

Opinion Mining

Question Answering Seminar

January 20, 2012 Nils Rethmeier HPI Potsdam

Overview

Motivation

Applications and the task at hand

Introduction

- Opinion definition
- Opinion analysis
 - o sentences, documents, results
- Backgrounds (Bayes Classification)
- Detection features

Evaluation

- Testsets
 - o documents, sentences
- Results

Discussion

Application areas

Info Mining QA Rating Summary Business

Information extraction discard subjective results

■ bias in news

Question Answering Summarization Content rating

opinion detection summarizing different points of view via comments, stars

- child protection
- appropriate ad placement

Business Intelligence

customer support

- product image mining
- help customers find needed information

Introduction

Definition

Opinion :=

Task: Given a text ...

ok

Classification

Sentence-level classification

Document-level classification

- Classifier: Naive Bayes
- Training Data: Reference text collections = News, Business articles (facts), editorials and letters to author (opinion)

Bayes Classification, theorem

Conditional Probability

iai i Tobability

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

$$P(A \cap B) = P(A|B)P(B)$$

Multiplication Anxiom

Probability of A if B is known.

Reversed condition

$$P(B|A) = \frac{P(A \cap B)}{P(A)}$$

$$P(B|A) = \frac{P(A|B)P(B)}{P(A)}$$

Bayes' Classification, steps

Bayes' Classifier (machine learning ML)

Given: Text W, of

words w_i

 $W = w_1 w_2 \dots w_n$

 $w_i := word$

Task: Classify whether *W* is *opinion* or *fact*?

 $\forall P(opinion|W) > P(fact|W) > \dots$

Problem: undetermined probabilities

$$P(opinion|W) = \frac{P(W|opinion)P(opinion)}{P(W)}$$

$$P(fact|W) = \frac{P(W|fact)P(fact)}{P(W)}$$

How likely is a text if we know its an opinion?

How likely is a text if we know its a fact?

Bayes' Classification, steps

Bayes' Classifier (machine learning ML)

Problem:

$$P(opinion|W) = \frac{P(W|opinion)P(opinion)}{P(W)}$$

Though given text $W \neq R$ eference text W, we assume that Reference statistics are equal for all text.

Solution:

- Take a set of reference opinions and facts
- Assume, words occur independent (Naive Bayes Assumption *NBA*)

$$\begin{split} \overline{P(W|opinion)} &\stackrel{NBA}{=} \overline{P(w_1|opinion)} \dots P(w_n|opinion) \\ \overline{P(w_i|opinion)} &= \frac{\text{Number of opinion texts } W_o \text{ containing } w_i}{\text{Number of all opinion texts } W_o} \\ \overline{P(opinion)} &= \frac{\text{Number all of opinion texts } W_o}{\text{Number of all reference texts } W} \end{split}$$

Bayes' Classification, steps

Bayes' Classifier (machine learning ML)

Summary:

1. Learn features

How likely is a text **W** given we want **opinion**s?

$$P(W|opinion) \stackrel{NBA}{=} P(w_1|opinion) \dots P(w_n|opinion)$$

Number all of opinion text R_o

2. Use read res to classify using Bayes? How likely is an *opinion*/ *fact* given a text *W*?

$$P(opinion|W) = \frac{P(W|opinion)P(opinion)}{P(W)} > P(fact|W) = \frac{P(W|fact)P(fact)}{P(W)}$$

Classification

Sentence-level classification

Document-level classification

Classifiers: SimFinder

Sentence Similarity:

Idea: Given a fixed topic, opinion sentences are more similar

to each other than they are to factual sentences.

Retrieve: All documents D_t for a topic, e.g. "welfare reforms"

Features: SimFinder similarity score S of each sentence in D_t

- words
- phrases (n-grams)
- WordNet synsets

Classification:

$$S = \frac{S_o}{S_f} = \frac{\text{average opinion sentence score}}{\text{average fact sentence score}} \begin{cases} opinion & \text{if } S > 1.0\\ fact & \text{if } S \leq 1.0 \end{cases}$$

Text = opinion

Classifier: Naive Bayes 1

1 NB classifier C on sentences

Train: Learn features on opinion/ fact articles.

Features: A classifier *C* with all the features

■ n-grams, parts of speech (POS)

■ sentence positive/ negative word counts

■ polarity n-gram magnitude, e.g. "++"for two consecutive positive words

Combination:

P(opinion|W) = P(W|opinion)P(opinion),let $W = n\text{-}gram, POS \land opinion := op$

$$P(op|n-gram, POS) = \frac{P(op|n-gram)P(op|POS)}{P(op)}$$

Classifier: Naive Bayes n

n NB classifiers $C_1 \dots Cn$, each with a different feature

Problem: The hypothesis, that opinion documents only

contain opinion sentences is flawed.

Idea: Now, only use sentences that are likely to

be labeled correctly during training.

Features: as before, but split between classifiers C_i

- 1-3 grams | POS | +/-words | magnitudes
- \blacksquare recursive filtering of the training data using next C_i at each recursion step

Polarity Classification

Sentence-level classification

Document-level classification

Polarity Classification

Given: A set of polarity words (manually annotated).

Idea: Positive words occur together more often

than by chance (word co-occurrence).

Classifier: is positive model P(+) more likely?

$$L_i(w_i, POS_k) = \frac{P(+)}{P(-)} = log \left(\frac{\frac{Freq(w_i, POS_k, W_+) + \epsilon}{Freq(W, POS_k, W_+)}}{\frac{Freq(w_i, POS_k, W_-) + \epsilon}{Freq(W, POS_k, W_-)}} \right)$$

 $w_i := i$ -th word in sentence

 $POS_k = part \ of \ speech : k = adj, adverb, noun, verb$

 $W_+ := set of positive words$

 $W_{-} := set of negative words$

 ϵ := smoothing constant, e.g. $\epsilon = 0.5$

opinion sentence

determines __polarity__

Evaluation

Trainingset: 2000 Wall Street Journal (WSJ) articles for each (=4000)

■ facts from labels "news", "business articles"

opinions from labels "editorial" and "Letter to editor"

Testset: another 2000 WSJ articles each

Documents classification

Goldstandard: label of each article

Naive Bayes classifier:

Sentence classification

400 sentences of human annotations

A=300 one annotator

 B=100 two annotators agree on type

Similarity classifier: {recall, precision}

	F-measure
News vs. Editorial	0.96
News+Business vs. Editorial+Letter	0.97

Variant	Class	Standard A	Standard B
Score	Fact	{0.61,0.34}	{1.00,0.27}
	Opinion	{0.30,0.49}	$\{0.16,0.64\}$

Evaluation

Sentence classification

1 and n Naive Bayes classifiers: human annotations (A = 300, B = 100)

Features	Class	Standard A		Standard B	
		Single	Multiple	Single	Multiple
Words only	Fact	{0.14,0.39}	{0.12,0.42}	{0.28,0.42}	{0.28,0.45}
	Opinion	{0.90,0.69}	{0.92,0.69}	{0.90,0.82}	{0.91,0.83}
Words, Bigrams, Trigrams,	Fact	{0.15,0.43}	{0.13,0.42}	{0.44,0.50}	{0.44,0.53}
Part-of-Speech, and Polarity	Opinion	{0.91,0.69}	{0.92,0.70}	{0.88,0.86}	{0.91,0.86}

- using words only works well already
- using word n-grams + POS + polarity works best
- using multiple-classifier-filtering increases recall

Evaluation

Sentence classification

polarity classifier: accuracy

Parts-of-speech Used	A	В	
Adjectives	0.49	0.55	
Adverbs	0.37	0.46	
Nouns	0.54	0.52	
Verbs	0.54	0.52	
Adjectives and Adverbs	0.55	0.84	
Adjectives, Adverbs, and Verbs	0.68	0.90	V
Adjectives, Adverbs, Nouns, and Verbs	0.62	0.74	n

verbs and verbs yields

Discussion

Opinion Mining

Fact/ Opinion Classification

Classifier:

- document
 - Naive Bayes
- sentences
 - similarity
 - 1 or n Naive Bayes
 - polarity

NB Classifier

Evaluation

Documents:

 Naive Bayes produces 97% Fmeasure

Sentences:

- Similarity less useful
- Naive Bayes already works well on word ngrams (86% precision)
- polarity
 classification
 needs adjectives,
 adverbs and verbs to
 work well (90%
 agreements)