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 Inverted index replication 
 Broker forwards query to  

     server with lowest load 

  high resource costs 
 

 Inverted Index partitioning 
 By documents 

 By terms 

(Work of brokers  

depends on 

partitioning  

strategy) 
 

 Variations of LRU 

      strategy for  

      dropping  

      data from cache 

 

 

 

Distributed index maintenance (overview) 

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 3 

Cache for inverted lists 

Cache for queries  
and results 

Processor 

Cache for inverted lists 

Cache for queries  
and results 

Processor 

Index server 𝑖 

Index server 𝑗 

Schedulers 
Schedulers 

Schedulers 
Brokers 

… 

Queries  



Index partitioning strategies 
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 Partitioning by documents (“horizontal partitioning”: inverted lists are 
partitioned) 

 Vocabulary is replicated on all servers (i.e., nodes) 

 Inverted list entries are hashed onto nodes by document IDs 

 Query is forwarded to each node and results are merged 

  easy to maintain, scalable, load-balanced,  

  resource-consuming  

 

 

 Partitioning by terms (“vertical partitioning”: vocabulary is partitioned) 

 Vocabulary is (partitioned and) distributed across multiple nodes 

 Inverted lists are mapped onto nodes responsible  for the corresponding 
terms 

 Query is send to nodes with relevant terms 

 What are the consequences for maintenance, scalability, load-balancing, 
 resource-consumption? 

 

 

 

 

 

 

 

 

 

 



Computing top-k results (1) 
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 Top-k join-and-sort for Boolean queries on virtual relations of the form 
𝐼𝑛𝑑𝑒𝑥 (𝑡𝑒𝑟𝑚, 𝑑𝑜𝑐𝐼𝐷, 𝑆𝑐) 

 Input: query 𝑞 = 𝑡1 𝑡2  … 𝑡𝑙 

 Required: top-k docs 𝑑1, 𝑑2, … , 𝑑𝑘 ranked by some match score:  
∀ 𝑖, 1 < 𝑖 ≤ 𝑘, ∀𝑗 > 𝑘:  𝑆𝑐 𝑑𝑖 , 𝑞 ≤ 𝑆𝑐 𝑑𝑖−1, 𝑞 ∧ 𝑆𝑐 𝑑𝑖 , 𝑞 ≥ 𝑆𝑐(𝑑𝑗 , 𝑞) 

  

top-k{ 𝜎 𝑡𝑒𝑟𝑚=𝑡1 𝐼𝑛𝑑𝑒𝑥 ⋈𝑑𝑜𝑐𝐼𝐷  

     𝜎 𝑡𝑒𝑟𝑚=𝑡2 𝐼𝑛𝑑𝑒𝑥 ⋈𝑑𝑜𝑐𝐼𝐷 

  …              ⋈𝑑𝑜𝑐𝐼𝐷 

     𝜎 𝑡𝑒𝑟𝑚=𝑡𝑙 𝐼𝑛𝑑𝑒𝑥  order by  𝑆𝑐 desc} 

 

 

Index 
 
 15:  0.03 

43: 0.025 
51: 0.015 
53: 0.08 
55: 0.061 
… 

11: 0.02 
16: 0.033 
43: 0.015 
54: 0.021 
… 

17: 0.011 
43: 0.045 
58: 0.015 
… 

 9:  0.03 
12: 0.04 
21: 0.015 
43: 0.02 
… 

𝑡1 𝑡2 𝑡3 𝑡4 

Most efficient when   
inverted list entries  
are sorted by docID! 

sorted by  
docIDs 



 

 

 

 

 

 

 

 Top-k join with score aggregation on virtual relations of the form 
𝐷1(𝑑𝑜𝑐𝐼𝐷, 𝑠𝑐𝑜𝑟𝑒𝑡1), … , 𝐷𝑙(𝑑𝑜𝑐𝐼𝐷, 𝑠𝑐𝑜𝑟𝑒𝑡𝑙) 

 Input: query 𝑞 = 𝑡1 𝑡2  … 𝑡𝑙 

 Required: top-k docs 𝑑1, 𝑑2, … , 𝑑𝑘 ranked by some match score:  
∀ 𝑖, 1 < 𝑖 ≤ 𝑘, ∀𝑗 > 𝑘:  𝑆𝑐 𝑑𝑖 , 𝑞 ≤ 𝑆𝑐 𝑑𝑖−1, 𝑞 ∧ 𝑆𝑐 𝑑𝑖 , 𝑞 ≥ 𝑆𝑐(𝑑𝑗 , 𝑞) 
 

 Select 𝑑𝑜𝑐𝐼𝐷,  𝑆𝑐 𝐷1. 𝑠𝑐𝑜𝑟𝑒𝑡1 , … , 𝐷𝑙 . 𝑠𝑐𝑜𝑟𝑒𝑡𝑙  As 𝑆𝑐𝑜𝑟𝑒 

 From Outer Join 𝐷1, … , 𝐷𝑙 

 Order By 𝑆𝑐𝑜𝑟𝑒 Limit 𝑘 

 

 

Computing top-k results (2) 
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Index 
 
 … 

55: 0.061 
43: 0.025 
51: 0.015 
53: 0.08 
15:  0.03 
… 

… 
16: 0.033 
43: 0.015 
54: 0.021 
11: 0.02 
… 

… 
43: 0.045 
58: 0.015 
17: 0.011 
… 

… 
21: 0.015  
12: 0.04 
9:  0.03 
43: 0.02 
… 

𝑡1 𝑡2 𝑡3 𝑡4 

sorted by  
doc scores 
(per term) 

If 𝑆𝑐 is monotone, simple and 
principled algorithms exist. 



Top-k processing of score-ordered inverted lists 

 Assumptions 

 List entries sorted by per-term doc scores 

 Scoring function 𝑆𝑐 𝑎1, … , 𝑎𝑙  is monotone 

      𝑎1 ≥ 𝑏1 ∧ ⋯∧ (𝑎𝑙 ≥ 𝑏𝑙) ⇒  𝑆𝑐 𝑎1, … , 𝑎𝑙 ≥ 𝑆𝑐 𝑏1, … , 𝑏𝑙  

 

 General heuristics 

1. Scan lists in sequentially and in Round-Robin fashion (disregard lists with term-
idf score below some threshold or prioritize short lists) 

 

2. If possible (i.e., when the whole lists are in main memory) perform random 
access to entries with same docID in other lists  

 

3. Compute scores for docs incrementally, as more dimensions (i.e., per-term 
scores) are observed 

 

4. Stop when top-k docs are found (heuristically: until all dimensions are seen for 
k’>k docs) 

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 7 



Threshold algorithm (Fagin et al. 2001*) 

 All inverted lists 𝐿1, … , 𝐿𝑙 are sorted by 𝑡𝑓 

 Random access to each list is possible 

 

     Do sorted access in parallel to all lists  

      Let cdim𝑖  be the last position visited in sorted access in each 𝐿𝑖  

      Define threshold  𝑇 = 𝑆𝑐 cdim1. 𝑠𝑐𝑜𝑟𝑒, … , cdim𝑙 . 𝑠𝑐𝑜𝑟𝑒  

     

       If new doc 𝑑 is seen in one of the lists 

  Find all other dimensions of 𝑑 in all other lists 

  Compute overall score 𝑆𝑐 of 𝑑 

  If 𝑆𝑐 is among top-k highest scores seen so far  

   Store 𝑑 in top-k buffer (break ties arbitrarily) 

             Stop when k docs are found with overall score 𝑆𝑐 > 𝑇 
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*See: Optimal aggregation algorithms for middleware 

http://dl.acm.org/citation.cfm?id=375567


Threshold algorithm (TA): example 

 Find top-2 results 
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dcoID Tf1 

79 0.05 

31 0.035 

53 0.03 

41 0.025 

11 0.01 

dcoID Tf2 

53 0.06 

41 0.04 

31 0.028 

11 0.02 

79 0.01 

𝑇 = 0.11 
 
 53: 0.09 
 79: 0.06 

dcoID Tf1 

79 0.05 

31 0.035 

53 0.03 

41 0.025 

11 0.01 

dcoID Tf2 

53 0.06 

41 0.04 

31 0.028 

11 0.02 

79 0.01 

𝑇 = 0.075 
 
 53: 0.09 
 41: 0.065 
 31: 0.063 
 79: 0.06 

Top-2 result  
buffer 

Top-2 result  
buffer 

Next threshold 
smaller than 
any top-k score 
 stop! 



No Random Access algorithm (Fagin et al. 2001) 

 All inverted lists 𝐿1, … , 𝐿𝑙  are sorted by 𝑡𝑓 

 No random access 

 

     Precompute and maintain min_1,… ,min _𝑙, the smallest possible scores from         

     the lists 𝐿1, … , 𝐿𝑙   
      

     Do sorted access in parallel to all lists  

      Let cdim𝑖  be the last position visited in sorted access in each 𝐿𝑖   

      Maintain (cdim1. 𝑠𝑐𝑜𝑟𝑒, … , cdim𝑙 . 𝑠𝑐𝑜𝑟𝑒) 

       For every doc 𝑑 with some unseen dimension   

  Compute lower bound 𝑆𝑐𝐿 of 𝑆𝑐 by replacing unseen   
  dim𝑖 . 𝑠𝑐𝑜𝑟𝑒 by min_𝑖  and upper bound 𝑆𝑐𝑈 of 𝑆𝑐 by replacing  

      unseen dim𝑖 . 𝑠𝑐𝑜𝑟𝑒 by cdim𝑖 . 𝑠𝑐𝑜𝑟𝑒 

 Maintain top-k docs with highest 𝑆𝑐𝐿 (break ties using 𝑆𝑐𝑈 scores) 

 Stop when current 𝑆𝑐𝑈 exceeds smallest top-k score 
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 53: (0.095 – 0.07) 
 79: (0.08 – 0.05) 
 41: (0.075 – 0.05) 
 31: (0.075 – 0.045) 

NRA algorithm: example 

 Find top-2 results 
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dcoID Tf1 

79 0.04 

31 0.035 

53 0.03 

41 0.03 

11 0.01 

dcoID Tf2 

53 0.06 

41 0.04 

31 0.028 

11 0.02 

79 0.01 

 
 53: (0.1 – 0.07) 
 79: (0.1 – 0.05) 

dcoID Tf1 

79 0.04 

31 0.035 

53 0.03 

41 0.03 

11 0.01 

dcoID Tf2 

53 0.06 

41 0.04 

31 0.028 

11 0.02 

79 0.01 

Result buffer 

Result buffer 



NRA algorithm: example 

 Find top-2 results 
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dcoID Tf1 

79 0.04 

31 0.035 

53 0.03 

41 0.03 

11 0.01 

dcoID Tf2 

53 0.06 

41 0.04 

31 0.028 

11 0.02 

79 0.01 

 
 53: (0.09) 
 79: (0.068 – 0.05) 
 41: (0.07 – 0.05) 
 31: (0.063) 

Result buffer 

dcoID Tf1 

79 0.04 

31 0.035 

53 0.03 

41 0.03 

11 0.01 

dcoID Tf2 

53 0.06 

41 0.04 

31 0.028 

11 0.02 

79 0.01 

 
 53: (0.09) 
 79: (0.06 – 0.05) 
 41: (0.07) 
 31: (0.063) 

Result buffer 



Instance optimality of TA and NRA 

 

 Definition 

 For class 𝒜 of algorithms and class 𝒟 of datasets, algorithm B ∈ 𝒜  is instance 
optimal over (𝒜,𝒟) if for every A∈𝒜 and every D∈𝒟:  

 cost(B,D) ≤c*cost(A,D) + c’ ⇔ cost(B,D)= O(cost(A,D)) 

 

 

 It can be shown: 

 For any monotone scoring function, TA and NRA correctly retrieve the top-k 
results.  

 TA is instance optimal over all algorithms that are based on sorted and 
random accesses to inverted lists (no „wild guesses“). 

 NRA is instance optimal over all algorithms with sequential accesses only. 

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 13 



Implementation issues 

 Priority queues 

 Empirically, bounded-size priority queues show better performance than 
Fibonacci heaps 

 

 Memory management 

 Memory load is very important for efficiency (similarly to scan depth) 

 Early candidate pruning is important 

 

 Hybrid block index 

 Group inverted list entries in blocks and sort blocks by scores 

 Keep entries within a block in docID order 

 After each block read: merge-join first, then update priority queue 
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“Champion lists” heuristics (Brin & Page 1998) 

 All inverted lists 𝐿1, … , 𝐿𝑙 are sorted by doc authority (e.g., PageRank) scores  

 Keep additional lists 𝐹1, … , 𝐹𝑙 (champion lists) with docs having  𝑡𝑓 scores 
above some threshold in each dimension 

 

    Compute scores for all docs in ∩𝑖 𝐹𝑖 and keep top-k results; 

    𝐶𝑎𝑛𝑑:= (∪𝑖 𝐹𝑖)\(∩𝑖 𝐹𝑖) 

    For each 𝑑 ∈ 𝐶𝑎𝑛𝑑 do  

 compute partial score of d 

     Scan inverted lists 𝐿𝑖 in Round-Robin fashion 

      if  dim𝑖. 𝑑𝑜𝑐 ∈  𝐶𝑎𝑛𝑑  

  add  dim𝑖 . 𝑠𝑐𝑜𝑟𝑒 to partial score of dim𝑖 . 𝑑𝑜𝑐 

 else 

  add dim𝑖 . 𝑑𝑜𝑐 to 𝐶𝑎𝑛𝑑 and set its partial score to dim𝑖. 𝑠𝑐𝑜𝑟𝑒  

      Terminate when k’> k docs with complete scores are found; 
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Probabilistic approximate top-k processing 

 Makes use of  

 certain score distribution in each of the inverted lists (approximated by 
histograms) 

 pair-wise convolution of score distributions  

 

 𝐵𝑡1 𝑖 . 𝑓𝑟𝑒𝑞 ∗ 𝐵𝑡2 𝑑 − 𝑖 . 𝑓𝑟𝑒𝑞

0≤𝑖≤𝑑

= 𝐵𝑡1+𝑡2 𝑑 . 𝑓𝑟𝑒𝑞 

 

 correlation between scores in different dimensions 

 probabilistic inequalities for stopping  conditions 
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𝐵𝑡1  𝐵𝑡2  𝐵𝑡1+𝑡2 



Feature overview of top-k algorithms  
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Source: https://cs.uwaterloo.ca/~ilyas/papers/IlyasTopkSurvey.pdf 
 

https://cs.uwaterloo.ca/~ilyas/papers/IlyasTopkSurvey.pdf
https://cs.uwaterloo.ca/~ilyas/papers/IlyasTopkSurvey.pdf


Summary 

 Distributed index maintenance  
 Horizontal partitioning (by documents) 

 High costs, easy to maintain, scalable, load-balanced 

 

 Vertical partitioning (by terms) 
 Low costs, maintenance and load-balancing are difficult 

 

 Top-k algorithms 
 Join and sort when list entries are sorted by docIDs 

 When list entries sorted by per-term doc scores: 

 Top-k join with score aggregation 

 “Champion lists” (uses lists with authority scores) 

 Threshold algorithm 

 No Random Access algorithm 

 

 Probabilistic approximate top-k processing 
 Estimation of unseen scores by convolution of score distributions in inverted lists 
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