sentence annotation: named entity annotation

Hasso Plattner Institute, Potsdam question answering seminar

stefan klauck

agenda

definition

applications

challenges

approaches

- named entity
 - word or sequence of words
 - used to refer to something of interest in a particular application

- named entity
 - word or sequence of words
 - used to refer to something of interest in a particular application

- named entity
 - (word or sequence of words)
 - used to refer to something of interest in a particular application

named entity annotation

- prerequisite:
 - recognition
 - classification

named entity annotation

- prerequisite:
 - recognition
 - classification

example:

Steven Paul Jobs, co-founder of Apple, was born in 1955.

named entity annotation

- prerequisite:
 - recognition
 - classification

example:

Steven Paul Jobs, co-founder of Apple, was born in 1955.

person organization year

named entity annotation

- prerequisite:
 - recognition
 - classification

example:

<person>Steven Paul Jobs</person>, co-founder of
<organization>Apple</organization>, was born in
<year>1955</year>.

applications

- named entity recognition and classification:
 - part of information extraction
 - unstructured structured information
 - semantic of word/s

applications

- named entity recognition and classification:
 - part of information extraction
 - unstructured structured information
 - semantic of word/s

- usage is application dependent
 - find out the semantic
 - storing of entities and relations in databases

application – question answering

application – question answering

challenges

- kind of data to annotate
 - here: (primary) unstructured text
 - language

- kind of application
 - types of entities
 - maximize precision, recall or both

challenge – entity type

"something of interest"

- based on "rigid designator" defined by S. Kripke
 - philosophical term
 - denote unambiguous things

challenge – entity type

- "enamex" (MUC-6)
 - persons, locations and organizations
- date and time
- other numeral types (percentages, quantities)
- ...

challenge – entity type

- "enamex" (MUC-6)
 - persons, locations and organizations
- date and time
- other numeral types (percentages, quantities)
- ...

domain dependent

approaches

rule-based

statistical

- patterns & lexicons
- linguistic analyses
- trial and error

- probabilities
- language model
- annotate data

approaches

rule-based

statistical

- patterns & lexicons
- probabilities

- linguistic analyses

- language model

- trial and error

- annotate data

machine learning

rule-based approach

- main work: linguistic analysis
 - → lexicons & patterns/rules

building blocks of rules

- entity types
- regular expressions
- features

statistical approach

- main work: annotate training data
 - → large annotated corpus, statistics

use of features

statistical approach - example

word class	example
oneDigitNum	1
${\bf contains Digit And Colon}$	2:34
contains Alpha Digit	A4
allCaps	KRDL
capPeriod	M.
first Common Word In it Cap	
${\bf first Non Common Word IC}$	
${\bf CommonWordInitCap}$	Department
${\bf init Cap Not Common Word}$	David
mixedCasesWord	ValueJet
charApos	O'clock
allLowerCase	can
${\bf compoundWord}$	ad-hoc

statistical approach - example

word class	example
one Digit Num	1
${\bf contains Digit And Colon}$	2:34
${\it contains Alpha Digit}$	A4
allCaps	KRDL
$\operatorname{capPeriod}$	M.
first Common Word In it Cap	
${\bf first NonCommonWord IC}$	
${\bf CommonWordInitCap}$	Department
$init {\bf CapNotCommonWord}$	David
mixedCasesWord	ValueJet
$\operatorname{charApos}$	O'clock
allLowerCase	can
compound Word	ad-hoc

CommonWordInitCap

- capitalized words
- no first words of sentence

statistical approach - example

word class	example	_	
oneDigitNum 1 containsDigitAndColon 2:3 containsAlphaDigit A allCaps K capPeriod M firstCommonWordInitCap firstNonCommonWordIC	1 2:34 A4 KRDL M.	CommonWordInitCap - capitalized words - <i>no</i> first words of sente	ence
initCapNotCommonWord mixedCasesWord	David ValueJet	Organization	7525
charApos	O'clock	None of the named entities	8493
${ m allLowerCase} \ { m compoundWord}$	$_{ m ad-hoc}^{ m can}$	Location	896
F		Person	195
		Date	8
		Money	2

machine learning

- possible using both approaches
- iterative process
 - 1. start with set of seeds
 - named entities (examples) and/or rules (start rules)
 - 2. find new named entities
 - 3. generate rules based on new entity set

features

descriptors or characteristic attributes of words

example:

 boolean variable denoting whether a word is capitalized or not

selection of features forms vector

features classification

word-level feature

list lookup feature

document and corpus feature

questions?

references

- W. Bruce Croft, Donald Metzler, Trevor Strohman. Search Engines: Information Retrieval in Practice. Addison Wesley, 2010.
- David Nadeau, Satoshi Sekine. A survey of named entity recognition and classification. Linguisticae Investigaciones, 2007.
- Karën Fort, Maud Ehrmann, Adeline Nazarenko. Towards a Methodology for Named Entities Annotation. ACL workshop on Linguistic Annotation, 2009.
- William J. Black, Fabio Rinaldi, David Mowatt. FACILE: Description of the NE System used for MUC-7. Proceedings of the 7th Message Understanding Conference, 1998.
- Shihong Yu, Shuanhu Bai, Paul Wu. Description of the Kent Ridge Digital Labs System used for MUC-7. Proceedings of the 7th Message Understanding Conference, 1998.