes. Z-100 was found to inhibit HIVV-1 expression, even when added 24 h after
infection. In addition, it substantially inhibited the expression of the pNL43lucDeltaenv
vector (in which the env gene is defective and the nef gene is replaced with the firefly
luciferase gene) when this vector was transfected directly into MDMs. These findings
suggest that Z-100 inhibits virus replication, mainly at HIV-1 transcription. However, Z-100
also downregulated expression of the cell surface receptors CD4 and CCR5 in MDMs,
suggesting some inhibitory effect on HIV-1 entry. Further experiments revealed that Z-100
induced IFN-beta production in these cells, resulting in induction of the 16-kDa
CCAAT/enhancer binding protein (C/EBP) beta transcription factor that represses HIV-1
long terminal repeat transcription. These effects were alleviated by SB 203580, a specific
inhibitor of p38 mitogen-activated protein kinases (MAPK), indicating that the p38 MAPK
signalling pathway was involved in Z-100-induced repression of HIV-1 replication in
MDMs. These findings suggest that Z-100 might be a useful immunomodulator for control
| of HIV-1 infection.
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Find Names Entities (= Entity Names)

Z-100i1s an arabinomannan extracted from Mycobacterium tuberculosis that has various
Immunomodulatory activities, such as the induction of interleukin 12, interferon gamma
(IFN-gamma) and beta-chemokines. The effects of Z-100 on human immunodeficiency
virus type 1 (HIV-1) replication in human ( ) are
investigated in this paper. In , Z-100 markedly suppressed the replication of not only
macrophage-tropic (M-tropic) HIV-1 strain (HIV-1JR-CSF), but also HIVV-1 pseudotypes
that possessed amphotropic Moloney murine leukemia virus or vesicular stomatitis virus G
envelopes. Z-100 was found to inhibit HIVV-1 expression, even when added 24 h after
infection. In addition, it substantially inhibited the expression of the pNL43lucDeltaenv
vector (in which the env gene is defective and the nef gene is replaced with the firefly
luciferase gene) when this vector was transfected directly into . These findings
suggest that Z-100 inhibits virus replication, mainly at HI\V-1 transcription. However, Z-
100 also downregulated expression of the cell surface receptors CD4 and CCR5 in
suggesting some inhibitory effect on HIV-1 entry. Further experiments revealed that Z-100
induced IFN-beta production in these cells, resulting in induction of the 16-kDa
CCAAT/enhancer binding protein (C/EBP) beta transcription factor that represses
HIV-1 long terminal repeat transcription. These effects were alleviated by SB 203580, a
specific inhibitor of p38 mitogen-activated protein kinases (MAPK), indicating that the
p38 MAPK signalling pathway was involved in Z-100-induced repression of HIV-1
replication in . These findings suggest that Z-100 might be a useful

|/ immunomodulator for control of HIV-1 infection.
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Find Relationships

(IFN-gamma) and beta-chemokines. The eftects of Z-100 on human |mmunoe iciency
virus type 1 (HIV-1) replication in human ( ) are
investigated in this paper. In , Z-100 markedly suppressed the replication of not only
macrophage- troplc (M- troplc) HIV- 1 straln (HIV LIR- CSF) but also HIV-1 pseudotypes
that possessed.g a\drus or vesicular stomatitis virus G
envelopes. e even when added 24 h after
infection. [naddition, it substantially inhibited the expression of the pNL43lucDeltaenv
vector (in which the env gene is defective and the nef gene is replaced with the firefly
luciferase gene) when this vector was transfected directly into . These findings
suggest that Z-100 inhibits virus replication, mainly at HI\V-1 transcription. However, Z-
100 also downregulated expression of the cell surface receptors CD4 and CCRS in

HIV-1 long terminal repeat transcription. These effects were alleviated by
specific inhibitor of p38 mitogen-activated protein kinases (MAPK), indicating that the
p38 MAPK signalling pathway was involved in Z-100-induced repression of HIV-1
replication in . These findings suggest that Z-100 might be a useful

|/ |mmunomodulator for control of HIV 1 infection.
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Typical IE-Workflow

Document Retrieval

Text Preprocessing

Linguistic Annotation

Named Entity Recognition

Named Entity Normalization

Relationship Extraction

[ ]
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Understanding Text is Difficult (even for us)

» 1he PAX1 protein represses MyoD-dependent
transcription by inhibiting MyoD-binding to the KIX
domain of p300.*

PAX1
MyoD
binds_to *" jnpibjts binding ~ "
B T represses
has _domain
KIX r pP300 \

has_transcriptional activity
when_bound by MyoD

[ ]
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Approaches to Text Understanding

e “Al” approach
- Natural language processing
- Full parsing, complete syntax tree

SBAR-NOM.-SBI

WHNP-07

E

WP NP-SRI VP

S

VP

VED  PP-PRD
| o

was IN

- Aims at “understanding” the text v e Vb Re deweS W
she did N(ill\lk —N()ll\lli— \P‘}G L\J{ PPCH{\
e Text mining
- Simple NLP and machine learning
e Stemming, part-of-speech (chunking)
e Classification, pattern matching
- Pragmatic approach
- Usually not perfect NOM VRB PRP NOM
- Needs careful evaluation FLICE | bind o FADD
FLICE binds to FADD
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TOC

e Text Mining

e Named Entity Recognition
- Using Machine Learning

e Evaluation

e Disambiguation

e AliBaba Walk Through
e Conclusions
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Named Entity Recognition

e Named Entity Recognition (NER): Find all mentionings of
entity names in text
- For one class (genes) or multiple classes (genes, diseases, species, ...)
- Entity names may span more than one token
- Does not identify the entity

e Named Entity Normalization (NEN): Find all mentionings of
entity names in text and assign each entity its canonical ID

»Canonical ID“ is highly application specific

Typical approach: Map mentioning into a set of known objects

e A dictionary, a database, a list, ...
e Alternative: Find equal entities in multiple text — duplicate detection”

What happens in case of incomplete dictionaries / new objects?
NEN is necessary to link entities to further information

e NER is prerequisite for NEN

[ ]
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Where i1s NEN?

Humboldt
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Examples

“High plasma AVP levels observed in the two cases suggest that
SSRIs stimulate AVP secretion, thereby causing SIADH .*

“A Drosophila shc gene product is implicated in signaling by the
DER receptor tyrosine kinase.*

“The human T cell leukemia lymphotropic virus type 1 Tax
protein represses MyoD-dependent transcription by inhibiting
MyoD-binding to the KIX domain of p300.“

[ ]
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Examples

“High plasma AVP levels observed in the two cases suggest that
SSRIs stimulate AVP secretion, thereby causing SIADH .*

e NER requires domain knowledge

“A Drosophila shc gene product is implicated in signaling by the
DER receptor tyrosine kinase.*

“The human T cell leukemia lymphotropic virus type 1 Tax
protein represses MyoD-dependent transcription by inhibiting
MyoD-binding to the KIX domain of p300.“
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Examples

“High plasma AVP levels observed in the two cases suggest that
SSRIs stimulate AVP secretion, thereby causing SIADH .*

e NER requires domain knowledge

“A Drosophila shc gene product is implicated in signaling by the
DER receptor tyrosine kinase.*

e Has to deal with ambiguities (context is important)

“The human T cell leukemia lymphotropic virus type 1 Tax
protein represses MyoD-dependent transcription by inhibiting
MyoD-binding to the KIX domain of p300.“
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Examples

“High plasma AVP levels observed in the two cases suggest that
SSRIs stimulate AVP secretion, thereby causing SIADH .*

e Requires domain knowledge

“A Drosophila shc gene product is implicated in signaling by the
DER receptor tyrosine kinase.*

e Has to deal with ambiguities (context is important)

“The human T cell leukemia lymphotropic virus type 1 Tax
protein represses MyoD-dependent transcription by inhibiting
MyoD-binding to the KIX domain of p300.“

e Often has no clear answer

[ ]
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Evaluation

Quality of a NER method is measured in terms of precision and recall

Reality
" _
Prediction + TruePositive FalsePositive
(TP) (FP)
- | FalseNegative | TrueNegative
(FN) (TN)

Precision = TP/(TP+FP)

- Percentage of real hits among reported hits

Recall = TP/(TP+FN)

- Percentage of real hits found

Trade-Off

- Usually, NER algorithms compute a score per potential entity

- Hopefully, the score correlates to the probability that a sequence of token is a
mentioning
- Use threshold on score
e High threshold: Good precision, bas recall
e Low threshold: Low precision, high recall

mmmm Ul Leser: Named Entity Recognition, Hasso-Plattner-Institut, 11/2007 23



Example

, thereby causing |SIADH]|. A

Drosophila shc gene product jis implicated in signaling by the DER

receptor tyrosine kinase

nghlplasma AVP Ievels observed In the two caest that

Real: Positive Real: Negative
Alg: Positive TP =2 FP =2
Alg: Negative FN =3 ?

e Precision = TP/(TP+FP) = 2/4 = 50%
e Recall = TP/(TP+FN) = 2/5 = 40%

I = Im Ulf Leser: Named Entity Recognition, Hasso-Plattner-Institut, 11/2007 24



NER: Two Main Approaches

e Dictionary-based
- Build a dictionary of all known entities
Match every mentioning in the text against all dictionary entries

Usually: High precision, low recall (depending on dictionary)
e Increase in recall though fuzzy string matching (or dictionary curation)

Advantages: Simple, fast, included NEN
Disadvantages: Bad performance

e Using classification / machine learning
- Predict for each (seq. of) token whether it is an entity mentioning or not
- Learn model based on manually annotated training text
- Can be tuned towards balanced precision / recall
- Advantages: Good performance, also recognizes unseen entities

- Disadvantages: Slow, complex, needs training data, assumes some
communality among entity names, requires additional NEN step

T Ulf Leser: Named Entity Recognition, Hasso-Plattner-Institut, 11/2007 25



TOC

e Text Mining

e Named Entity Recognition
- Using Machine Learning

e Evaluation

e Disambiguation

e AliBaba Walk Through
e Conclusions

[ ]
Mmj UIf Leser: Named Entity Recognition, Hasso-Plattner-Institut, 11/2007

26



Classification-Based NER

e Various suggestions

e In the following
- Convert each token into a feature vector
- Binary classifier: Classify each token as ENT/NOENT based on vector
- Classifier learns model from training text
e Roughly: Learn typical feature values for tokens that are entity names

- Recognize sequences of tokens forming one entity using a rule-based post-
processing

e Properties
- Simple approach with limited success
- Main problem: Disregards context of tokens

- Better models: Include sequence of types of tokens into model
e Hidden Markov Models, Random Fields, ...

[ ]
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From Token to Features

e Feature selection and construction is the main challenge In
classification

e Be creative! Find commonalities! Don’t think binary!
e Find hints!

High plasma AVP levels observed in the two cases suggest that
SSRIs stimulate AVP secretion, thereby causing SIADH.

A Drosophila shc gene product is implicated in signaling by the
DER receptor tyrosine kinase.

The human T cell leukemia lymphotropic virus type 1 Tax protein
represses MyoD-dependent transcription by inhibiting MyoD-
binding to the KIX domain of p300.

[ ]
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Exemplary Features

Humboldt
Universitat

Feature Weight Example
Word tf * idf kinase
n-grams
N=1 tf * idf k,i,n,a,s, e
N=2 tf * idf ki, in, na, as, se
N=3 tf * idf kin, ina, nas, ase
Special signs
HasNumbers [1]0] p300
HasCapitals [1]0] abLIM
AllCaps [1]0] DMD
InitCap [1]0] Pax
HasNumbers & Letters [1]0] cMOAT2, EST90757
Context
predecessing word [1]0] Gene
succeeding word [1]0] Product
distance to keywords 1/(1+dist) (list of 15)
Dictionary
Word match [1]0]
Phrase match [1]0]

memem - UIf Leser: Named Entity Recognition, Hasso-Plattner-Institut, 11/2007
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Example: Bayes' Classification

Simple method based on conditional probabilities
- Works surprisingly well in practice

Given

- Set O of training objects, two classes c,, ¢, (GENE or NOTGENE)

- Objects are described as set F of binary features
e hasNumbers(p300) = TRUE

We seek p(c;]o), the probability of an object 00O being a
member of class c
- For every ¢, and every o

Each o is assigned to ¢ where p(c|o) = argmax p(c;|0)
Rewrite o into feature representation

p(c|o) = p(c| f,[o],..., f,[o]) = p(c| f},..., f,)

[ ]
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Probabilities

e What we learn from the training data

- The A-Priori probability p(f) of every feature f
e For how many object f resolves to true?

- The A-Priori probability p(c) of every class ceC
e How many objects in the training set are of class c?

- The conditional probabilities p(f|c) for feature f being true in class c
e Proportion of objects in ¢ with feature f among all objects in ¢

e Rephrase and use Bayes’ theorem

_ p(fy,..., T, ]¢)* p(c)

p(fy,..., T,)
T

pc] forn f,) ~ p(fyyees T, 1€)* P(C)

Term can be dropped; value is identical for all classes, and
we only need the largest final value (not its actual value)

[ ]
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Naive Bayes

e We have p(c|o) = p(fy,..., f,[c)* p(c)
e The first term cannot be learned with any reasonably large
training set

- There are 2" combinations of feature values
- Every combination will be to sparse to obtain meaningful frequencies

e Solution: Be ,naive”
- Assume statistical independence of all features

e Then
p(fyreens £y 1€) = P(F, | C)*..* p(f, | €)

p(cl0) = pe)* T p(f,Ic)

[ ]
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Beispiel

e A-Priori

P(c=gene)=3/7
P(c=no)=1-p(c=gene)=4/7
p(f,;=1)=1/7

P(f,=1)=3/5

P(f,=1|gene)=1/3, P(f;=1|no)=0
P(f,=1|gene)=1/3, p(f,=1|no)=2/4
Smoothing: P(f;=1|no0)=0,01

Let's rate PAX5

- hasCap = hasNumber=1
Gene or not?

Name hasNumber | hasCap | class
AVP 0 1 gene
indicating 0 0 no
p300 1 0 gene
shc 0 0 gene
SSRIs 0 1 no
observed 0 0 no
MyoD 0 1 no

p(genelf,,f,) = p(gene)*p(f;|gene)*p(f,|gene) = 3/7*1/3*1/3 = 3/63
p(nolf,,f,) = p(no)*p(f,|no)*p(f,|no) = 4/7*0,01*2/4 = 8/2800

mmm  UIf Leser: Named Entity Recognition, Hasso-Plattner-Institut, 11/2007




Complete Workflow

SVM Model
driven
Tagger

Post
Processor

e Support Vector Machine (SVM)

Instead of Naive Bayes
- More robust to errors in training data

- Copes well with very high dimensional
spaces
- Copes netter with unbiased training set

UIf Leser: Named Entity Recognition, Hasso-Plattner-Institut, 11/2007 34



TOC

e Text Mining

e Named Entity Recognition
- Using Machine Learning

e Evaluation
e Disambiguation
e AliBaba Walk Through

e Conclusions
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Biocreative Cup 2004

e Critical Assessment of Information Extraction Systems in
Biology

e [International competition, three tasks

e Training data and evaluation script provided by organizers
In cooperation with database curators (Swiss-Prot)

e Test data available for one week

e Objective evaluation of all submissions by (published)
scripts

e Major boost: Top systems reached 84 F-measure
- Previous: best systems around 60 F-Measure
- Virtually no further improvements since then

[ ]
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Approach: SVM for NER

Vector
Generator

SVM Model
driven
Tagger

Vector
Generator

Post
Processor

e Corpus of 7500 sentences
- 140.000 non-gene words
- 60.000 gene names

e Training SVMI9ht on different feature sets
e Dictionary compiled from Genbank, HUGO, MGD, YDB
e Post-processing for compound gene names

L]
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Post-processing

e SVM detects only single token candidates
e Most gene names are multi-token names

e Expand detected single-token genes based on
set of heuristic rules

GENE NN* =  GENE GENE

NN* GENE =  GENE GENE GENE
GENE ( NN ) = GENE ( GENE)
GENE protein =  GENE GENE
GENE ADJ GENE =  GENE GENE GENE

[ ]
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Performance

E Precision
[0 Recall

Syntax features SF + Dictionary  SF + Dictionary
(SP) (simple) (advanced)

e Best result for BioCreative Cup: 73 F-measure
e Current feature set reaches 79 F-measure
e Raises from 73 to 83 for loose evaluation
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BioCreative: All Results
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NER — What's Left?

e Most successful features found by trial&error

- Brute force approach (apparently true for all Biocreative participants)
- We achieve the same performance when using only 10% of all features
e But which 10% ?

e NER results depend on type of object

- Gene or protein is hard
- Gene and protein is much harder
- Cell type: 81; virus strains: 67; disease: ?; drugs: ? ...

e What is left?

- Entity names are not really defined (borders)

- Inter-Biologists agreement on type (gene, protein, RNA) and exact borders
around 70% (Krauthammer et al. 2000)

- Overfitting to annotators likely; need for better and internationally
accepted annotated corpora

- Community-language: Species-specific NER is very promising

Humbeldt
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How far can we get without context?

 "DEAD" motif

o 12-kDa Ndk

o 12-tetradecanoate

» 15-kDa antigen of Dirofilaria immitis

e 16p13

 AAV promoter

« ACGCGT

 A-P diameter
 Bengal pink
 Bozozok / Dharma
o DbZIP2

« C2H2 type ZFPs
« CAMP-regulated gene
« CAP SX1

[ ]
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TOC

e Text Mining

e Named Entity Recognition
- Using Machine Learning

e Evaluation

e Disambiguation
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Ambiguity - Homonyms

e Often, entity names appear in exactly the same form
elsewhere

Verwendung eines Terms in mehreren biologischen Fachgebieten
Spezies Spezies Spezies
Cancer< Cat< Iris <
Krankheit Protein Gewebe
Verwendung ebenso im iiblichen englischen Sprachgebrauch

Protein Protein Spezies
Soul< Lamp< Mum <Protein
Seele Lampe .

h

[ ]
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Not a Rare Event

Entity class | Cell Disease Drug Organism Protein  Tissue Common Y

Cell - 3 2 0 0 123 0 130
Disease 3 - 3 18 4 3 3 37
Drug 2 3 — 9 67 1 15 99
Organism 0 18 9 - 175 4 38 239
Protein 0 4 67 175 — 2 35 300
Tissue 123 31 4 2 2 - 2 13

Common 0 3 15 38 55 2 - 108

Table 2: Amount of overlaps between terms of two classes.

e Class-specific dictionaries compiled from many sources

MeSH
UMLS
UniProt, EntrezGene
OMIM

UIf Leser: Named Entity Recognition, Hasso-Plattner-Institut, 11/2007
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Disambiguation

e Dictionaries don‘t help
- Use English dictionary to find common names
- Use class-specific dictionaries

- Homonyms: Token appears in more than one class-specific
dictionary

e Several approaches
- Sense dictionaries, alignment with examples, etc.

e Machine learning approach
- Rely on “one sense per discourse” assumption
- Build training data sets for each sense of a name
- Cast problem in a multi-class classification problem
- Build one model for each name

[ ]
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Works Well

Klasse v. cat | Protein Species
Protein 747 15
Species 14 748

Richtig Positive:
Richtig Wegative:

Falsch Positive:

Falsch Negative:

P-Value

Humboldt
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Training Data

e Problem: Need to find 100dreds of thousands of exemplary
texts

' '_'1'-_I..J:.%'I Bl e
.-:-. L T T

ACCUTACY

] number of samples o
Figure 3: Dependency of accuracy on the number of training

examples (logarithmic scale).

[ ]
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Walk-through

* ,Which proteins are associated with the TNF-alpha
associated death domain (TRADD)?“

[ ]
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Filter by Object Type and Confidence
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Location of Interaction
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View Annotated Abstracts
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AliBaba and KEGG
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Overlays (experimental)
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Text Mining Performance Curve
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Next Problem: Full Text (eprints.org)

Growth of Institutional Archives and Contents

Journal Policy Chart Generated by hitp:/farchives. eprints.org/
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e Scalability is becoming really important
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