

FROM QUERIES TO TOP-K RESULTS

Outline

- > Intro
- Basics of probability and information theory
- Retrieval models
- Retrieval evaluation
- Link analysis
- From queries to top-k results
 - Query processing
 - > Index construction
 - > Top-k search
- Social search

Distributed index maintenance (overview)

Queries

- Inverted index replication
 - Broker forwards query to server with lowest load
 - → high resource costs
- Inverted Index partitioning
 - > By documents
 - ➤ By terms (Work of brokers depends on partitioning strategy)
- Variations of LRU strategy for dropping data from cache

Index partitioning strategies

- Partitioning by documents ("horizontal partitioning": inverted lists are partitioned)
 - Vocabulary is replicated on all servers (i.e., nodes)
 - Inverted list entries are hashed onto nodes by document IDs.
 - Query is forwarded to each node and results are merged
 - → easy to maintain, scalable, load-balanced,
 - → resource-consuming

- Partitioning by terms ("vertical partitioning": vocabulary is partitioned)
 - Vocabulary is (partitioned and) distributed across multiple nodes
 - Inverted lists are mapped onto nodes responsible for the corresponding terms
 - Query is send to nodes with relevant terms
 What are the consequences for maintenance, scalability, load-balancing, resource-consumption?

Computing top-k results (1)

- Top-k join-and-sort for Boolean queries on virtual relations of the form $Index\ (term, docID, Sc)$
 - ightharpoonup Input: query $q = t_1 t_2 \dots t_l$
 - **Required**: top-k docs $d_1, d_2, ..., d_k$ ranked by some match score:

$$\forall i, 1 < i \leq k, \forall j > k \colon Sc(d_i, q) \leq Sc(d_{i-1}, q) \land Sc(d_i, q) \geq Sc(d_j, q)$$

$$\begin{aligned} & \text{top-k} \{ \, \sigma_{[term=t_1]}(Index) \bowtie_{docID} \\ & \sigma_{[term=t_2]}(Index) \bowtie_{docID} \\ & \dots & \bowtie_{docID} \\ & \sigma_{[term=t_l]}(Index) \text{ order by } \textit{Sc desc} \} \end{aligned}$$

Most efficient when inverted list entries are sorted by docID!

Computing top-k results (2)

- Top-k join with score aggregation on virtual relations of the form $D_1(docID, score_{t_1}), ..., D_l(docID, score_{t_l})$
 - ightharpoonup Input: query $q = t_1 t_2 \dots t_l$
 - **Required**: top-k docs $d_1, d_2, ..., d_k$ ranked by some match score:

$$\forall i, 1 < i \leq k, \forall j > k \colon Sc(d_i, q) \leq Sc(d_{i-1}, q) \land Sc(d_i, q) \geq Sc(d_j, q)$$

Select docID, $Sc(D_1.score_{t_1},...,D_l.score_{t_l})$ As ScoreFrom Outer Join $D_1,...,D_l$ If Sc is monotone, simple and principled algorithms exist.

Top-k processing of score-ordered inverted lists

Assumptions

- List entries sorted by per-term doc scores
- Scoring function $Sc(a_1, ..., a_l)$ is monotone $(a_1 \ge b_1) \land \cdots \land (a_l \ge b_l) \Rightarrow Sc(a_1, ..., a_l) \ge Sc(b_1, ..., b_l)$

General heuristics

- 1. Scan lists in sequentially and in Round-Robin fashion (disregard lists with termidf score below some threshold or prioritize short lists)
- 2. If possible (i.e., when the whole lists are in main memory) perform random access to entries with same docID in other lists
- 3. Compute scores for docs incrementally, as more **dimensions** (i.e., per-term scores) are observed
- 4. Stop when top-k docs are found (heuristically: until all dimensions are seen for k'>k docs)

Threshold algorithm (Fagin et al. 2001*)

- \triangleright All inverted lists L_1, \dots, L_l are sorted by tf
- Random access to each list is possible

Do sorted access in parallel to all lists

Let $cdim_i$ be the last position visited in **sorted access** in each L_i Define threshold $T = Sc(cdim_1.score, ..., cdim_l.score)$

If new doc d is seen in one of the lists

Find all other dimensions of d in all other lists

Compute overall score Sc of d

If Sc is among top-k highest scores seen so far

Store d in top-k buffer (break ties arbitrarily)

Stop when k docs are found with overall score Sc > T

*See: Optimal aggregation algorithms for middleware

Threshold algorithm (TA): example

Find top-2 results

dcoID	Tf1	dcoID	Tf2
79	0.05	⁄ 53	0.06
31	0.035	41	0.04
53	0.03	31	0.028
41	0.025	11	0.02
11	0.01	79	0.01

$\boldsymbol{\pi}$		\sim	1	1
•	_	11		
1		1)	. 1	- 1

53: 0.09 79: 0.06

Top-2 result buffer

dcoID	Tf1		dcoID	Tf2	
79	0.05		53	0.06	
31	0.035		/41	0.04	-
53	0.03	/3	31	0.028	4
41	0.025	K	11	0.02	
11	0.01		79	0.01	

Next threshold smaller than any top-k score

→ stop!

T = 0.075

53: 0.09 41: 0.065 31: 0.063 79: 0.36

Top-2 result buffer

No Random Access algorithm (Fagin et al. 2001)

- \triangleright All inverted lists L_1, \dots, L_l are sorted by tf
- No random access

Precompute and maintain min_1, ..., min_l, the smallest possible scores from

the lists L_1, \dots, L_l

Do sorted access in parallel to all lists

Let cdim_i be the last position visited in **sorted access** in each L_i

Maintain ($\operatorname{cdim}_1.score, ..., \operatorname{cdim}_l.score$)

For every doc d with some unseen dimension

Compute lower bound Sc^L of Sc by replacing unseen $\dim_i.score$ by \min_i and upper bound Sc^U of Sc by replacing

unseen dim_i. score by cdim_i. score

Maintain top-k docs with highest Sc^L (break ties using Sc^U scores) Stop when current Sc^U exceeds smallest top-k score

NRA algorithm: example

Find top-2 results

dcoID	Tf1	dcoID	Tf2
79	0.04	53	0.06
31	0.035	41	0.04
53	0.03	31	0.028
41	0.03	11	0.02
11	0.01	79	0.01

53: (0.1 – 0.07) 79: (0.1 – 0.05)
79: (0.1 – 0.05)

Result buffer

dcoID	Tf1	dcoID	Tf2
79	0.04	53	0.06
31	0.035	41	0.04
53	0.03	31	0.028
41	0.03	11	0.02
11	0.01	79	0.01

31: (0.075 – 0.045)

Result buffer

NRA algorithm: example

Find top-2 results

dcoID	Tf1		dcoID	Tf2
79	0.04	7	53	0.06
31	0.035		41	0.04
53	0.03	K	31	0.028
41	0.03		11	0.02
11	0.01		79	0.01

dcoID	Tf1		dcoID	Tf2
79	0.04		53	0.06
31	0.035	7	41	0.04
53	0.03		31	0.028
41	0.03	K	11	0.02
11	0.01		79	0.01

53: (0.09)

79: (0.068 – 0.05)

41: (0.07 – 0.05)

31: (0.063)

Result buffer

53: (0.09)

79: (0.06 - 0.05)

41: (0.07)

31: (0.053)

Result buffer

Instance optimality of TA and NRA

Definition

For class \mathcal{A} of algorithms and class \mathcal{D} of datasets, algorithm $B \in \mathcal{A}$ is instance optimal over $(\mathcal{A}, \mathcal{D})$ if for every $A \in \mathcal{A}$ and every $D \in \mathcal{D}$:

$$cost(B,D) \le c*cost(A,D) + c' \Leftrightarrow cost(B,D) = O(cost(A,D))$$

> It can be shown:

- For any monotone scoring function, TA and NRA correctly retrieve the top-k results.
- TA is instance optimal over all algorithms that are based on sorted and random accesses to inverted lists (no "wild guesses").
- ➤ NRA is instance optimal over all algorithms with sequential accesses only.

Implementation issues

Priority queues

Empirically, bounded-size priority queues show better performance than Fibonacci heaps

Memory management

- Memory load is very important for efficiency (similarly to scan depth)
- > Early candidate pruning is important

Hybrid block index

- Group inverted list entries in blocks and sort blocks by scores
- Keep entries within a block in docID order
- After each block read: merge-join first, then update priority queue

"Champion lists" heuristics (Brin & Page 1998)

- \triangleright All inverted lists L_1, \dots, L_l are sorted by doc authority (e.g., PageRank) scores
- \blacktriangleright Keep additional lists F_1, \dots, F_l (champion lists) with docs having tf scores above some threshold in each dimension

Terminate when k' > k docs with complete scores are found;

```
Compute scores for all docs in \cap_i F_i and keep top-k results; Cand:=(\cup_i F_i)\setminus (\cap_i F_i) For each d\in Cand do compute partial score of d Scan inverted lists L_i in Round-Robin fashion if \dim_i .doc \in Cand add \dim_i .score to partial score of \dim_i .doc else add \dim_i .doc to Cand and set its partial score to \dim_i .score
```


Probabilistic approximate top-k processing

- Makes use of
 - certain score distribution in each of the inverted lists (approximated by histograms)
 - pair-wise convolution of score distributions

$$\sum_{0 \le i \le d} B_{t_1}[i].freq * B_{t_2}[d-i].freq = B_{t_1+t_2}[d].freq$$

- correlation between scores in different dimensions
- probabilistic inequalities for stopping conditions

Feature overview of top-k algorithms

Source: https://cs.uwaterloo.ca/~ilyas/papers/llyasTopkSurvey.pdf

Summary

- Distributed index maintenance
 - Horizontal partitioning (by documents)
 - High costs, easy to maintain, scalable, load-balanced
 - Vertical partitioning (by terms)
 - Low costs, maintenance and load-balancing are difficult
- Top-k algorithms
 - Join and sort when list entries are sorted by docIDs
 - When list entries sorted by per-term doc scores:

Top-k join with score aggregation

"Champion lists" (uses lists with authority scores)

Threshold algorithm

No Random Access algorithm

- Probabilistic approximate top-k processing
 - Estimation of unseen scores by convolution of score distributions in inverted lists