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Outline

> Intro

» Basics of probability and information theory

> Retrieval models

> Retrieval evaluation

» Link analysis

» From queries to top-k results

» Social search
» Overview & applications
» Clustering & recommendation
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Clustering overview

» Why clustering?

> ...no labels available =» group by similarity (unsupervised learning scenario)
» ... to hopefully detect “intrinsic” structure in the data (“natural clusters”)

» ...to hopefully better understand/analyze the data through reduction to
important patterns

> ...to detect outliers
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P Internal clustering criteria

> General goal:

For objects X4, ..., X;, with pair-wise similarities, construct k < n clusters

C4, ..., Csuch that
» Intra-cluster similarity is high

Z (lcll(lc—ll)z:xerc Slm(X X )) or %Z ( ZxEc Slm(X Ci ))

» Inter-cluster similarity is low
1
Zci,leci”cj

. / ] * *
| erci,xleq sim(x,x") or k(k—1) z:Ci*'CJ'* Slm(ci G Cluster

centroids

Centroid: element representing the center
of the cluster e.g. in vector space:

= Yy, X

Clustroid: cluster point that is closest to all =
cluster points

ICI
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» Similarity is typically based on a metric distance:

From metric distances to similarities

A space M with distance d is called a metric space if forany x,y,z € M:
1.d(x,y) =0iffx =y
2.d(x,y) = d(y, x) (symmetry)
3.d(x,z) <d(x,y) + d(y, z) (triangle inequality)

In @ metric space M with distance d the similarity between any x,y € M can

be defined as sim(x,y) = Trdty) or sim(x,y) = ed(lx,y)
ey Ix = yll = yE:(x; — y:)?
Manhattan Ix —ylls = Xilx — yil
Maximum Ix —yllo = ml.aX|xi = il

Mahalanobis —o~2 (for normally

_ Xi-Yi
Amana (X, y) = \/Zi( o distributed data)
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Popular similarity and distance measures

» Pearson correlation
Xi(xi—x)(yi—y)
jzi(xi—»az Jzi(yi—y)z

p(x,y) = (similarity measure)

d,(x,y) = 1—me3') (distance metric)

» Cosine similarity
XTy
Iyl
d.sim(X,y) = 1 — csim(Xx,y) (distance measure)

csim(x,y) =

» Jaccard similarity
lenc’|

](C)C ) — |CUC’|
d;(c,c’) =1—J(c,c’) (distance metric)

(similarity measure)
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> Let f;: D — 2P be a partitioning function on the dataset D based on a
(metric or non-metric) distance function d: D X D — R, that satisfies
dlx,y) =0 x=y.

The following axioms cannot be satisfied simultaneously:

» Scale-invariance:
foranyd andanya > 0: f; = faa

» Expressiveness (control over the data):
for any partitioning I1 € 2P there exists a d, such that f; produces II

» Consistency:

for any d, let d’ be such that d'(x,y) < d(x,y) if x,y are in the same
cluster created by f; and d'(x,y) > d(x,y) otherwise, then f;, = f;

Source: J. Kleinberg, NIPS 2002
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External clustering criteria (1)

» How well does the clustering of N elements C = {c4, ..., €} } represent the
ground truth classes G = {c3, ..., ¢}}

» Purity (each cluster should possibly contain only elements from one class)
1 ~—k
Purity(C,G) = —z max{|c; N ¢;|}
NLai=y
Note: purity is 1 if each element is in its own cluster

» Normalized mutual information (each cluster should possibly only elements
from one class and possibly all the elements from that class)

P C; N C"
l J

2 (%P (e 10g gy + i P(e]) log )

NMI(C,G) =
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External clustering criteria (2)

» How well does the clustering of N elements C = {c4, ..., €} } represent the
ground truth classes G = {c3, ..., ¢}}

» Rand index (accuracy, i.e., percentage of agreements with ground truth)

Rand(C.G) — TP + TN
M) = TP Y TN + FP + FN

where
TP: # pairs in same group inCand in G
TN: # pairs in different groups in Cand in G
FP: # pairs in same group in C but in different groups in G
FN: # pairs in same group in G but in different groups in C

» Precision, Recall, F-measure can be defined analogously.
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» For given data records x4, ..., X,, find k < n clusters ¢4, ..., ¢, according to

K-means (1)

some similarity measure sim and a cluster stability threshold t

Randomly choose prototype clusters ¢y, ..., €k, by choosing random
centroids and assigning a point to its closest centroid

While there exists ¢; with Yyee lIX — ¢;*[|* > ¢
Forj:=1tondo
Assign X; to ¢; with the largest sim(¢;", X;)
Forj:=1tok do

Recompute ¢; * //where c

| ZXEC]

" el
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» Example

Step 1

o
o

e
; ..l-l
P
B
[ LY
o
LR T

From http://astrostatistics.psu.edu/su09/lecturenotes/clus2.html

K-means (2)
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» In practice, runtime is polynomial
> Theoretical complexity is exponential (22™)

» k can be determined experimentally or based on the minimum-description-
length (MDL) principle

» Choice of initial prototype vectors influences the result; often k-means is
re-run multiple times with random choices

» Initial prototype vectors could be chosen by using another — very efficient
— clustering method (on random sample of the data records).

» Any arbitrary metric can be used
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» Getting k right

1) For different (increasing) values of k estimate the change of the average
distance to the centroid.

Choose k for which average distance changes very little.

Average
distance
to centroid Good value for k
(or another
objective
function)

>

g
>

k

2) MDL criterion: check whether cost of encoding the information of the current
cluster configuration exceeds the cost of the previous configuration.
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DBSCAN

» Maode-seeking clustering method
» DBSCAN: density-based clustering for applications with noise

For each data point X do
Insert X into spatial index //(e.g. R-tree)
For each data point X do
Locate all points with distance less than d_max to X
If these points form a single cluster then
Add X to this cluster
Else

If there are at least min_pts data points (that
do not yet belong to a cluster) such that for all
point pairs the distance i1s less than d_max then

Construct a new cluster with these points

» Mode-seeking algorithm with average run-time: O(n logn)
» Data points that are added later can be easily assigned to a cluster
» Points that do not belong to any cluster are considered “noise”
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Co-clustering (1)

» Given a feature-item matrix (e.g., containing relative co-occurrence
frequencies)

» |s it possible to group features and items simultaneously, so that latent
groups (e.g., topics) are revealed?

> |dea: related features occur in related items and related items have related
features

Dy D, D3 | Dy Ds Dg

soccer 05 .05 .05 0 0 0 L
goal 05 05 05 0 0 O Y1 Y2
basketball .05 .05 .05 f\ X1 .3 0
NBA .05 .05 .05 X 0 .3
team X3 .2 .2
player

Example from Dhillon et al., KDD 2003
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Co-clustering (2)

» Formally, we are given the joint distribution of features and items, e.g.:
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> Goal: derive a clustering of rows (denoted by X) and columns (denoted by
Y) that minimizes the loss in mutual information

1X,Y)—1(X,7) = KL(p(X, V)||p(X, V)p(X1X)p(Y|V))

e.g.: p(X?) =

3
0
2

0

3
2
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Co-clustering (3)

» Greedy algorithm

> Input: joint probability distr. p(X,Y), the desired number k of row clusters, the
desired number [ of column clusters

> Output: partitions X, ¥ such that I(X,Y) — (X, ¥) is minimized

Start with initial X(©), 7(0)

Repeat until no improvement is possible concerning I(X,Y) — I()?(t), Y(t))
Recompute p;; for all blocks b;; according to X, ¥(®)
Foreachrow x € X

Assign x to row block i that minimizes local loss in mutual
information, i.e., I(x,Y) — I (k‘i(t), ?(t))

Recompute p;; for all blocks b;; according to X (¢+1), y (t+1)
For each columny €Y
Assign y to column block j that minimizes local loss in mutual

information, i.e., I(X,y) — I ()?(”1),37].(”1))

> Algorithm converges to (local) minimum in O (#iterations - (k + 1))
Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 17
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Spectral clustering techniques

» Typically used for graph-based clustering

» Variant 1
» Map each data point into k-dimensional space

» Assign each point to its highest-value dimension (strongest spectral
component)

» \Variant 2

» Compute k clusters for the data points (using any clustering algorithm)
» Project data points onto k centroid vectors (“axes” of k-dim. space)
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Spectral clustring

» Spectral clustering algorithm for variant 1

Construct similarity graph of n data points
Construct graph Laplacian L = D — W // D: diagonal with
// D;; =degree of i'th node
//W weighted adjacency matrix
Compute smallest k Eigenvalues and Eigenvectors // Lx = ADX
// A: Eigenvalue
Let M be the n X k matrix with these Eigenvectors as columns
Treat the n rows of M as k-dim. data points
Run k-means with these points Runtime: ©(|L|?)
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Spectral clustering — choosing k

» Theorem
» All Eigenvalues of a graph Laplacian are non-negative reals.

» The multiplicity k of the smallest Eigenvalue 0 is the number of connected
components of the graph.

» The corresponding Eigenvectors X4, ..., Xy are indicator vectors of the
components X;(j) = 1if node j is in the i"th component, and 0 otherwise.

Histogram of the sample
10

0

Histogram of the sample
10

0

Histogram of the sample
6

0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10
Eigenvalues Eigenvalues Eigenvalues
* = 0.08 _ B 0.08 *
0.06 *
0.06 0.06
+.
9.0% 0.04 3 0.04
* +
0.02 b Bl 0.02 % 0.02 5 *
O+——+—+ et P
1 234 56 78 9 10 1 223 4 § 6 78 9 10 12 3 48674 8 91

Source: U. von Luxburg, A Tutorial on Spectral Clustering
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Summary

» Clustering goals
» Internal criteria
» Impossibility theorem
» External criteria

» Clustering techniques
» K-means (getting k right)
» DBSCAN
» Co-clustering
» Spectral clustering
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