
FROM QUERIES TO TOP-K RESULTS

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 1

Outline

 Intro

 Basics of probability and information theory

 Retrieval models

 Retrieval evaluation

 Link analysis

 From queries to top-k results
 Query processing

 Index construction

 Top-k search

 Social search

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 2

 Inverted index replication
 Broker forwards query to

 server with lowest load

  high resource costs

 Inverted Index partitioning
 By documents

 By terms

(Work of brokers

depends on

partitioning

strategy)

 Variations of LRU

 strategy for

 dropping

 data from cache

Distributed index maintenance (overview)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 3

Cache for inverted lists

Cache for queries
and results

Processor

Cache for inverted lists

Cache for queries
and results

Processor

Index server 𝑖

Index server 𝑗

Schedulers
Schedulers

Schedulers
Brokers

…

Queries

Index partitioning strategies

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13

 Partitioning by documents (“horizontal partitioning”: inverted lists are
partitioned)

 Vocabulary is replicated on all servers (i.e., nodes)

 Inverted list entries are hashed onto nodes by document IDs

 Query is forwarded to each node and results are merged

  easy to maintain, scalable, load-balanced,

  resource-consuming

 Partitioning by terms (“vertical partitioning”: vocabulary is partitioned)

 Vocabulary is (partitioned and) distributed across multiple nodes

 Inverted lists are mapped onto nodes responsible for the corresponding
terms

 Query is send to nodes with relevant terms

 What are the consequences for maintenance, scalability, load-balancing,
 resource-consumption?

Computing top-k results (1)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13

 Top-k join-and-sort for Boolean queries on virtual relations of the form
𝐼𝑛𝑑𝑒𝑥 (𝑡𝑒𝑟𝑚, 𝑑𝑜𝑐𝐼𝐷, 𝑆𝑐)

 Input: query 𝑞 = 𝑡1 𝑡2 … 𝑡𝑙

 Required: top-k docs 𝑑1, 𝑑2, … , 𝑑𝑘 ranked by some match score:
∀ 𝑖, 1 < 𝑖 ≤ 𝑘, ∀𝑗 > 𝑘: 𝑆𝑐 𝑑𝑖 , 𝑞 ≤ 𝑆𝑐 𝑑𝑖−1, 𝑞 ∧ 𝑆𝑐 𝑑𝑖 , 𝑞 ≥ 𝑆𝑐(𝑑𝑗 , 𝑞)

top-k{ 𝜎 𝑡𝑒𝑟𝑚=𝑡1 𝐼𝑛𝑑𝑒𝑥 ⋈𝑑𝑜𝑐𝐼𝐷

 𝜎 𝑡𝑒𝑟𝑚=𝑡2 𝐼𝑛𝑑𝑒𝑥 ⋈𝑑𝑜𝑐𝐼𝐷

 … ⋈𝑑𝑜𝑐𝐼𝐷

 𝜎 𝑡𝑒𝑟𝑚=𝑡𝑙 𝐼𝑛𝑑𝑒𝑥 order by 𝑆𝑐 desc}

Index

 15: 0.03

43: 0.025
51: 0.015
53: 0.08
55: 0.061
…

11: 0.02
16: 0.033
43: 0.015
54: 0.021
…

17: 0.011
43: 0.045
58: 0.015
…

 9: 0.03
12: 0.04
21: 0.015
43: 0.02
…

𝑡1 𝑡2 𝑡3 𝑡4

Most efficient when
inverted list entries
are sorted by docID!

sorted by
docIDs

 Top-k join with score aggregation on virtual relations of the form
𝐷1(𝑑𝑜𝑐𝐼𝐷, 𝑠𝑐𝑜𝑟𝑒𝑡1), … , 𝐷𝑙(𝑑𝑜𝑐𝐼𝐷, 𝑠𝑐𝑜𝑟𝑒𝑡𝑙)

 Input: query 𝑞 = 𝑡1 𝑡2 … 𝑡𝑙

 Required: top-k docs 𝑑1, 𝑑2, … , 𝑑𝑘 ranked by some match score:
∀ 𝑖, 1 < 𝑖 ≤ 𝑘, ∀𝑗 > 𝑘: 𝑆𝑐 𝑑𝑖 , 𝑞 ≤ 𝑆𝑐 𝑑𝑖−1, 𝑞 ∧ 𝑆𝑐 𝑑𝑖 , 𝑞 ≥ 𝑆𝑐(𝑑𝑗 , 𝑞)

 Select 𝑑𝑜𝑐𝐼𝐷, 𝑆𝑐 𝐷1. 𝑠𝑐𝑜𝑟𝑒𝑡1 , … , 𝐷𝑙 . 𝑠𝑐𝑜𝑟𝑒𝑡𝑙 As 𝑆𝑐𝑜𝑟𝑒

 From Outer Join 𝐷1, … , 𝐷𝑙

 Order By 𝑆𝑐𝑜𝑟𝑒 Limit 𝑘

Computing top-k results (2)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 6

Index

 …

55: 0.061
43: 0.025
51: 0.015
53: 0.08
15: 0.03
…

…
16: 0.033
43: 0.015
54: 0.021
11: 0.02
…

…
43: 0.045
58: 0.015
17: 0.011
…

…
21: 0.015
12: 0.04
9: 0.03
43: 0.02
…

𝑡1 𝑡2 𝑡3 𝑡4

sorted by
doc scores
(per term)

If 𝑆𝑐 is monotone, simple and
principled algorithms exist.

Top-k processing of score-ordered inverted lists

 Assumptions

 List entries sorted by per-term doc scores

 Scoring function 𝑆𝑐 𝑎1, … , 𝑎𝑙 is monotone

 𝑎1 ≥ 𝑏1 ∧ ⋯∧ (𝑎𝑙 ≥ 𝑏𝑙) ⇒ 𝑆𝑐 𝑎1, … , 𝑎𝑙 ≥ 𝑆𝑐 𝑏1, … , 𝑏𝑙

 General heuristics

1. Scan lists in sequentially and in Round-Robin fashion (disregard lists with term-
idf score below some threshold or prioritize short lists)

2. If possible (i.e., when the whole lists are in main memory) perform random
access to entries with same docID in other lists

3. Compute scores for docs incrementally, as more dimensions (i.e., per-term
scores) are observed

4. Stop when top-k docs are found (heuristically: until all dimensions are seen for
k’>k docs)

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 7

Threshold algorithm (Fagin et al. 2001*)

 All inverted lists 𝐿1, … , 𝐿𝑙 are sorted by 𝑡𝑓

 Random access to each list is possible

 Do sorted access in parallel to all lists

 Let cdim𝑖 be the last position visited in sorted access in each 𝐿𝑖

 Define threshold 𝑇 = 𝑆𝑐 cdim1. 𝑠𝑐𝑜𝑟𝑒, … , cdim𝑙 . 𝑠𝑐𝑜𝑟𝑒

 If new doc 𝑑 is seen in one of the lists

 Find all other dimensions of 𝑑 in all other lists

 Compute overall score 𝑆𝑐 of 𝑑

 If 𝑆𝑐 is among top-k highest scores seen so far

 Store 𝑑 in top-k buffer (break ties arbitrarily)

 Stop when k docs are found with overall score 𝑆𝑐 > 𝑇

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 8

*See: Optimal aggregation algorithms for middleware

http://dl.acm.org/citation.cfm?id=375567

Threshold algorithm (TA): example

 Find top-2 results

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 9

dcoID Tf1

79 0.05

31 0.035

53 0.03

41 0.025

11 0.01

dcoID Tf2

53 0.06

41 0.04

31 0.028

11 0.02

79 0.01

𝑇 = 0.11

 53: 0.09
 79: 0.06

dcoID Tf1

79 0.05

31 0.035

53 0.03

41 0.025

11 0.01

dcoID Tf2

53 0.06

41 0.04

31 0.028

11 0.02

79 0.01

𝑇 = 0.075

 53: 0.09
 41: 0.065
 31: 0.063
 79: 0.06

Top-2 result
buffer

Top-2 result
buffer

Next threshold
smaller than
any top-k score
 stop!

No Random Access algorithm (Fagin et al. 2001)

 All inverted lists 𝐿1, … , 𝐿𝑙 are sorted by 𝑡𝑓

 No random access

 Precompute and maintain min_1,… ,min _𝑙, the smallest possible scores from

 the lists 𝐿1, … , 𝐿𝑙

 Do sorted access in parallel to all lists

 Let cdim𝑖 be the last position visited in sorted access in each 𝐿𝑖

 Maintain (cdim1. 𝑠𝑐𝑜𝑟𝑒, … , cdim𝑙 . 𝑠𝑐𝑜𝑟𝑒)

 For every doc 𝑑 with some unseen dimension

 Compute lower bound 𝑆𝑐𝐿 of 𝑆𝑐 by replacing unseen
 dim𝑖 . 𝑠𝑐𝑜𝑟𝑒 by min_𝑖 and upper bound 𝑆𝑐𝑈 of 𝑆𝑐 by replacing

 unseen dim𝑖 . 𝑠𝑐𝑜𝑟𝑒 by cdim𝑖 . 𝑠𝑐𝑜𝑟𝑒

 Maintain top-k docs with highest 𝑆𝑐𝐿 (break ties using 𝑆𝑐𝑈 scores)

 Stop when current 𝑆𝑐𝑈 exceeds smallest top-k score

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 10

 53: (0.095 – 0.07)
 79: (0.08 – 0.05)
 41: (0.075 – 0.05)
 31: (0.075 – 0.045)

NRA algorithm: example

 Find top-2 results

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 11

dcoID Tf1

79 0.04

31 0.035

53 0.03

41 0.03

11 0.01

dcoID Tf2

53 0.06

41 0.04

31 0.028

11 0.02

79 0.01

 53: (0.1 – 0.07)
 79: (0.1 – 0.05)

dcoID Tf1

79 0.04

31 0.035

53 0.03

41 0.03

11 0.01

dcoID Tf2

53 0.06

41 0.04

31 0.028

11 0.02

79 0.01

Result buffer

Result buffer

NRA algorithm: example

 Find top-2 results

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 12

dcoID Tf1

79 0.04

31 0.035

53 0.03

41 0.03

11 0.01

dcoID Tf2

53 0.06

41 0.04

31 0.028

11 0.02

79 0.01

 53: (0.09)
 79: (0.068 – 0.05)
 41: (0.07 – 0.05)
 31: (0.063)

Result buffer

dcoID Tf1

79 0.04

31 0.035

53 0.03

41 0.03

11 0.01

dcoID Tf2

53 0.06

41 0.04

31 0.028

11 0.02

79 0.01

 53: (0.09)
 79: (0.06 – 0.05)
 41: (0.07)
 31: (0.063)

Result buffer

Instance optimality of TA and NRA

 Definition

 For class 𝒜 of algorithms and class 𝒟 of datasets, algorithm B ∈ 𝒜 is instance
optimal over (𝒜,𝒟) if for every A∈𝒜 and every D∈𝒟:

 cost(B,D) ≤c*cost(A,D) + c’ ⇔ cost(B,D)= O(cost(A,D))

 It can be shown:

 For any monotone scoring function, TA and NRA correctly retrieve the top-k
results.

 TA is instance optimal over all algorithms that are based on sorted and
random accesses to inverted lists (no „wild guesses“).

 NRA is instance optimal over all algorithms with sequential accesses only.

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 13

Implementation issues

 Priority queues

 Empirically, bounded-size priority queues show better performance than
Fibonacci heaps

 Memory management

 Memory load is very important for efficiency (similarly to scan depth)

 Early candidate pruning is important

 Hybrid block index

 Group inverted list entries in blocks and sort blocks by scores

 Keep entries within a block in docID order

 After each block read: merge-join first, then update priority queue

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 14

“Champion lists” heuristics (Brin & Page 1998)

 All inverted lists 𝐿1, … , 𝐿𝑙 are sorted by doc authority (e.g., PageRank) scores

 Keep additional lists 𝐹1, … , 𝐹𝑙 (champion lists) with docs having 𝑡𝑓 scores
above some threshold in each dimension

 Compute scores for all docs in ∩𝑖 𝐹𝑖 and keep top-k results;

 𝐶𝑎𝑛𝑑:= (∪𝑖 𝐹𝑖)\(∩𝑖 𝐹𝑖)

 For each 𝑑 ∈ 𝐶𝑎𝑛𝑑 do

 compute partial score of d

 Scan inverted lists 𝐿𝑖 in Round-Robin fashion

 if dim𝑖. 𝑑𝑜𝑐 ∈ 𝐶𝑎𝑛𝑑

 add dim𝑖 . 𝑠𝑐𝑜𝑟𝑒 to partial score of dim𝑖 . 𝑑𝑜𝑐

 else

 add dim𝑖 . 𝑑𝑜𝑐 to 𝐶𝑎𝑛𝑑 and set its partial score to dim𝑖. 𝑠𝑐𝑜𝑟𝑒

 Terminate when k’> k docs with complete scores are found;

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 15

Probabilistic approximate top-k processing

 Makes use of

 certain score distribution in each of the inverted lists (approximated by
histograms)

 pair-wise convolution of score distributions

 𝐵𝑡1 𝑖 . 𝑓𝑟𝑒𝑞 ∗ 𝐵𝑡2 𝑑 − 𝑖 . 𝑓𝑟𝑒𝑞

0≤𝑖≤𝑑

= 𝐵𝑡1+𝑡2 𝑑 . 𝑓𝑟𝑒𝑞

 correlation between scores in different dimensions

 probabilistic inequalities for stopping conditions

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 16

𝐵𝑡1 𝐵𝑡2 𝐵𝑡1+𝑡2

Feature overview of top-k algorithms

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 17

Source: https://cs.uwaterloo.ca/~ilyas/papers/IlyasTopkSurvey.pdf

https://cs.uwaterloo.ca/~ilyas/papers/IlyasTopkSurvey.pdf
https://cs.uwaterloo.ca/~ilyas/papers/IlyasTopkSurvey.pdf

Summary

 Distributed index maintenance
 Horizontal partitioning (by documents)

 High costs, easy to maintain, scalable, load-balanced

 Vertical partitioning (by terms)
 Low costs, maintenance and load-balancing are difficult

 Top-k algorithms
 Join and sort when list entries are sorted by docIDs

 When list entries sorted by per-term doc scores:

 Top-k join with score aggregation

 “Champion lists” (uses lists with authority scores)

 Threshold algorithm

 No Random Access algorithm

 Probabilistic approximate top-k processing
 Estimation of unseen scores by convolution of score distributions in inverted lists

Dr. Gjergji Kasneci | Introduction to Information Retrieval | WS 2012-13 18

