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Set-theoretic view of probability theory 
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 Probability space 

 (Ω, 𝐸, 𝑃) with  

 Ω: sample space of elementary events 

 𝐸: event space, i.e. subsets of Ω, closed under ∩, ∪, and ¬, usually 𝐸 = 2Ω 

 𝑃:  𝐸 →  [0, 1], probability measure  

 

Properties of 𝑃 (set-theoretic view): 

1. 𝑃(∅)  =  0 (impossible event) 

2. 𝑃(Ω)  =  1 

3. 𝑃(𝐴)  +  𝑃(¬𝐴)  =  1 

4. 𝑃(𝐴 ∪  𝐵)  =  𝑃(𝐴)  +  𝑃(𝐵) –  𝑃(𝐴 ∩  𝐵) 

5. 𝑃( 𝐴𝑖𝑖 )  =   𝑃(𝐴𝑖)𝑖  for pairwise disjoint 𝐴𝑖  

 



Sample space and events: examples 

 Rolling a die 

 Sample space: 

 Probability of even number: 

 

 

 Tossing two coins 

 Sample space: 

 Probability of HH or TT: 

{1, 2, 3, 4, 5, 6} 

looking for events  𝐴 =  {2}, 𝐵 =  {4}, 𝐶 =  {6},  
𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) =  1/6 + 1/6 + 1/6 =  0.5 

{HH, HT, TH, TT} 

looking for events 𝐴 = {TT}, 𝐵 = {HH}, 𝑃(𝐴 ∪ 𝐵) = 0.5  

 In general, when all outcomes in Ω are equally likely, for an 𝑒 ∈ 𝐸 holds: 

𝑃(e) =  
# outcomes in e 

# outcomes in sample space 
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Calculating with probabilities 

 Total/marginal probability  
 𝑃(𝐵)  =  Σ𝑗 𝑃(𝐵 ∩  𝐴𝑗)  for any partitioning of Ω in 𝐴1 , … , 𝐴𝑛 (sum rule) 

 

 Joint and conditional probability 
 𝑃(𝐴, 𝐵)  =  𝑃(𝐴 ∩  𝐵)  =  𝑃(𝐵|𝐴) 𝑃(𝐴) (product rule) 

 
 Bayes’ theorem  

𝑃(𝐵|𝐴)  =  
𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃(𝐴)
 

 

 Independence 
 𝑃(𝐴1 , … , 𝐴𝑛)  =  𝑃(𝐴1 ∩ … ∩  𝐴𝑛)  =  𝑃(𝐴1) 𝑃(𝐴2) …  𝑃(𝐴𝑛), for 

independent events 𝐴1, … , 𝐴𝑛  

 

 Conditional Independence 
 𝐴 is independent of 𝐵 given 𝐶  𝑃(𝐴|𝐵, 𝐶)  =  𝑃(𝐴|𝐶) 

 If 𝐴 and 𝐵 are independent, are they also independent given 𝐶?  

Thomas Bayes 
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Discrete and continuous random variables 

 Random variable on probability space  (Ω, 𝐸, 𝑃) 
 

 𝑋:  Ω →  𝑀 ⊆ ℝ (numerical representations of outcomes)                                  
with {𝑒|𝑋(𝑒) ≤ 𝑥} ∈ 𝐸 for all 𝑥 ∈ 𝑀 

 

 Examples 

 Rolling a die: 𝑋 𝑖 = 𝑖 

 Rolling two dice: 𝑋 𝑎, 𝑏 = 6 𝑎 − 1 + 𝑏 

 If 𝑀 is countable 𝑋 is called discrete, otherwise continuous 
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Calculating probabilities: example (1) 

Example from C. Bishop: PRML 

Marginal probability 

𝑃 𝑋 = 𝑥𝑖 =
𝑐𝑖
𝑁

 

Sum rule 

𝑃 𝑋 = 𝑥𝑖 = 𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗)
𝑗

 

=
1

𝑁
 𝑛𝑖𝑗
𝑗
=
𝑐𝑖
𝑁

 

Joint probability 

𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 =
𝑛𝑖𝑗

𝑁
 

Product rule 

𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 = 𝑃(𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖)𝑃 𝑋 = 𝑥𝑖  

=
𝑛𝑖𝑗

𝑐𝑖
 
𝑐𝑖
𝑁
=
𝑛𝑖𝑗

𝑁
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Calculating probabilities: example (2) 

Example from C. Bishop: PRML 

Suppose: 𝑃(𝐵 =  𝑟)  =  2/5  

𝑃(𝐹 =  𝑜)  =  𝑃(𝐹 =  𝑜 | 𝐵 =  𝑟) 𝑃(𝐵 =  𝑟)  +  
   𝑃(𝐹 =  𝑜 | 𝐵 =  𝑏) 𝑃(𝐵 =  𝑏)  =  9/20  

𝑃(𝐵 =  𝑏 | 𝐹 =  𝑜)   = 
𝑃(𝐹 =  𝑜 | 𝐵 =  𝑏) 𝑃(𝐵 =  𝑏) 

𝑃(𝐹 =  𝑜) 
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Pdfs, cdfs, and quantiles 

 Probability density function (pdf)  

 𝑓𝑋:𝑀 → [0,1] with 𝑓𝑋 𝑥 = 𝑃(𝑋 = 𝑥) 

 

 Cumulative distribution function (cdf) 

 𝐹𝑋:𝑀 → [0,1] with 𝐹𝑋 𝑥 = 𝑃(𝑋 ≤ 𝑥) 

 

 

 

 

 

 

 

 Quantile function 

 𝐹−1 𝑞 = inf {𝑥|𝐹𝑋 𝑥 > 𝑞},  𝑞 ∈ [0,1] (for 𝑞 = 0.5, 𝐹−1 𝑞  is called median) 

𝑓𝑋 𝐹𝑋 

From C. Bishop: Pattern Recognition  
and Machine Learning 
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Useful distributions (1) 

 Examples of discrete distributions 

 Uniform distribution over {1, 2, …, m}:  𝑃 𝑋 = 𝑘 = 𝑓𝑋(𝑘) =  
1

𝑚
 

 Bernoulli distribution with parameter p: 𝑃 𝑋 = 𝑥 = 𝑓𝑋 𝑥 =  𝑝
𝑥(1 − 𝑝)1−𝑥 

 

 

 

 

 

 

 Binomial distribution with parameter p: 𝑃 𝑋 = 𝑘 = 𝑓𝑋 𝑘 =
𝑚
𝑘
𝑝𝑘 1 − 𝑝 𝑚−𝑘 
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𝑘 𝑘 𝑘 

𝑃 𝑋 = 𝑘  𝑃 𝑋 = 𝑘  𝑃 𝑋 = 𝑘  

1 0 

𝑃 𝑋 = 𝑥  

𝑥 

1 − 



Useful distributions (2) 

 Examples of continuous distributions 

 

 Uniform distribution over [a, b] ∶ 𝑃 𝑋 = 𝑥 = 𝑓𝑋(𝑥) =  
1

𝑏−𝑎
 for  𝑎 < 𝑥 < 𝑏 

 Pareto distribution: 𝑃 𝑋 = 𝑥 = 𝑓𝑋 𝑥 =
𝑘

𝑏

𝑏

𝑥

𝑘+1
 for  𝑥 > 𝑏 

      

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 11 

Source: Wikipedia 



Multivariate distributions 

 Let 𝑋1, … , 𝑋𝑚  be random variables over the same prob. space with 

     domains 𝑑𝑜𝑚 𝑋1 , … , 𝑑𝑜𝑚(𝑋𝑚). 

     The joint distribution of 𝑋1, … , 𝑋𝑚 has a pdf 𝑓𝑋1,…,𝑋𝑚 𝑥1, … , 𝑥𝑚  with 

  …𝑥1∈𝑑𝑜𝑚(𝑋1)
 𝑓𝑋1,…,𝑋𝑚 𝑥1, … , 𝑥𝑚𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)

 = 1, or 

  …
𝑥1∈𝑑𝑜𝑚(𝑋1)

 𝑓𝑋1,…,𝑋𝑚 𝑥1, … , 𝑥𝑚𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)
 𝑑𝑥1 … 𝑑𝑥𝑚 = 1 

 

       The marginal distribution of 𝑋𝑖  is 𝐹𝑋1,…,𝑋𝑚 𝑥𝑖 =  

  

 …  …𝑥𝑖+1∈𝑑𝑜𝑚(𝑋𝑖+1)𝑥𝑖−1∈𝑑𝑜𝑚(𝑋𝑖−1)𝑥1∈𝑑𝑜𝑚(𝑋1)
 𝑓𝑋1,…,𝑋𝑚 𝑥1, … , 𝑥𝑚𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)

 
or 

 …
𝑥1∈𝑑𝑜𝑚(𝑋1)

  … 𝑓𝑋1,…,𝑋𝑚 𝑥1, … , 𝑥𝑚𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)𝑥𝑖+1∈𝑑𝑜𝑚(𝑋𝑖+1)𝑥𝑖−1∈𝑑𝑜𝑚(𝑋𝑖−1)
 𝑑𝑥1 

… 𝑑𝑥𝑚 
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Multivariate distribution: example 

 Multinomial distribution with parameters 𝑛,𝑚 (rolling n m-sided dice)  

𝑃 𝑋1 = 𝑘1…𝑋𝑚 = 𝑘𝑚 = 𝑓𝑋1,…,𝑋𝑚 𝑘1, … , 𝑘𝑚 =
𝑛!

𝑘1! … 𝑘𝑚!
 𝑝1
𝑘1 …𝑝𝑚

𝑘𝑚  

with  𝑘1+⋯+ 𝑘𝑚 = 𝑛 and 𝑝1 + …+ 𝑝𝑚 = 1 

 

Note: in information retrieval, the multinomial distribution is often used to model 
the following case: 

 document 𝑑 with 𝑛 terms from the alphabet 𝑤1, … , 𝑤𝑚 , where each 𝑤𝑖 
occurs 𝑘𝑖 times in 𝑑 
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Expectation, variance, and covariance 

 Expectation 

 For discrete variable 𝑋: 𝐸 𝑋 =   𝑥 𝑓𝑋(𝑥)𝑥  

 For continuous variable 𝑋: 𝐸 𝑋 =   𝑥 𝑓𝑋 𝑥  𝑑𝑥
∞

−∞
 

 Properties  

 𝐸 𝑋𝑖 + 𝑋𝑗 = 𝐸 𝑋𝑖 + 𝐸(𝑋𝑗) 

 𝐸 𝑋𝑖  𝑋𝑗 = 𝐸 𝑋𝑖 𝐸(𝑋𝑗) for independent, identically distributed (i.i.d.) variables 𝑋𝑖, 𝑋𝑗  

 𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑥 + 𝑏 for constants 𝑎, 𝑏 
 

 Variance 

 𝑉𝑎𝑟 𝑋 = 𝐸[ 𝑋 − 𝐸[𝑋])2 = 𝐸 𝑋2 − 𝐸[𝑋]2 ,     𝑆𝑡𝐷𝑒𝑣 𝑋 = 𝑉𝑎𝑟(𝑋) 

 Properties 

 𝑉𝑎𝑟 𝑋𝑖 + 𝑋𝑗 = 𝑉𝑎𝑟 𝑋𝑖 + 𝑉𝑎𝑟(𝑋𝑗) for i.i.d. variables 𝑋𝑖, 𝑋𝑗  

 𝑉𝑎𝑟 𝑎𝑋 + 𝑏 = 𝑎2𝑉𝑎𝑟 𝑥  for constants 𝑎, 𝑏 
 

 Covariance 

 𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = 𝐸[(𝑋𝑖 − 𝐸 𝑋𝑖 ) (𝑋𝑗 − 𝐸[𝑋𝑗])] 

 𝑉𝑎𝑟 𝑋 = 𝐶𝑜𝑣(𝑋, 𝑋) 
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Statistical parameter estimation through MLE 

 Maximum Likelihood Estimation (MLE) 
 

 After tossing a coin 𝑛 times, we have seen 𝑘 times head.  
     Let 𝑝 be the unknown probability of the coin showing head. 

     Is it possible to estimate 𝑝? 

 

 We know observation corresponds to Binomial distribution, hence:  
 

𝐿 𝑝; 𝑘, 𝑛 =
𝑛

𝑘
𝑝𝑘(1 − 𝑝)𝑛−𝑘 

 

 Maximizing 𝐿 𝑝; 𝑘, 𝑛  is equivalent to maximizing log 𝐿 𝑝; 𝑘, 𝑛  

     log 𝐿 𝑝; 𝑘, 𝑛  is called log-likelihood function 
 

log 𝐿 𝑝; 𝑘, 𝑛 = log
𝑛

𝑘
+ 𝑘 log 𝑝 + 𝑛 − 𝑘  log (1 − 𝑝)  

 
 ∂ log 𝐿

 ∂ 𝑝
=  
𝑘

𝑝
−
(𝑛 − 𝑘)

(1 − 𝑝)
= 0 ⇒ 𝑝 =

𝑘

𝑛
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Formal definition of MLE 

 Maximum Likelihood Estimation (MLE) 

       

      Let 𝑥1, … , 𝑥𝑛 be a random sample from a distribution 𝑓(𝜽, 𝑥) 

      (Note that 𝑥1, … , 𝑥𝑛 can be viewed as the values of i.i.d. random variables 

       𝑋1, … , 𝑋𝑛) 

      𝐿 𝜽; 𝑥1, … , 𝑥𝑛 =  𝑃[𝑥1, … , 𝑥𝑛 originate from𝑓(𝜽, 𝑥)] 

      Maximizing 𝐿(𝜽; 𝑥1, … , 𝑥𝑛) is equivalent to maximizing log 𝐿(𝜽; 𝑥1, … , 𝑥𝑛), 

      i.e., the log-likelihood function: log 𝑃(𝑥1, … , 𝑥𝑛|𝜽).  

 

 If 
 ∂ log 𝐿

 ∂ 𝑝  is analytically intractable, use iterative numerical methods, e.g. 

Expectation Maximization (EM)   

     (More on this, in the Data Mining lecture…)  
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Modeling natural language: three questions 

 

1. Is there a general model for the distribution of terms in natural 
language? 

 

 

2. Given a term in a document, what is its information content? 

 

 

 

3. Given a document, by which terms is it best represented? 
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Modeling natural language 
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Term distribution 

Expected information content 

Terms in text ordered by frequencies 

Te
rm

 f
re

q
u

e
n

ci
es

 

Most representative terms 

Is there a weighting scheme that gives higher weights to representative terms? 



Zipf’s law 

 Linguistic observation 

        In large text corpus 

 few terms occur very frequently 

 many terms occur infrequently 
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Source: http://www.ucl.ac.uk/~ucbplrd/language_page.htm 

Frequency of term 𝑡 is inversely  
proportional to its rank 

𝑓 𝑡 = 𝐶
1

𝑟(𝑡)
 

𝐶: frequency of the most frequent term 
𝑟(𝑡): rank of term 𝑡 

http://www.ucl.ac.uk/~ucbplrd/language_page.htm


Example: retweets on Twitter 
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Note the log-log scale of the graph! 



Pareto distribution 

 Probability that continuous random variable 𝑋 is equal to some value 𝑥 is 

given by 𝑓𝑋 𝑥; 𝑘, 𝜃 = 𝑃 𝑋 = 𝑥 =  
     
𝑘

𝜃

𝜃

𝑥

𝑘+1
  𝑓𝑜𝑟 𝑥 ≥ 𝜃

0            𝑓𝑜𝑟 𝑥 < 𝜃
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 Examples 
 Distribution of populations  
      over cities 
 Distribution of wealth  
 Degree distribution in web  
      graph (or social graphs) 

 

 Family of distributions 
 Power law distributions 

 

Source: Wikipedia 

 Pareto principle 
 80% of the effects come  
     from 20% of the causes 



Heap’s law 

 Empirical law describing the portion of vocabulary captured by a 
document  
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Document size 𝑛 

Si
ze

 o
f 

vo
ca

b
u

la
ry

 V
(𝑛
) 

𝑉 𝑛 = 𝐾𝑛𝛽 

For parameters 
𝐾 (typically 10 ≤ 𝐾 ≤ 100) 
and 𝛽 (typically 0.4 ≤ 𝛽 ≤ 0.6) 

Vocabulary of a text grows sublinearly with its size! 

See also: Modern Information Retrieval, 6.5.2  



Zipf’s law & Heaps’ law 
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Source: Modern Information Retrieval 

 
 Two sides of the same coin … 

 Both laws suggest opportunities for compression (more on this, later) 

 How to compress as much as possible without loosing information?  



From information content to entropy 

 Information content 

      Can we formally capture the content of information? 
 1. Intuition: the more surprising a piece of information (i.e., event), the higher its 

information content should be. 
ℎ 𝑥 ↑   𝑃(𝑥) ↓ 

 2. Intuition: the information content of two independent events 𝑥 and event 𝑦 should 
simply add up (additivity). 

ℎ 𝑥 + 𝑦 = ℎ 𝑥 + ℎ(𝑦) 

Define ℎ 𝑥 := − log2 𝑃(𝑥) 

 

 Entropy (expected information content) 

      Let 𝑋 be a random variable with 8 equally possible states. 

      What is the average number of bits needed to encode a state of 𝑋? 

      𝐻 𝑋 = − 𝑃 𝑥 log 𝑃(𝑥)𝑥∈𝑑𝑜𝑚(𝑋)  (i.e. the entropy of 𝑋) 

= −8 
1

8
 log
1

8
= 3 

       Also: entropy is a lower bound on the average number of bits needed  

                 to encode a state of 𝑋. 
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Entropy function 
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𝑃(𝑋 = 𝑥) 

𝐻
(𝑋
) 

1.0 
 
 
 
 
 
 
 
0.5 
 
 
 
 
 
 
 
 
 



Relative entropy 

 Relative entropy (Kullback-Leibler Divergence)  

      Let 𝑓 and 𝑔 be two probability density functions over random variable 𝑋. 

      Assuming  that 𝑔 is an approximation of 𝑓, the additional average number     

      of bits to encode a state of 𝑋 through 𝑔 is given by 
 

𝐾𝐿 𝑓 ∥ 𝑔 =  𝑓 𝑥 log
𝑓(𝑥)

𝑔(𝑥)
    𝑑𝑥

𝑥

 

 

 Properties of relative entropy 

 𝐾𝐿 𝑓 ∥ 𝑔 ≥ 0 (Gibbs’ inequality) 

 𝐾𝐿 𝑓 ∥ 𝑔 ≠ 𝐾𝐿 𝑔 ∥ 𝑓   (asymmetric) 

 

 Related symmetric measure: Jensen-Shannon Divergence 

 𝐽𝑆 𝑓, 𝑔 =  𝛼 𝐾𝐿 𝑓 ∥ 𝑔 +  𝛽 𝐾𝐿 𝑔 ∥ 𝑓   with 𝛼 + 𝛽 = 1 
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Mutual information 

 Mutual information 
 

      Let 𝑋 and 𝑌 be two random variables with a joint distribution  

      function 𝑃. The degree of their independence is given by 

𝐼 𝑋, 𝑌 = 𝐾𝐿 𝑃 𝑋, 𝑌 ∥ 𝑃 𝑋 𝑃 𝑌 = 𝑝 𝑋, 𝑌 log
𝑃(𝑋, 𝑌)

𝑃 𝑋 𝑃(𝑌)
 𝑑𝑋 𝑑𝑌 

 

 Properties of mutual information 

 𝐼 𝑋, 𝑌 ≥ 0 

 𝐼 𝑋, 𝑌 = 0 if and only if 𝑋 and 𝑌 are independent 

 𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑌 − 𝐻[𝑌|𝑋]  (also known as: information gain) 

     (i.e., the entropy reduction of 𝑋 by being told the value of 𝑌) 
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Lossless compression (1) 

 Huffman compression 

      Let 𝑋 be a random variable with 8 possible states  
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8} 

      with occurrence probabilities 

(
1

2
,
1

4
,
1

8
,
1

16
,
1

64
,
1

64
,
1

64
,
1

64
) 

      In any case: 3 bits would be sufficient to encode any of the 8 states.  

      Can we do better? 
𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔: 0,10,110,1110,111100,111101,111110,111111 

 

𝑥8 𝑥7 𝑥6 𝑥5 

𝑥4 
𝑥3 𝑥2 𝑥1 

1

64
 

1

64
 1

64
 

1

64
 

1

32
 

1

32
 

1

16
 

1

16
 

1

8
 

1

8
 

1

4
 

1

4
 

1

2
 

1

2
 

Bottom-up 
tree construction 
by combining 
lowest-frequency  
subtrees 
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Prefix property: no codeword is  
prefix of another codeword! 



Lossless compression (2) 

 Shannon’s noiseless coding theorem  

      Let 𝑋 be a random variable with 𝑛 possible states. For any noiseless  

      encoding of the states of 𝑋, 𝐻(𝑋) is a lower bound on the average code    

      length of a state of 𝑋.  

 

 Theorem 

      The Huffman compression is an entropy encoding algorithm (i.e., it  

      achieves  the lower bound estimated by entropy) 

 

 Corollary 

      The Huffman compression is optimal for lossless compression 
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Lossless compression (3) 

 Ziv-Lempel compression (e.g., LZ77) 
 

 Use lookahead window and backward window to scan text  

 Identify in lookahead window the longest string that occurs in backward 
window 

 Replace the string by a pointer to its previous occurrence 

 Text is encoded in triples 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑛𝑒𝑤  

 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠: distance to previous occurrence 

 𝑙𝑒𝑛𝑔𝑡ℎ: length of the string 

 𝑛𝑒𝑤: symbol following the string 

 

More advanced variants use adaptive dictionaries with statistical occurrence 
analysis! 
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Lossless compression (4) 

 Ziv-Lempel compression (e.g., LZ77) 

 Example 

 Text: 𝐴 𝐴 𝐵 𝐴 𝐵 𝐵 𝐵 𝐴 𝐵 𝐴 𝐴 𝐵 𝐴 𝐵 𝐵 𝐵 𝐴 𝐵 𝐵 𝐴 𝐵 𝐵 
 Code: ∅, 0, 𝐴 −1,1, 𝐵 −2,2, 𝐵 −4, 3, 𝐴 (−9, 8, 𝐵)(−3,3, ∅) 

 

 Note that LZ77 and other sophisticated lossless compression algorithms 
(e.g. LZ78, Lempel-Ziv-Welch,…) encode several states at the same time.  

 

 With appropriately generalized notions of variables and states, Shannon’s 
lossless coding theorem still holds!  
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Tf-idf weighting scheme (1) 

 Given a document, by which terms is it best represented? 

 Is there a weighting scheme that gives higher weights to representative 
terms? 
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Tf-idf weighting scheme (2) 

 Given a document, by which terms is it best represented? 

 Is there a weighting scheme that gives higher weights to representative 
terms? 

 

 Consider corpus with documents 𝐷 = 𝑑1, … , 𝑑𝑛  with terms from a 
vocabulary 𝑉 = 𝑡1, … , 𝑡𝑚 . 

 

 The term frequency of term 𝑡𝑖  in document 𝑑𝑗 is measured by 

  𝑡𝑓 𝑡𝑖 , 𝑑𝑗 =
𝑓𝑟𝑒𝑞 𝑡𝑖,𝑑𝑗

𝑚𝑎𝑥𝑘 𝑓𝑟𝑒𝑞 𝑡𝑘,𝑑𝑗
  

 

 The inverse document frequency for a term 𝑡𝑖  is measured by 

  𝑖𝑑𝑓 𝑡𝑖 , 𝐷 = log
𝐷

𝑑∈𝐷; 𝑡𝑖 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑑 
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Normalisation makes estimation  
independent of document length. 

Downweights terms that ocurr  
in many documents (i.e., stop words: 
the, to, from, if, … ). 

 Central weighting scheme for  
     scoring and ranking 



Tf, idf, and tf-idf 
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Tf, idf, and tf-idf weights (plotted in log-scale) computed on a collection from 
Wall Street Journal (~99,000 articles published between 1987 and 1989)  
 
  Source: Modern Information Retrieval 



Various tf-idf weighting schemes 

 Different weighting schemes based on the tf-idf model, implemented in 
the SMART system 
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Source: Introduction to Information Retrieval 



Probability theory 

 Summary 

 

 Sample space, events random variables 

 

 Sum rule (for marginals), product rule (for joint distributions), Bayes’ theorem 
(using conditionals) 

 

 Distributions (discrete, continuous, multivariate), pdfs, cdfs, quantiles 

 

 Expectation, variance, covariance 

 

 Maximum likelihood estimation 
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Information theory 

 Summary 

 

 Information content 

 

 Entropy, relative entropy (= KL divergence), mutual Information 

 

 Lossless compression, Lempel-Ziv and Huffman compression (entropy 
encoding algorithm) 

 

 Shannon’s noiseless coding theorem 

 

 Tf-idf 
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