
Distributed Data Management

Communication
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

public class Employee {

 public String name;

 public String address;

 public transient int SSN;

 public int number; }

101000110111101100

public class Employee {

 public String name;

 public String address;

 public transient int SSN;

 public int number; }

Encoding Decoding

Communication

Overview

Communication

 Message Passing

 OSI Model

 Socket-based

Communication

 Message-oriented

Middleware

 Service-oriented

Middleware

 Database-oriented

Middleware

Message Passing

Motivation

Slide 5

Communication

Distributed Data
Management

Thorsten Papenbrock

Processes communicate

 With themselves

 With other processes on the same machine

 With processes on remote machines over the network

 Data often needs to pass process boundaries!

Processes are heterogeneous

 Different languages, address spaces, access rights, hardware resources,

complexities, interfaces, …

 Communication models/protocols needed!

Process communication is expensive

 Communication channels (buses, network, memory, …) have limited

speed, bandwidth and throughput

 Number and size of messages matters!

Message Passing

Terminology

Slide 6

Communication

Distributed Data
Management

Thorsten Papenbrock

Message Passing

 A communication model that restricts the exchange of information between

independent entities to the actions of sending and receiving of messages.

 Entity: Thread, process, subroutine, function, object, actor, …

 Message (in some contexts “mail”):

 Container for data that implies information or commands

 Often carries metadata, e.g., size, receiver and sender information

 Can have any format understood by sender and receiver

 Buffer (in some contexts “message queue” or “mailbox”):

 Memory reserved by the communicating entities to store messages

 (Usually) order messages by time of arrival and process them in order

 A communication may involve multiple buffers

(send buffers, system buffers, message queues, …)

Messages can have any
format understood by
sender and receiver

to enable replies

Message Passing

Thread Messaging

Slide 7

Communication

Distributed Data
Management

Thorsten Papenbrock

Sender
(Thread)

…

try {

 messageMutex.lock();

 messageQueue.offer(message);

} finally {

 messageMutex.unlock();

}

…

Receiver
(Thread)

…

try {

 messageMutex.lock();

 message = messageQueue.poll();

} finally {

 messageMutex.unlock();

}

…

ReentrantLock messageMutex = new ReentrantLock();

Queue<Work> messageQueue = new ArrayDeque<Work>();
= Shared Memory

Arbitrary synchronization primitive
(mutex, semaphore, barrier, monitor, …)

= Critical Section

Does not work if sender and receiver live
in different address spaces (i.e. processes)

Message Passing

Thread Messaging – Distributed Principle

Slide 8

Communication

Distributed Data
Management

Thorsten Papenbrock

Sender
(Thread)

…

send(receiver, message)

…

Receiver
(Thread)

…

receive(sender, message)

…

Message in local
address space

Buffer space for
incoming message in

receiver address space

sender/receiver:
 Direct address: node ID, process ID
 Indirect address: mailbox, socket, channel, …

Middleware

(Thread(s))

Message Passing

Middleware

Slide 9

Communication

Distributed Data
Management

Thorsten Papenbrock

Sender
(Thread)

…

send(receiver, message)

…

Receiver
(Thread)

…

receive(sender, message)

…

Middleware
 A distributed software layer that supports the message transfer
 Can provide additional buffers
 Usually lives partially in both the sender and the receiver address space

Message Passing

No Buffering vs. Buffering

No Buffering Communication

 The receiver allocates the memory for messages on demand.

 Requires rendezvou protocol on each message:

1. Sender signals send attempt with

the size of the message and waits.

2. Receiver allocates memory when

ready and signals readiness.

3. Sender sends the message.

Buffering Communication

 The receiver maintains a pre-allocated buffer space for

incoming messages.

 If the buffer is full, the sender blocks or drops the message.

Slide 10

Thorsten Papenbrock

Message Passing

Transient vs. Persistent

Transient Communication

 Message is copied directly from sender address

space to receiver buffer.

 Both processes need to be active and memory

for the message in the target buffer needs to

be free.

Persistent Communication

 Message is first copied to a buffer inside the

middleware and then send to the receiver.

 Middleware stores the message for as long as it

takes to deliver it.

Message Passing

Synchronous vs. Asynchronous

Slide 12

Thorsten Papenbrock

Synchronous (blocking) Communication

 Send() returns not until the data is copied out of its local message structure.

 Receive() returns when the message is fully received.

 After the returns:

 The local messages/buffers can safely be modified.

 Sender and receiver might know if the send succeeded.

Asynchronous (non-blocking) Communication

 Send() returns directly, which is before the data is copied out of the local

message structure.

 Receive() returns directly either with message or status code.

 After the returns:

 The local messages/buffers should not be modified.

 Only receiver knows if the send succeeded.

Requires middleware
to transmit the data!

Message Passing

Synchronization Levels with Middleware

Slide 13

Communication

Distributed Data
Management

Thorsten Papenbrock

Middleware

Sender

Receiver

send

Middleware uses additional
thread(s) that manage the

message transfer.

Middleware can support
different levels of
synchronization.

Often also counts as
asynchronous w.r.t.
sender and receiver.

Overview

Communication

 Message Passing

 OSI Model

 Socket-based

Communication

 Message-oriented

Middleware

 Service-oriented

Middleware

 Database-oriented

Middleware

OSI Model

Distributed Communication

Slide 15

Communication

Distributed Data
Management

Thorsten Papenbrock

 Distributed system communication is always

based on low-level message passing.

 Messages are serializes data with well

defined (header) metadata.

 Higher-level communication principles

based on message passing, services, or

databases are implemented on top of

low-level message passing subsystems.

 Message passing requires protocols for the

exchange and routing of messages.

1010001101 11011110110 01101111100 100111010

OSI Model

Distributed Communication

Slide 16

Communication

Distributed Data
Management

Thorsten Papenbrock

Communication Protocol

 Set of rules that govern the format, contents, and meaning of messages

 Provide standards for how to send and receive messages

 Is either connection-based (handshake before and after communication) or

connectionless (no handshake, but simple message sends)

Open Systems Interconnection Reference Model (OSI Model)

 Layered model for network communication protocols

 Developed by the International Standards Organization (ISO) in 1983

1010001101 11011110110 01101111100 100111010

Phone call vs.
dropping a letter

OSI Model

Communication Layers

Slide 17

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Application-specific protocols, such as e-mail, Web access or file transfer

Description of the logical format of a message’s serialized data

Support for sessions between applications

Support for reliable communication or real-time streaming features

Routing of messages in networks and handling message congestion via buffers

Means to detect/correct errors and keep sender/receiver in same pace

Standardization of the physical connection and representation of 0s and 1s

OSI Model

Communication Protocols

Slide 18

Communication

Distributed Data
Management

Thorsten Papenbrock

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Application protocol

Presentation protocol

Session protocol

Network protocol

Data link protocol

Physical protocol

Transport protocol

Node A Node B

OSI Model

Communication Formats

Slide 19

Communication

Distributed Data
Management

Thorsten Papenbrock

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Network

Message

Message

Message

Packet

Frame

Bit

Message

Node A Node B

OSI Model

Intermediate Nodes

Slide 20

Communication

Distributed Data
Management

Thorsten Papenbrock

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Presentation

Session

Transport

Network

Data link

Physical

Intermediate Node Node A Node B

Network

Data link

Physical

OSI Model

Protocol Examples

Slide 21

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Communication

Distributed Data
Management

 Physical standards for network

devices and interconnects

 E.g. volt specifications for 1 and 0,

transmission rates, size and shape

of connectors, …

OSI Model

Protocol Examples

Slide 22

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Communication

Distributed Data
Management

 Sending of datagrams in local

network

 Direct host-to-host messaging;

no routing

 Addressing e.g. via MAC address

 e.g. 34:f3:9a:fa:fb:59

 Hardware dependent

 drivers needed

 Abstracting hardware details to

above layers

 Packetizing, (local) addressing,

transmission and receiving of data

OSI Model

Protocol Examples

Slide 23

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Communication

Distributed Data
Management

 Routing of datagrams across

networks

 Addressing e.g. via IP addresses

 for addressing and routing

 map to MAC addresses

 e.g. 172.17.5.57

 Abstracting the actual network

topology to above layers

 Packetizing, (global) addressing

and routing of data

OSI Model

Protocol Examples

Slide 24

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Communication

Distributed Data
Management

 Managing the datagram exchange

 host-to-host

(via arbitrary hops)

 communication protocol

 communication channel

 Port numbers for application

addressing

 e.g. 8080

 Abstracting communication details

to above layers

 Packetizing of data

OSI Model

Protocol Examples

Slide 25

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Communication

Distributed Data
Management

 Managing the datagram exchange

 host-to-host

(via arbitrary hops)

 communication protocol

 communication channel

 Port numbers for application

addressing

 e.g. 8080

 Abstracting communication details

to above layers

 Packetizing of data

TCP

 reliable (flow control)

 connection-based

 slow

 lost-message resents

 message ordering

 error correction

 duplicate removal

 congestion control

UDP

 unreliable

 connectionless

 fast

OSI Model

Protocol Examples

Slide 26

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Communication

Distributed Data
Management

 Software layers

 Creation and interpretation of data

 Also: “Your application”

 Not all communication requires

protocols from these layers

 Use the (reliable or unreliable)

channels (identified by IP + Port)

to send/receive data

 Higher level communication

protocols

 client-server

 peer-to-peer

 “IP + Port + Application”

is a service

 Interpretation

OSI Model

Protocol Examples

Slide 27

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Serialized

Data

TCP

Header

IP

Header

Frame

Header

Frame

Header

Session

Header

Pres.

Header

Serialized

Data

TCP

Header

IP

Header

Session

Header

Pres.

Header

Serialized

Data

TCP

Header

Session

Header

Pres.

Header

Serialized

Data

Session

Header

Pres.

Header

Serialized

Data

Pres.

Header

Serialized

Data

OSI Model

Protocol Examples

Slide 28

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Serialized

Data

Von Neumann architecture:

 Messages may contain

data and/or instructions.

 The application needs to

interpret the messages.

Communication

Distributed Data
Management

OSI Model

Middleware

Slide 29

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Thorsten Papenbrock

Application

Middleware

Operating system

Physical

Middleware

 A special layer for distributed systems that

covers application, presentation and session

layer protocols.

 Offers same APIs to applications

 Hides OS and hardware differences

 Can introduce communication principles

other than basic message passing

 Eases the development of distributed software

 Examples:

 RPC frameworks

 Distributed databases

 Actor models

 Message broker

 SOAP

OSI Model

Middleware

Slide 30

Thorsten Papenbrock

Communication

Distributed Data
Management

Middleware can be seen as
one system that stretches

multiple computers providing
the same services on every

computer.

Overview

Communication

 Message Passing

 OSI Model

 Socket-based

Communication

 Message-oriented

Middleware

 Service-oriented

Middleware

 Database-oriented

Middleware

Socket-based Communication

Low-level Message Passing

Slide 32

Communication

Distributed Data
Management

Thorsten Papenbrock

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Middleware

Operating system

Physical

Our focus now!

Socket-based Communication

Low-level Message Passing

Slide 33

Communication

Distributed Data
Management

Thorsten Papenbrock

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Serialized

Data

TCP

Header

IP

Header

Frame

Header

Frame

Header

 Listens on the network.

 Checks every incoming message on whether it is addressed

to this node’s MAC.

 If yes, it serves the message to the network layer protocol.

Socket-based Communication

Low-level Message Passing

Slide 34

Communication

Distributed Data
Management

Thorsten Papenbrock

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Serialized

Data

TCP

Header

IP

Header

 Provides system buffer space for messages.

 Checks every incoming message on whether it is

addressed to this node’s IP.

 If yes, serves the message to the transport layer protocol.

 If no, finds the IP for the next best hop and serves the

message back to the data link protocol.

Socket-based Communication

Low-level Message Passing

Slide 35

Communication

Distributed Data
Management

Thorsten Papenbrock

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Serialized

Data

TCP

Header

 Re-assembles data into logical messages.

 Serves the message to a communication end point

provided by the operating system.

 Lots of other services:

 Connections

 Reliable message sends

(e.g. via re-sending/re-questing lost messages)

 Streaming

 …

Socket-based Communication

Low-level Message Passing

Slide 36

Communication

Distributed Data
Management

Thorsten Papenbrock

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Serialized

Data

TCP

Header

 Is triggered when a new message has been copied into a

communication end point.

 Splits the message into smaller, equally-sized parts, which

better fit low-level buffer sizes (in e.g. the data link layer).

 Serves the message to the network layer.

Socket-based Communication

Low-level Message Passing

Slide 37

Communication

Distributed Data
Management

Thorsten Papenbrock

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Serialized

Data

TCP

Header

IP

Header

 Provides system buffer space for outgoing messages.

 Finds the IP for the next best hop and serves the message

to the data link protocol.

 Serves the message to the data link layer.

Socket-based Communication

Low-level Message Passing

Slide 38

Communication

Distributed Data
Management

Thorsten Papenbrock

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Serialized

Data

TCP

Header

IP

Header

Frame

Header

Frame

Header

 Frames the data with the target’s MAC, a sequence number and

a checksum.

 Sends the frame to the physical layer and, hence, the network.

 If messages collide or bits get damaged, the message is resend

(sequence numbers and checksums help to detect this).

checksum
sequence
number

Socket-based Communication

Sockets

Slide 39

Communication

Distributed Data
Management

Thorsten Papenbrock

Socket

 A socket is a communication end point to which an application can write data that are to

be send out over the underlying network, and from which incoming data can be read.

 Sockets are buffers to exchange messages with the transport layer.

 Sockets are described by protocol (usually TCP or UDP), IP address and port number.

 Sockets are symmetric, i.e., both sender and receiver must speak the same protocol.

 Think of a file to which the application can hold a handle

(sometimes sockets actually have file semantics, as in Java).

 Both application and transport layer have access to the socket.

 Read/Write operations to sockets need to be synchronized.

 Different socket implementations exist, but the interface is standardized.

 Sockets are by far the most popular form of cross-platform inter-process

communication primitives and used within most distributed systems.

 Date back to RFC 147 (ARPANET, 1971) and Berkeley’s BSD Unix (1983)

Socket-based Communication

Sockets

Slide 40

Communication

Distributed Data
Management

Thorsten Papenbrock

Sender

Socket

Transport

Network

Data link

Physical

Receiver

Socket

Transport

Network

Data link

Physical

Socket-based Communication

Sockets and TCP – An Example
socket bind listen accept receive send close

socket connect send receive close

Operation Description

socket Create a new connection end point; allocate system resources.

bind Associate a specific local address (IP and port) with a socket; if not called, OS will dynamically allocate a port
und use the local IP (see client).

listen Specify maximum number of pending connections; OS will buffer these requests.

accept (blocking) Create a new socket for an arriving request to represent the connection: original socket for further
connection requests; new socket for this specific connection (e.g., to fork a dedicated thread).

connect (blocking) Attempt to establish a connection with a remote end point; uses a three-way handshake to
exchange request, final port number and acknowledgement.

send Send some data over the connection.

receive Receive some data over the connection.

close Release the connection, i.e., socket resources and bindings.

S
e
r
v
e
r

C
li
e
n

t

Steps that move a communication
to a dedicated socket and, in this
way, make it connection-based.

Socket-based Communication

Sockets and TCP – An Example in Python

Slide 42

Communication

Distributed Data
Management

Thorsten Papenbrock

from socket import *

s = socket(AF_INET, SOCK_STREAM) # Specifies socket type; STREAM is for TCP

s.bind(“192.168.0.1”, 80) # Binds to IP and port

s.listen(1) # Allows 1 pending wait spot

(sc, addr) = s.accept() # Returns new socket and client addr

while True:

 data = sc.recv(1024) # Receives 1024 bytes

 if not data: break # Stops if client stopped

 sc.send(str(data)+”*”) # Sends received data plus an “*”

sc.close() # Closes the connection

from socket import *

s = socket(AF_INET, SOCK_STREAM) # Specifies socket type

s.connect (“192.168.0.1”, 80) # Connects to server

s.send(”hello”) # Sends a string message

data = conn.recv(1024) # Receives 1024 bytes

print data

s.close() # Closes the connection

Server

Client

These two codes
design an

application protocol!

Socket-based Communication

Sockets and TCP – An Example in Python

Slide 43

Communication

Distributed Data
Management

Thorsten Papenbrock

from socket import *

s = socket(AF_INET, SOCK_STREAM) # Specifies socket type

s.bind(“192.168.0.1”, 80) # Binds to IP and port

s.listen(1) # Allows 1 pending wait spot

(sc, addr) = s.accept() # Returns new socket and client addr

while True:

 data = sc.recv(1024) # Receives 1024 bytes

 if not data: break # Stops if client stopped

 sc.send(str(data)+”*”) # Sends received data plus an “*”

sc.close() # Closes the connection

from socket import *

s = socket(AF_INET, SOCK_STREAM) # Specifies socket type

s.connect (“192.168.0.1”, 80) # Connects to server

s.send(”hello”) # Sends a string message

data = conn.recv(1024) # Receives 1024 bytes

print data

s.close() # Closes the connection

Server

Client

In reality a bit more complex:
 send() and recv() calls return when the associated network

buffers have been filled (send) or emptied (recv).
 They do not necessarily handle all the bytes,

but tell how many bytes they handled.
 The application needs to call them again until the

entire message has been sent.
 When a recv returns 0 bytes, it means the other side has

closed (or is in the process of closing) the connection.

 One reason to appreciate middleware systems ;-)

To find the end, messages must either
 be fixed length;
 be delimited;
 indicate how long they are; or
 end by shutting down the connection.

Socket-based Communication

Sockets and TCP – An Example in Python

Slide 44

Communication

Distributed Data
Management

Thorsten Papenbrock

from socket import *

s = socket(AF_INET, SOCK_STREAM) # Specifies socket type

s.bind(“192.168.0.1”, 80) # Binds to IP and port

s.listen(1) # Allows 1 pending wait spot

(sc, addr) = s.accept() # Returns new socket and client addr

while True:

 data = sc.recv(1024) # Receives 1024 bytes

 if not data: break # Stops if client stopped

 sc.send(str(data)+”*”) # Sends received data plus an “*”

sc.close() # Closes the connection

from socket import *

s = socket(AF_INET, SOCK_STREAM) # Specifies socket type

s.connect (“192.168.0.1”, 80) # Connects to server

s.send(”hello”) # Sends a string message

data = conn.recv(1024) # Receives 1024 bytes

print data

s.close() # Closes the connection

Server

Client

Send

length = len(msg) # Measures byte length assuming string

s.send(toBytes(length, 8)) # Sends message length as 8 byte message

bytessent = 0

while bytessent < length: # Sends chunks until message is fully send

 sent = s.send(msg[bytessent:])

 bytessent = bytessent + sent

Receive

length = fromBytes(s.recv(8)) # Receives message length

chunks = [] # which is send as a fixed-length message of size 8

bytesrecv = 0

while bytesrecv < length: # Receives chunks until message is fully received

 chunk = s.recv(min(length - bytesrecv, 1048))

 chunks.append(chunk)

 bytesrecv = bytesrecv + len(chunk)

return b''.join(chunks) # Joins chunks as new byte array

https://docs.python.org/3/howto/sockets.html

https://docs.python.org/3/howto/sockets.html
https://docs.python.org/3/howto/sockets.html

Socket-based Communication

Sockets

Slide 45

Communication

Distributed Data
Management

Thorsten Papenbrock

Buffering or No-Buffering?

 Buffering, because a socket pre-allocates buffer space.

Synchronous or Asynchronous?

 Both socket variant exist, but usually synchronous:

 send() blocks until all data has been written to the socket.

 receive() blocks until data is available to be read.

Transient or Persistent?

 Transient, because both processes need to be active for messaging.

 But sockets have a buffer and manage the transmission!

 Yes, but the message as a whole is not stored and maintained,

i.e., if the message is larger than the sockets’ buffers, the

transport layer will never see the entire message.

Socket-based Communication

ZeroMQ

Slide 46

Thorsten Papenbrock

 An asynchronous, transient messaging library that supports message queues.

 Message queues are variable-length buffers:

 Can take entire messages (unlike TCP, which uses byte streams)

 Message-awareness

 Enables asynchronicity (sender continues after message submit)

 Despite the asynchronicity, recv()-calls still block if no message is present.

 ZeroMQ extends traditional sockets by providing a higher level of abstraction:

 ZeroMQ sockets support many-to-one and one-to-many communication:

 A socket can be associated with multiple addresses.

 A socket can connect to multiple addresses/sockets.

 ZeroMQ sockets support pairing of sockets into popular patterns.

Socket-based Communication

ZeroMQ – Communication Patterns

Request-Reply

 A pair of request socket (client) and reply socket (server)

 Every message to the request socket causes a reply to the reply socket.

 Connection handshake is implicit.

 Useful to implement synchronized calls, such as remote procedure calls.

Publish-Subscribe

 A publish socket (server) to which subscribe sockets (client) can subscribe.

 Every message submitted to the publish socket is forwarded to all subscribers.

 Useful to implement multicasting.

Pipeline (or Push-Pull)

 A push socket (server) connected to many pull sockets (clients).

 Every message submitted to the push socket is send to one pull socket;

the first client to pull a message receives it.

 Useful to implement task distribution (or collection when used in reverse).

request
socket

reply
socket

1

2

publish
socket

subscribe
socket
subscribe
socket
subscribe
socket

1 2

3

push
socket

subscribe
socket
subscribe
socket

pull
socket

1

3

2

reply

request

message

subscribe

message

connect
message

message

message
message

Socket-based Communication

ZeroMQ – Communication Patterns

Request-Reply

 A pair of request socket (client) and reply socket (server)

 Every message to the request socket causes a reply to the reply socket.

 Connection handshake is implicit.

subscribe
import zmq

context = zmq.Context()

p1 = “tcp://” + HOST + “:” + PORT1 # address 1

p2 = “tcp://” + HOST + “:” + PORT2 # address 2; both can be used to send message to the same socket

s = context.socket(zmq.REP) # create a reply socket

s.bind(p1) # bind socket to address 1

s.bind(p2) # bind socket to address 2

while True:

 message = s.recv() # block and wait for incoming message; message is the entire message object

 if not “STOP” in message: # interpret message; no need to create a new socket due to message-awareness

 s.send(message + “*”) # reply to the sender of the last message; destination is implicit due to zmq.REP

 else:

 break

request
socket

reply
socket

1

2
reply

request

Server

Socket-based Communication

ZeroMQ – Communication Patterns

Request-Reply

 A pair of request socket (client) and reply socket (server)

 Every message to the request socket causes a reply to the reply socket.

 Connection handshake is implicit.

subscribe
import zmq

context = zmq.Context()

p1 = “tcp://” + HOST + “:” + PORT1 # address 1

p2 = “tcp://” + HOST + “:” + PORT2 # address 2; both can be used to send message to the same socket

s = context.socket(zmq.REP) # create a reply socket

s.bind(p1) # bind socket to address 1

s.bind(p2) # bind socket to address 2

while True:

 message = s.recv() # block and wait for incoming message; message is the entire message object

 if not “STOP” in message: # interpret message; no need to create a new socket due to message-awareness

 s.send(message + “*”) # reply to the sender of the last message; destination is implicit due to zmq.REP

 else:

 break

import zmq

context = zmq.Context()

p1 = “tcp://” + HOST + “:” + PORT1 # address 1

s = context.socket(zmq.REQ) # create a request socket

s.connect(p1) # block until connected

s.send(“Hello World”) # send message

message = s.recv() # block until response

s.send(“STOP”) # send stop message

print message # print result

request
socket

reply
socket

1

2
reply

request

Client

Overview

Communication

 Message Passing

 OSI Model

 Socket-based

Communication

 Message-oriented

Middleware

 Service-oriented

Middleware

 Database-oriented

Middleware

 Sockets are not suitable for all transport layer protocols

(especially not for proprietary protocols used in high-speed networks).

 Transport layer protocols come with different, often complex interfaces

(that require e.g. special buffering or synchronization features).

 Transport layer protocols have numerous interfaces:

 Transport layer interfaces are sufficient, but not convenient

(every communication involves a lot of redundant code).

 Transport layer buffering capabilities are limited

(usually fixed sized buffers where flexible message queues are needed).

Message-oriented Middleware

Motivation

Slide 51

Communication

Distributed Data
Management

Thorsten Papenbrock

 ATP, AppleTalk Transaction Protocol
 CUDP, Cyclic UDP
 DCCP, Datagram Congestion Control Protocol
 FCP, Fibre Channel Protocol
 IL, IL Protocol
 MPTCP, Multipath TCP
 RDP, Reliable Data Protocol
 RUDP, Reliable User Datagram Protocol

 SCTP, Stream Control Transmission Protocol
 SPX, Sequenced Packet Exchange
 SST, Structured Stream Transport
 TCP, Transmission Control Protocol
 UDP, User Datagram Protocol
 UDP-Lite
 µTP, Micro Transport Protocol

Message-oriented Middleware

Middleware

Slide 52

Thorsten Papenbrock

7

6

5

4

3

2

1

Application

Presentation

Session

Transport

Network

Data link

Physical

Application

Middleware

Operating system

Physical

Our focus now!

A special layer for distributed
systems that provides a
unified API and may offer
additional convenience features
(w.r.t. buffering, communication
protocols, failure handling, ...)

Message-oriented Middleware

Middleware

 Message Passing Interface (MPI)

 Transient message-passing

 Focus: high performance

 Actor programming

 Transient message passing

 Focus: reactivity, fault-tolerance, maintainability

 Message-queuing systems

 Persistent message passing

 Focus: data-intensive, large-scale applications

Slide 53

Thorsten Papenbrock

Message-oriented Middleware

MPI

Message Passing Interface

 A specification for a family of transient message-passing libraries:

 Popular implementations exist for C, C++ and Fortran

 e.g. MVAPICH, Open MPI, Intel MPI, IBM Spectrum MPI, … (most are Linux-based)

 Most popular middleware for high-performance computing.

 Highly efficient:

 Supports various transport protocols and their features

 Can exploit special hardware features

 Highly versatile:

 Supports buffered/non-buffered communication

 Supports synchronous/asynchronous communication

 Small weaknesses:

 Still complex API with many (>440) low-level messaging functions
Slide 54

Communication

Distributed Data
Management

Thorsten Papenbrock

Message-oriented Middleware

MPI – Core Concepts

Message awareness

 MPI manages messages (of variable length) as entities for transmission,

i.e., it sends and receives messages as defined by the application.

Abstract process identifier

 MPI associates a process with an identifier and translates these identifiers

transparently into process addresses (i.a., IPs and ports).

 MPI organizes communicating processes in groups, which also receive

abstract identifiers.

 A pair (groupID, processID) uniquely identifies a source/destination.

Transient communication

 MPI does not persist messages and requires all processes to be reachable. Slide 55

Communication

Distributed Data
Management

Thorsten Papenbrock

Message-oriented Middleware

MPI – Send and Receive by Example

https://computing.llnl.gov/tutorials/mpi/

Message-oriented Middleware

MPI – Send and Receive by Example

https://computing.llnl.gov/tutorials/mpi/

= all known processes of the cluster

= our process ID in the cluster

If this is process 0, first send and
then receive a message.

If this is process 1, first receive and
then send a message.

Many further
environment functions exist.

Message-oriented Middleware

MPI – Synchronization Options

Slide 58

Thorsten Papenbrock

MPI

Sender

Receiver

send

Operation Semantics

MPI_isend Pass a message reference to MPI and continue.

MPI_bsend Append message to the local buffer and continue.

MPI_ssend Send message and wait until transmission starts.

MPI_send Send message and wait until copied to remote buffer.

MPI_sendrecv Send message and wait for a reply.

Different MPI libraries may
interpret and implement these API

semantics differently…

Message-oriented Middleware

MPI – Synchronization Options

Blocking

 Send() call returns if the data was send.

 The message in the send buffer can safely be modified.

 Synchronous

 The receiving side acknowledged having received the data.

 Asynchronous

 The system buffer acknowledged having received the data

(the system buffer copied the data and will make sure it gets send).

Non-Blocking

 Send() call returns immediately.

 The message in the send buffer should not be modified.

In this terminology,
RabbitMQ, Kafka, Akka and other
JVM-based message broker are
non-blocking + asynchronous

(messages should not be modified
and arrived in the message broker)

Message-oriented Middleware

MPI – Send and Receive by Example

Processor 1

Process 1

Application

System
Buffer

Processor 2

Process 2

Application

System
Buffer

 Network

message

Slide 60

Thorsten Papenbrock

Blocking, synchronous, non-buffered

Blocking, synchronous, buffered

Blocking, asynchronous, buffered

Non-Blocking, asynchronous, buffered

message

message message

Message-oriented Middleware

Middleware

 Message Passing Interface (MPI)

 Transient message-passing

 Focus: high performance

 Actor programming

 Transient message passing

 Focus: reactivity, fault-tolerance, maintainability

 Message-queuing systems

 Persistent message passing

 Focus: data-intensive, large-scale applications

Slide 61

Thorsten Papenbrock

Message-oriented Middleware

Reactive Systems

Slide 62

Thorsten Papenbrock

Responsiveness

 The system responds in a timely manner (if possible).

 To user interaction, failures, events, state changes, data characteristics, …

Resilience

 The system stays responsive in the face of failures.

 Achieved by replication, containment, isolation and delegation.

Elasticity

 The system stays responsive under varying workloads.

 Achieved by dynamic resource (de-)allocation, sharding, replication and decentralization.

Messaging

 The system relies on asynchronous message-passing between loosely coupled,

isolated and location transparent components.

 Enables workload distribution, parallelization, failure delegation,

load management, and flow control.

https://www.reactivemanifesto.org/

https://www.reactivemanifesto.org/
https://www.reactivemanifesto.org/

Message-oriented Middleware

Actor

Slide 63

Communication

Distributed Data
Analytics

Thorsten Papenbrock

Actor

Message Queue

Behavior

State

 Object with strictly private state and behavior

 Owns exactly one message queue

 Is dynamically scheduled on threads

if messages are queued and resources are available

 Constitutes the smallest unit of parallelization;

execution within an actor is strongly sequential

 Reacts to incoming messages;

is passive like any object otherwise

 Reactions:

 Send a finite number of messages to (other) actors

 Change own state and/or behavior for next message

 Create a finite number of new actors

Message-oriented Middleware

Actor

Slide 64

Communication

Distributed Data
Analytics

Thorsten Papenbrock

Thread

Message-oriented Middleware

Actor Model

Slide 65

Communication

Distributed Data
Management

Thorsten Papenbrock

Actor 1 Actor 2

Message-oriented middleware

The actor model is a mathematical, object-oriented message-passing model

that treats actors as the universal primitives of concurrent computation.

 Actors in the actor model …

 are concurrent, fully encapsulated, self-contained entities.

 address one another via abstract references that identify an

actor object (pointer) inside a process (ID) on some node (IP + port).

 Message-oriented middleware required to i.a. …

 resolve abstract addresses.

 deliver messages from sender to receiver actors.

 schedule actors on threads.

 Shared memory is strictly forbidden:

 Actor model helps to prevent many parallel programming issues

(concurrent memory access, race conditions, locking, deadlocks, …)

Carl Eddie Hewitt,
designer of the Actor Model in 1973.

[Carl Hewitt, Peter Bishop and Richard Steiger,
"A Universal Modular Actor Formalism for

Artificial Intelligence“, 1973, IJCAI]

Message-oriented Middleware

Actor Model Principles

Slide 66

Communication

Distributed Data
Management

Thorsten Papenbrock

The actor model follows certain programming principles:

 Asynchronicity

 Actors fire-and-forget messages

 Encapsulation

 Actors have strictly private state and behavior

 Distribution

 Actor locations are transparent

 Parallelization

 Actors execute concurrently

 Synchronization

 Actors synchronize explicitly

Message-oriented Middleware

Actor Model Principles

Slide 67

Communication

Distributed Data
Management

Thorsten Papenbrock

Asynchronicity

 Actor-to-Actor communication is asynchronous (fire-and-forget)

 Actor-to-Middleware communication can be synchronous or asynchronous

(depending on the actor model implementation)

 Note: Actor-to-Middleware

communication is within the

same process and can

therefore use shared memory

(middleware implementation

hides this from developer)

 Middleware communication

is usually based on synchronous

TCP or UDP sockets

Process 1

Process 2

Middleware

Socket

Transport

Network

Data link

Physical

Middleware

Socket

Transport

Network

Data link

Physical

Actor 1 Actor 2

Message-oriented Middleware

Actor Model Principles

Slide 68

Communication

Distributed Data
Management

Thorsten Papenbrock

Encapsulation

 Communicating entities have private state and private behavior.

 Communication means sending messages and reacting on received messages.

 Communicate “what” is to be done not “how”!

 The recipient decides how and if it handles a certain message.

 Communication protocols define the etiquette:

 Commonly agreed message formats

 Patterns for message exchanges

It is the developers task to
define actor-based

application protocols that
form viable applications!

Message-oriented Middleware

Actor Model Principles

Slide 69

Communication

Distributed Data
Management

Thorsten Papenbrock

Distribution

 Messages can pass through busses, channels, networks, …

 Actors use abstract references to identify each other.

 Message-passing system i.e. the middleware resolves addresses and

automatically routes messages from senders to receivers.

 Allows actors to be transparently distributed, i.e., actors do not need

to know where their communication partners actually are.

Actor 2 Actor 1

Message-oriented Middleware

Actor Model Principles

Slide 70

Communication

Distributed Data
Management

Thorsten Papenbrock

Parallelization

 Actors process one message at a time but different actors operate

independently (parallelization between actors not within an actor).

 Actors may spawn new actors if needed (dynamic parallelization).

 Task parallelism:

 Different actors execute different tasks.

 Data parallelism:

 Different actors execute the same task on different data elements.

Message-oriented Middleware

Actor Model Principles

Slide 71

Communication

Distributed Data
Management

Thorsten Papenbrock

Synchronization

 Synchronization happens explicitly via messaging and state changes.

 Immutable messages and private actor states prevent concurrency conflicts

(e.g. concurrent memory access).

 Deadlocks, starvation and live-locks are easier to avoid with message

passing, because resource ownership and waiting behavior is more explicit;

still all are possible if communication protocols are faulty implemented.

 Actor-Middleware and Middleware-Actor communication still requires

synchronization primitives or lock-free data structures.

 Message passing can be implemented via locking/atomic operations on

the message queue(s) or buffer(s).

 Vice versa: Locks can be implemented via exchange of messages

(e.g. the request/response pattern introduces waiting behavior).

See also http://web.mit.edu/6.031/www/fa17/classes/22-queues

Message passing ≠ no Synchronization

and https://stackoverflow.com/questions/7140544/message-passing-vs-locking

http://web.mit.edu/6.031/www/fa17/classes/22-queues/
http://web.mit.edu/6.031/www/fa17/classes/22-queues/
http://web.mit.edu/6.031/www/fa17/classes/22-queues/
http://web.mit.edu/6.031/www/fa17/classes/22-queues/
http://web.mit.edu/6.031/www/fa17/classes/22-queues/
https://stackoverflow.com/questions/7140544/message-passing-vs-locking
https://stackoverflow.com/questions/7140544/message-passing-vs-locking
https://stackoverflow.com/questions/7140544/message-passing-vs-locking
https://stackoverflow.com/questions/7140544/message-passing-vs-locking
https://stackoverflow.com/questions/7140544/message-passing-vs-locking
https://stackoverflow.com/questions/7140544/message-passing-vs-locking
https://stackoverflow.com/questions/7140544/message-passing-vs-locking

Message-oriented Middleware

Actor Model Principles

Slide 72

Communication

Distributed Data
Management

Thorsten Papenbrock

Actor

(Thread)

…

try {

 messageMutex.lock();

 messageQueue.offer(message);

} finally {

 messageMutex.unlock();

}

…

Middleware

(Thread)

…

try {

 messageMutex.lock();

 message = messageQueue.poll();

} finally {

 messageMutex.unlock();

}

…

ReentrantLock messageMutex = new ReentrantLock();

Queue<Work> messageQueue = new ArrayDeque<Work>();
= Shared Memory

Arbitrary synchronization primitive
(mutex, semaphore, barrier, monitor, …)

= Critical Section

Message-oriented Middleware

Actor Model Principles

Slide 73

Communication

Distributed Data
Management

Thorsten Papenbrock

Actor
(Thread)

private void send(Message message) {

 myQueue.add(message);

}

Middleware
(Thread)

private Message receive() {

 while (true) {

 message = myQueue.remove();

 if (message != null)

 return message;

}

BlockingQueue<Message> myQueue = new BlockingQueue<Message>;

Lock-based Queue

Blocks if middleware
reads from queue.

Blocks if actor
reads from queue.

Message-oriented Middleware

Actor Model Principles

Slide 74

Communication

Distributed Data
Management

Thorsten Papenbrock

Actor
(Thread)

private void send(Message message) {

 myQueue.add(message);

}

Middleware
(Thread)

private Message receive() {

 while (true) {

 message = myQueue.remove();

 if (message != null)

 return message;

}

NonBlockingQueue<Message> myQueue = new NonBlockingQueue<Message>;

Lock-free Queue

NonBlockingQueue

 A non-blocking Queue data structure
 Based on the atomic compare-and-set operation
 Extension of the TreiberStack* data structure

* R. K. Treiber, Systems programming: Coping with parallelism. International Business Machines Incorporated, Thomas J. Watson Research Center, 1986.

Distributed Data
Management

public class NonBlockingQueue<T> {

 private final AtomicReference<Node<T>> head;

 private final AtomicReference<Node<T>> tail;

 public NonBlockingQueue() {

 this.head = new AtomicReference<T>(null);

 this.tail = new AtomicReference<T>(null);

 }

 private class Node<T> {

 public volatile T message;

 public volatile Node<T> next;

 public volatile Node<T> previous;

 public Node(T message) {

 this. message = message;

 this.next = null;

 }

 }

 public void add(T message) { … }

 public T remove() { … }

}

public void add(T message) {

 Node<T> newNode = new Node<T>(message);

 Node<T> currentTail;

 do {

 currentTail = this.tail.get();

 node.previous = currentTail;

 } while (! this.tail.compareAndSet(currentTail, newNode));

 if (newNode.previous != null)

 newNode.previous.next = newNode;

 this.head.compareAndSet(null, newNode);

}

public T remove() {

 if (this.head.get() == null)

 return null;

 Node<T> currentHead, nextNode;

 do {

 currentHead = this.head.get();

 nextNode = currentHead.next;

 } while (! this.head.compareAndSet(currentHead, nextNode));

 return currentHead.getValue();

}
Atomic operations

Atomare Operation Atomic operations

Slide 76

Communication

Distributed Data
Management

Thorsten Papenbrock

Message-oriented Middleware

Actor Model Implementations

Distributed Data
Management

 Erlang:

 Actor library natively included in the Erlang language

 First popular actor implementation

 Special: Native language support and strong actor isolation

 Akka:

 Actor library for the JVM (Java und Scala)

 Most popular actor implementation (a.t.m.)

 Special: Actor hierarchies and typed actors

 Orleans:

 Actor library for Microsoft .NET/C#

 Very popular in research and industry (due to Microsoft)

 Special: Virtual actors (persistent state and transparent location)

Message-oriented Middleware

Actor Model Implementations

Slide 77

Communication

Distributed Data
Management

Thorsten Papenbrock

 Erlang:

 Actor library natively included in the Erlang language

 First popular actor implementation

 Special: Native language support and strong actor isolation

 Akka:

 Actor library for the JVM (Java und Scala)

 Most popular actor implementation (a.t.m.)

 Special: Actor hierarchies and typed actors

 Orleans:

 Actor library for Microsoft .NET/C#

 Very popular in research and industry (due to Microsoft)

 Special: Virtual actors (persistent state and transparent location)

Message-oriented Middleware

Actor Model – Akka

 Implements the actor modell

 A free and open-source toolkit and runtime for building concurrent and

distributed applications on the JVM (https://akka.io/)

 Written in Scala (https://scala-lang.org/)

 Offers APIs for Java und Scala

 Invented by Jonas Bonér

 Maintained by Lightbend (https://lightbend.com/)

Slide 78

Communication

Distributed Data
Management

Thorsten Papenbrock

https://akka.io/
https://scala-lang.org/
https://scala-lang.org/
https://scala-lang.org/
https://scala-lang.org/
https://www.lightbend.com/
https://www.lightbend.com/

Message-oriented Middleware

Actor Model – Akka

Worker

public class Worker extends AbstractActor {

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(String.class, this::respondTo)

 .matchAny(object -> System.out.println("Could not understand received message"))

 .build();

 }

 private void respondTo(String message) {

 System.out.println(message);

 this.sender().tell("Received your message, thank you!", this.self());

 }

}

Inherit default actor behavior,
state and mailbox implementation

The Receive class performs
pattern matching and de-serialization

Send a response to the sender of the last message
(asynchronously, non-blocking)

A builder pattern for constructing
a Receive object with otherwise

many constructor arguments

Called in default
actor constructor
and set as the

actor‘s behavior

Slide 79

Communication

Distributed Data
Management

Thorsten Papenbrock

Message-oriented Middleware

Actor Model – Akka

Worker

public class Worker extends AbstractActor {

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(String.class, s -> this.sender().tell("Hello!", this.self()))

 .match(Integer.class, i -> this.sender().tell(i * i, this.self()))

 .match(Double.class, d -> this.sender().tell(d > 0 ? d : 0, this.self()))

 .match(MyMessage.class, s -> this.sender().tell(new YourMessage(), this.self()))

 .matchAny(object -> System.out.println("Could not understand received message"))

 .build();

 }

}

The message types (= classes)
define how the actor reacts.

Slide 80

Communication

Distributed Data
Management

Thorsten Papenbrock

Message-oriented Middleware

Actor Model – Akka

Worker

public class Worker extends AbstractActor {

 public static class MyMessage implements Serializable {}

 @Override

 public Receive createReceive() {

 return receiveBuilder()

 .match(MyMessage.class, s -> this.sender().tell(new OtherActor.YourMessage(), this.self()))

 .matchAny(object -> System.out.println("Could not understand received message"))

 .build();

 }

}

Good practice:
Actors define their messages

(provides kind of an interface description)

Slide 81

Communication

Distributed Data
Management

Thorsten Papenbrock

Example: A flight booking system

Message-oriented Middleware

Actor Model – Akka

Payment
Actor

Billing
Actor

Reservation
Actor

Promotion
Actor

BookingRequest

Reserve Bill Promote Pay

Booking API

Booking
Processor

BookingTask

Booking
Worker

Booking
Worker

Booking
Worker

Booking
Worker

Banking API
Reser-
vations

Promo-
tions Email

BillAck PayAck ResAck PromAck
BookAck

Data Parallelism

Task
Parallelism

Slide 82

Communication

Distributed Data
Management

Thorsten Papenbrock

Example: A flight booking system

Message-oriented Middleware

Actor Model – Akka

Payment
Actor

Billing
Actor

Reservation
Actor

BookingRequest

Reserve Bill Promote Pay

Booking API

Booking
Processor

BookingTask

Booking
Worker

Booking
Worker

Booking
Worker

Booking
Worker

Banking API
Reser-
vations

Promo-
tions Email

BillAck PayAck ResAck PromAck
BookAck

Data Parallelism

Promotion
Actor

Task
Parallelism

Booking
Processor

Booking
Worker

Booking
Worker

Booking
Worker

Booking
Worker

Payment
Actor

Billing
Actor

Reservation
Actor

Promotion
Actor

Slide 83

Communication

Distributed Data
Management

Thorsten Papenbrock

Dispatcher

Thread 2 Thread 3 Thread 4 Thread 1

Payment
Actor

Billing
Actor

Reservation
Actor

Promotion
Actor

Booking
Processor

Booking
Worker

Booking
Worker

Booking
Worker

/
(root guardian)

system
(guardian)

System and remote actors
live here

Wurzel der
Aktor Hierarchie

user
(guardian)

User actors
live here

ActorSystem

Idle actors
do not bind
resources

Parents supervise
their children

Dynamically schedules actors
with messages on threads
(transparent multi-threading):
 #threads ≈ #CPU cores
 #actors > #CPU cores

(usually many hundreds)
 over-provisioning!

Booking
Worker

Booking
Worker

Message-oriented Middleware

Actor Model and Fault Tolerance

Slide 85

Thorsten Papenbrock

Reactive Programming

 A declarative programming paradigm based on event and message flows.

 Program components (= actors) declare how they react on certain messages.

 Instead of following a fixed calculation plan, components behave dynamically and

independent of each other.

 Writing a reactive algorithm is more like declaring rules for how to react on

certain input changes rather than defining a step-by-step execution plan.

 Reactions are triggered by data or changes in the environment.

 Reaction:

 changing state (= private variables)

 changing behavior (= private code)

 changing algorithm topology (= child actors)

 sending further messages

 Reactivity helps to optimize resource utilization, robustness and elasticity.

Message-oriented Middleware

Actor Model and Fault Tolerance

Slide 86

Thorsten Papenbrock

“Let it crash” philosophy

 Distributed systems are inherently prone to errors

(because there is simply more to go wrong/break).

 Message loss, unreachable mailboxes, crashing actors …

 Make sure that critical code is supervised by some entity that knows how errors can be

handled.

 Then, if an error occurs, do not (desperately) try to fix it: let it crash!

 Errors are propagated to supervisors that can deal better with them.

 Example: Actor discovers a parsing error and crashes.

 Maybe message was corrupted in message transfer.

 Its supervisor restarts the actor and resends the message.

Fault tolerance tools

 Lifecycle management (e.g. automatic restart of failed actors)

 Supervision (let it crash)

 Dead letters (e.g. resent/re-route of failed messages)

Actor

Actor

Actor

Akka hands-on:

 Demo

 Actor lifecycle

 Messaging guarantees

 Fault tolerance

 Remoting

 Scheduling

 Patterns

 Maszer/Worker

 Reaper

 Proxy

 Singleton

 ...

Message-oriented Middleware

Actor Model – Akka

Slide 87

Communication

Distributed Data
Management

Thorsten Papenbrock

Message-oriented Middleware

Middleware

 Message Passing Interface (MPI)

 Transient message-passing

 Focus: high performance

 Actor programming

 Transient message passing

 Focus: reactivity, fault-tolerance, maintainability

 Message-queuing systems

 Persistent message passing

 Focus: data-intensive, large-scale applications

Slide 88

Thorsten Papenbrock

A message-queuing system is a message-oriented middleware that provides

various services for (persistent) asynchronous communication.

 Message queue:

 Intermediate-term storage capacity maintained by the middleware

 Stores messages until delivered to (all) recipients

 Sometimes tied to sender and/or receiver (see actor model);

sometimes subscription-based (see RabbitMQ)

 Holds a logical, location-independent, system-wide unique identifier

 Queue manager:

 Part of the message-queuing system that handles queue lifecycles

and all message traffic

 A separate process and/or library that is linked into the application

 Message-queuing system requires a queue manager on every node

Message-oriented Middleware

Message-Queuing Systems

Slide 89

Communication

Distributed Data
Management

Thorsten Papenbrock

A message-queuing system is a message-oriented middleware that provides

various services for (persistent) asynchronous communication.

 Message queue:

 Intermediate-term storage capacity maintained by the middleware

 Stores messages until delivered to (all) recipients

 Sometimes tied to sender and/or receiver (see actor model);

sometimes subscription-based (see RabbitMQ)

 Holds a logical, location-independent, system-wide unique identifier

 Queue manager:

 Part of the message-queuing system that handles queue lifecycles

and all message traffic

 A separate process and/or library that is linked into the application

 Message-queuing system requires a queue manager on every node

Message-oriented Middleware

Message-Queuing Systems

Slide 90

Communication

Distributed Data
Management

Thorsten Papenbrock

Strictly speaking:

If all queue manager run within application processes,
i.e., there is no separate queue manager process, then
the message transfer requires both sender and receiver
process to run simultaneously (at some point in time).

 Can be considered non-persistent

(although local queue manager can in principle wait
with the transfer until the target system is up without
blocking local application threads)

A message-queuing system is a message-oriented middleware that provides

various services for (persistent) asynchronous communication.

 Sender/receiver:

 May not be active at the same time

 May be programmed in different languages (in some MQ systems)

 Messages:

 Need to be understood by sender/receiver

 May not be understood by the message-queuing system (byte arrays)

 Need to be properly addressed to a message queue (unique ID)

 Messaging:

 Message transfers may take longer than with Sockets, MPI, RPCs, …

 Middleware guarantees that the message will eventually be delivered

to the recipient (no guarantee on when or if the message is read).

Message-oriented Middleware

Message-Queuing Systems

Slide 91

Communication

Distributed Data
Management

Thorsten Papenbrock

Sender/Receiver may refer
to processes or threads

A message-queuing system is a message-oriented middleware that provides

various services for (persistent) asynchronous communication.

 (Basic) Interface:

 Variations:

 get/poll may take but not remove the element

 get/poll may not return the first but a different element

(based on priority, a search pattern, sender or index)

Message-oriented Middleware

Message-Queuing Systems – Interface

Slide 92

Thorsten Papenbrock

Operation Description

put Append a message to a specific queue (non-blocking).

get Remove first message from a queue (blocking)

poll Try to remove first message from a queue (non-blocking).

notify Install a handler that is called when a message is put into a queue.

Message pulling
(active receiver)

Message pushing
(active queue)

Message pulling
(active receiver)

 Message Buffering:

 Maintenance of message queues and their subscribers/owners

 Message Delivery:

 Answering of poll-requests or notification of recipients

 (sometimes) Ensuring reliable message sends (message loss detection and resending)

 (sometimes) Enabling synchronous message sends

 Address Resolution:

 Translation of symbolic addresses into physical references, ports and IP-addresses

(enables location transparent communication)

 Data Transmission:

 Routing: one-to-one messages

 Broadcasting: one-to-many messages

 Encoding:

 Serialization and deserialization for messages that are send across process boundaries

Message-oriented Middleware

Message-Queuing Systems – Tasks

Slide 93

Thorsten Papenbrock

Communication

Distributed Data
Management

 A message queue lives in some queue manager.

 Applications can write/read only local queues.

 To write/read remote queues,

queue manager create local queues

(usually dynamically and transparently).

 In the example:

Sender sends to a remote target queue.

 Each pair of communicating processes maintains

(usually) exactly one transport-level connection

(e.g. TCP) for all traffic between arbitrary queues.

 A process maintains (usually) exactly one

send queue for each connection.

 Address lookup database (or routing table):

 stores a mapping of logical queue IDs to physical addresses

(e.g. transport protocol, host and port).

 can be a replicated store or a network service.

Message-oriented Middleware

Message-Queuing Systems – Transmission

Slide 94

Thorsten Papenbrock

Sender Process

Sender Application

Sender
Queue
Manager

Interface

OS

S
e
n

d

q
u

e
u

e

Address
lookup DB

Receiver Process

Receiver Application

Receiver
Queue
Manager

Interface

OS

T
a
r
g

e
t

q
u

e
u

e

Address
lookup DB

Same address space; no need to physically copy messages;
can use any type of synchronization to insert/remove messages

Connection

Channels within the
connection describe logical,
uni-directional connections

between queues.

Message-oriented Middleware

Message-Queuing Systems – Transmission

Slide 95

Thorsten Papenbrock

Sender Process

Sender Application

Sender
Queue
Manager

Interface

OS

S
e
n

d

q
u

e
u

e

Address
lookup DB

Receiver Process

Receiver Application

Receiver
Queue
Manager

Interface

OS

T
a
r
g

e
t

q
u

e
u

e

 Routers:

 are queue manager that forward messages addressed to non-local message queues.

 are needed if the address lookup database is incomplete or network topologies are

complex so that messages cannot be send directly to the target queues.

Address
lookup DB

Router Process

Router Application

Router
Queue
Manager

Interface

OS

Address
lookup DB

Message-oriented Middleware

Message-Queuing Systems – Transmission

Slide 96

Thorsten Papenbrock

Sender Process

Sender Application

Queue
Manager

Interface

Receiver Process

Receiver Application

Queue
Manager

Interface

Middleware Process

Queue
Manager

OS

Middleware Process

Queue
Manager

OS

Queue manager in different processes and
message passing between application and middleware

Middleware Process

Queue
Manager

Server
Skeleton

Message-oriented Middleware

Message-Queuing Systems – Transmission

Slide 97

Thorsten Papenbrock

Sender Process

Sender Application

Client Stub

Interface

Receiver Process

Receiver Application

Client Stub

Interface

OS

Middleware Process

Queue
Manager

OS

Queue manager in different processes and
RPC between application and middleware

Server
Skeleton

Distributed systems usually consist of more than two nodes!

 Assume we want to integrate different, potentially heterogeneous systems

into a single, coherent distributed information system.

 Each system speaks its own protocols and message formats.

 Due to the complexity and abstractions made by middleware layers, it is

often not possible to let all systems agree on one communication protocol.

Message-oriented Middleware

Message-Queuing Systems – Message Broker

Slide 98

Thorsten Papenbrock

Communication

Distributed Data
Management

?

?

Solution 1: Wrappers

 Peer-to-peer communication channels

between all systems using wrappers

 Requires O(N²) wrappers

 Works well for homogeneous systems

(like MPI or actor systems) but causes

scalability issues and code duplication

for heterogeneous systems

Solution 2: Message Broker

 Centralized communication hub with

message translation capabilities

 Requires O(N) wrappers

 Is slower than peer-to-peer communication

Message-oriented Middleware

Message-Queuing Systems – Message Broker

Slide 99

Thorsten Papenbrock

Communication

Distributed Data
Management

Message Broker

 An application-level gateway on top of a message-queuing system that

routes and translates messages.

 The message-queuing system treats the broker as yet another application.

 Message-queuing system plus message broker are one form of

message-oriented middleware:

Message-oriented Middleware

Message-Queuing Systems – Message Broker

Slide 100

Thorsten Papenbrock

Communication

Distributed Data
Management

Message-oriented Middleware

Message-queuing System

Queue Manager

 Queues

Message Broker

Message Broker (cont.)

 Can add additional capabilities on top of the message-queuing system

(often via plugins and rule sets), such as:

 Message transformations/re-encodings

 Replication of queues

 Partitioning of queues

 Sender and receiver group management

 Batch processing

 Example: Apache Kafka

Message-oriented Middleware

Message-Queuing Systems – Message Broker

Slide 101

Thorsten Papenbrock

Communication

Distributed Data
Management

Broker Process

OS

Broker Application

Message-oriented Middleware

Message-Queuing Systems – Message Broker

Slide 102

Thorsten Papenbrock

Sender Process

Sender Application

Queue
Manager

Interface

Receiver Process

Receiver Application

Queue
Manager

Interface

Queue
Manager

OS OS

Interface

Plugins Rules

Publish-Subscribe

 The queue manager of the message broker maintains all message queues.

 Any process can potentially access all queues of the broker.

 Queues may be used in many-to-many communications.

 Publish-subscribe is a message-queuing communication pattern:

 Senders (called publishers) address their

messages to queues, which represent topics

or categories, without knowing the real recipients.

 Receivers (called subscribers) listen on one or

multiple queues via subscriptions to these queues;

they consume messages without knowing the sender(s).

 Subscription = registered callback function

Message-oriented Middleware

Message-Queuing Systems – Message Broker

Slide 103

Thorsten Papenbrock

Queue 1

Message Broker

Process 3 Process 4

Queue 2 Queue 3

Process 1 Process 2

Message-oriented Middleware

Message-Queuing Systems – Message Broker

Slide 104

Communication

Distributed Data
Management

Thorsten Papenbrock

General message delivery

 Processes can …

 create named message queues.

 subscribe to existing message queues.

 send messages to a queue.

 The message broker promises that send messages are delivered to

some (1-to-1) or all (broadcasting) subscribers of a queue.

Popular message brokers

 Commercial:

 TIBCO, IBM WebSphere, webMethods, …

 Open source:

 Apache Kafka, RabbitMQ, ActiveMQ, HornetQ, NATS, …

Message-oriented Middleware

Example: RabbitMQ – Sending a Message

Slide 105

Communication

Distributed Data
Management

Thorsten Papenbrock

Create a connection to the message broker
running on localhost (see TCP protocol).

Create a channel to a queue; the queue
is created if it does not exist yet.

Send the message encoded
as an array of bytes.

Close all channels
and the connection.

https://www.rabbitmq.com/getstarted.html

Message-oriented Middleware

Example: RabbitMQ – Receiving a Message

Create a connection to the message broker
running on localhost (see TCP protocol).

Create a channel to a queue; the queue is
created if it does not exist yet.

Create a callback object that can buffer and
consume messages from a queue.

Decode and print any received byte message.

Subscribe the new consumer to the queue;
the broker will call it with messages of that queue.

https://www.rabbitmq.com/getstarted.html

Special metadata for the received message:
 E.g. encoding, timestamp, sender, priority, …

Message-oriented Middleware

Example: RabbitMQ – Example in Python

Further APIs:

 Ruby, PHP, C#, JavaScript, Go,
Elixir, Objective-C, Swift, …

https://www.rabbitmq.com/getstarted.html

Advantages

 Maintainability: Decouples sender and receiver objects/threads/processes

 Asynchronicity: Buffers messages if receiver is unavailable or overloaded

 Robustness: May redirect messages if some receiver is unreachable

 Efficiency: Message routing, buffering, replication… can be optimized

Disadvantages

 Scalability: Message broker and shared queues can be bottlenecks

 Latency: Message broker is an additional hop for each message

 Reliability: Publishers cannot be sure that their messages will be

 consumed; broker will need to drop undeliverable

 messages eventually

Message-oriented Middleware

Message-Queuing Systems – Message Broker

Slide 108

Thorsten Papenbrock

Communication

Distributed Data
Management

Overview

Communication

 Message Passing

 OSI Model

 Socket-based

Communication

 Message-oriented

Middleware

 Service-oriented

Middleware

 Database-oriented

Middleware

Service-oriented Middleware

Service-oriented Communication

Slide 110

Communication

Distributed Data
Management

Thorsten Papenbrock

Service

 A well-defined API that can

be accessed by other (remote) processes

 Identified by service protocol + IP + port

 Offers functions that may take arguments (= a send message)

and return values (= a receive message)

 Functions define fine-grained restrictions on what can be communicated.

 Functions imply clear actions (whereas messages that imply facts).

 Functions are blocking und synchronous

Asymmetric Communication

 Communicating processes have two roles:

 Server: exposes a service that other processes can see and use.

 Client: connects to a server’s service and calls functions.

Server Client

Service

 Client knows:

 How to address the server (IP + Port)

 How to send data (serialization + packaging)

 Client does not (yet) know:

 What functions are available

 What data it needs to send to call a function

Service-oriented Middleware

Service-oriented Communication

Slide 111

Communication

Distributed Data
Management

Thorsten Papenbrock

Client Server

Service-oriented Middleware

Service-oriented Communication

Slide 112

Communication

Distributed Data
Management

Thorsten Papenbrock

 Client does not (yet) know:

 What functions are available

 What data it needs to send to call a function

Client Server

interface interface

Interface:

 of the service functions

 added e.g. during
client implementation
as library

Service-oriented Middleware

Service-oriented Communication

Slide 113

Communication

Distributed Data
Management

Thorsten Papenbrock

 Client does not (yet) know:

 What functions are available

 What data it needs to send to call a function

Client Server

interface interface

p
ro

to
c
o
l

p
ro

to
c
o
l

Protocol:

 function call  data

 data  function call

(w.r.t. given interface)

A protocol that allows processes to directly call functions in remote processes

(i.e., cause procedures to execute in different address spaces).

 The object-oriented equivalent is remote method invocation (RMI).

 Remote procedures are called like normal (local) procedures.

 Tight coupling between processes

Service-oriented Middleware

Remote Procedure Call (RPC)

Slide 114

Communication

Distributed Data
Management

Thorsten Papenbrock

Bruce Jay Nelson
introduced the RPC idea in 1984.
[Andrew D. Birrell and Bruce Jay Nelson,

“Implementing Remote Procedure Calls”. ACM
Transactions on Computer Systems, 1984]

The RPC middleware:

 requires the service’s interface on server and client.

 implements the protocol for transmitting a function call.

 uses the interface to automatically generate two proxies:

 Stub (function call  data)

 Implements and offers the interface functions.

 Translates any function call into a message

and sends it to the skeleton.

 function/parameter marshaling

 Skeleton (data  function call)

 Implements a messaging-based endpoint for a service.

 Translates any message into a function call

and maps it to the right local function implementation.

Service-oriented Middleware

Remote Procedure Call (RPC)

Slide 115

Communication

Distributed Data
Management

Thorsten Papenbrock

Service-oriented Middleware

Remote Procedure Call (RPC)

Slide 116

Communication

Distributed Data
Management

Thorsten Papenbrock

Client
code

interface

Client
stub

RPC
runtime

TCP/UDP

Network

Client

Server
code

interface

Server
skeleton

RPC
runtime

TCP/UDP

Server

service

1. Client calls a remote procedure and waits.

2. Stub accepts the procedure call and

serializes both the call and its parameters.

3. RPC Runtime sends the serialized call

via TCP/UDP to the server.

4. Skeleton accepts procedure call, deserializes

the message and calls the corresponding

service procedure with the given parameters.

5. Server handles the call and returns a result.

6. Skeleton accepts the result and

serializes it.

7. RPC Runtime sends the serialized result

via TCP/UDP back to the client.

8. Stub accepts the result, deserializes it

and forwards it to the waiting client.

9. Client awakes and accepts the result.

1

2

3

4

5

6

7

8

9

1. Client calls a remote procedure and waits.

2. Stub accepts the procedure call and

serializes both the call and its parameters.

3. RPC Runtime sends the serialized call

via TCP/UDP to the server.

4. Skeleton accepts procedure call, deserializes

the message and calls the corresponding

service procedure with the given parameters.

5. Server handles the call and returns a result.

6. Skeleton accepts the result and

serializes it.

7. RPC Runtime sends the serialized result

via TCP/UDP back to the client.

8. Stub accepts the result, deserializes it

and forwards it to the waiting client.

9. Client awakes and accepts the result.

Service-oriented Middleware

Remote Procedure Call (RPC)

Slide 117

Communication

Distributed Data
Management

Thorsten Papenbrock

Client
code

interface

Client
stub

RPC
runtime

TCP/UDP

Network

Client

Server
code

interface

Server
skeleton

RPC
runtime

TCP/UDP

Server

service

1

2

3

4

5

6

7

8

9

RPC calls block the client

Service-oriented Middleware

Remote Procedure Call (RPC)

Slide 118

Thorsten Papenbrock

Rendezvous protocol

 Handshake protocol for

sending large blocks of

data via synchronous

communication.

 Avoid sending data to

processes that cannot

accept them

(at the moment).

 Before data is sent, the

receiver needs to

acknowledge that it is

ready to accept data.

Service-oriented Middleware

Remote Procedure Call (RPC)

Slide 119

Communication

Distributed Data
Management

Thorsten Papenbrock

 RPC/RMI are protocols of which many framework implementations exist.

 RPC/RMI provide a communication interface in the programming language

and hide the communication protocol in a runtime, i.e., middleware.

 RPC/RMI implementations can be:

 language specific:

interface is written in same language;

often the programming language itself

 language agnostic:

interface is written in some RPC/RMI dialect;

compiles to different programming languages

 The RPC/RMI protocols use blocking, synchronous communication but it is

easy to turn the idea into non-blocking, asynchronous communication:

 e.g. procedure calls may immediately return “Future” or “Promise”

objects

Service-oriented Middleware

Remote Procedure Call (RPC)

Slide 120

Communication

Distributed Data
Management

Thorsten Papenbrock

Strengths of RPC/RMI

 RPC/RMI frameworks are well suited for machine to machine communication

(remote calls appear like local calls; program does not leave its own language).

 RPC/RMI frameworks are easy to use

(automatic code generation and abstraction of the messaging details).

 RPC/RMI frameworks are extensive

(no restrictions other than those the interface language has).

 RPC/RMI frameworks offer good performance

(highly optimized messaging, because the runtime controls both ends of

the communication and no third party needs to understand the messages).

Service-oriented Middleware

Remote Procedure Call (RPC)

Slide 121

Thorsten Papenbrock

Weaknesses of RPC/RMI

 RPC/RMI cause a tight coupling of server and client code.

(interface changes always concern both)

 Local and remote function calls are, in fact, very different.

 Local function calls are predictable: they succeed or fail, throw proper exceptions or

starve processing; can handle same pointers and data types than caller

 Remote function calls are unpredictable: they fail silently, succeed but responses get

lost, are unavailable; cannot handle the caller’s pointers (and all data types)

 RPC/RMI code may be hard to debug and test.

(code generation; possibly hiding of network errors)

Good/modern RPC frameworks make
differences explicit and forward errors
transparently so that application code
can (and should!) handle these issues.

Good/modern RPC frameworks make
differences explicit and forward errors
transparently so that application code
can (and should!) handle these issues.

Service-oriented Middleware

Remote Procedure Call (RPC)

Slide 122

Communication

Distributed Data
Management

Thorsten Papenbrock

RPC implementations

https://en.wikipedia.org/wiki/Remote_procedure_call

… Thrift-based

… Protocol Buffers-based

… Avro-based

https://en.wikipedia.org/wiki/Remote_procedure_call
https://en.wikipedia.org/wiki/Remote_procedure_call

Service-oriented Middleware

Service-Oriented Architecture (SOA)

Slide 123

Communication

Distributed Data
Management

Thorsten Papenbrock

 A server process can, again, become a client to some other server.

 (Distributed) systems of interacting processes

 Services should be self-contained black box components that represent

logical activities hiding lower-level services.

 Microservice architecture:

 Variant of SOA where services are particularly fine-grained and the

protocol is lightweight

Examples

Web Browser Apps Online Games

Service-oriented Middleware

Service-Oriented Architecture (SOA)

Slide 124

Communication

Distributed Data
Management

Thorsten Papenbrock

Microservice architecture

 Example

 A light-weight application framework
for Java with support for microservice
development

https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/

https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/
https://piotrminkowski.wordpress.com/2017/05/29/spring-cloud-microservices-at-pivotal-platform/

Service-oriented Middleware

Service-Oriented Architecture (SOA)

Slide 125

Communication

Distributed Data
Management

Thorsten Papenbrock

https://www.youtube.com/watch?v=CZ3wIuvmHeM

Microservice architecture

 Example: Mastering Chaos - A Netflix Guide to Microservices

https://www.youtube.com/watch?v=CZ3wIuvmHeM
https://www.youtube.com/watch?v=CZ3wIuvmHeM

Service-oriented Middleware

Service-Oriented Architecture (SOA)

Slide 126

Communication

Distributed Data
Management

Thorsten Papenbrock

(Micro-)Services are:

 loosely coupled

 independently deployable

 heterogeneous in their implementation

(languages, libraries, resources, dependencies, …)

 dependent on only lightweight protocols

 highly maintainable and testable

 organized around business capabilities

 often owned by a small team

(Micro-)Services enable:

 rapid, frequent and reliable delivery of large, complex applications

 the evolution of an applications technology stack (at runtime).

All this contradicts an
implementation with RPCs

Service-oriented Middleware

Popular Service Protocols

Slide 127

Communication

Distributed Data
Management

Thorsten Papenbrock

HTTP

 Used by the largest SOA systems on the planet, e.g., the World Wide Web.

(HTTP) REST

 If you need clearer conventions for HTTP service APIs.

(e.g. to make them easier to maintain and better machine consumable)

 Used by many Web applications to connect front- and backend systems.

(HTTP + RPC) SOAP

 If you develop heterogeneous distributed systems that need to communicate

not only data but also instructions (i.e., method calls).

 Used by many large scale, heterogeneous distributed systems.

Service-oriented Middleware

Hypertext Transfer Protocol (HTTP)

Slide 128

Communication

Distributed Data
Management

Thorsten Papenbrock

Definition

 A stateless, synchronous request-response application protocol for

distributed, collaborative, and hypermedia information systems

 The foundation for communication in the World Wide Web

 Hypertext: structured text that uses logical links (hyperlinks) between

nodes containing text (usually HTML)

Technical Details

 Message format: designed for hypertext, but works for any text format

 Based on the TCP transport layer protocol

 Uniform Resource Locators (URLs) / Uniform Resource Identifier (URI)

to find services and resources:

 scheme:[//[user[:password]@]host[:port]][/path]

 E.g.: http://hpi.de/naumann/people/thorsten-papenbrock

Service-oriented Middleware

Hypertext Transfer Protocol (HTTP)

Slide 129

Communication

Distributed Data
Management

Thorsten Papenbrock

Client Server

interface interface
p
ro

to
c
o
l

p
ro

to
c
o
l

Well defined functions:
GET, POST, PUT, DELETE, …

Well defined messages:

header fields and text data

Library/program that implements the
well defined HTTP interface

(e.g. web browser, curl, libashttp,
 java.net.HttpURLConnection)

HTTP defines the message format and protocol
so that two different HTTP implementations,
i.e., different runtimes can communicate.

Service-oriented Middleware

Hypertext Transfer Protocol (HTTP)

Slide 130

Communication

Distributed Data
Management

Thorsten Papenbrock

HTTPs

 HTTP over Transport Layer Security (TLS) / Secure Sockets Layer (SSL)

 Features:

 Privacy through symmetric encryption

 Authentication through public-key cryptography

 Integrity through checking of message authentication codes

Session (HTTP/1.1)

 A sequence of network request-response transactions:

1. Client establishes a TCP connection to server port (typically port 80).

2. Client sends an HTTP message.

3. Server sends back a status line with a message of its own.

4. Client sends next HTTP message or closes the TCP connection.

optional

Service-oriented Middleware

Hypertext Transfer Protocol (HTTP)

Slide 131

Communication

Distributed Data
Management

Thorsten Papenbrock

Request Message Pattern

 A request-line: <method> <resource identifier> <protocol version>

 Any header lines: <header field>: <value>

 An empty line

 A message-body: <any text format>

Request Methods

 GET: Retrieve information from the target resource using a given URI (no side effects).

 HEAD: Like GET, but response contains only status line and header section (no content).

 POST: Send data to the target resource; the resource decides what to do with the data.

 PUT: Send data to the target resource; replace the content of the resource with that data.

 DELETE: Removes all content of the target resource.

 CONNECT: Establishes a tunnel to the server identified by a given URI.

 OPTIONS: Describe the communication options for the target resource.

 TRACE: Performs a message loop back test along with the path to the target resource.

optional

Service-oriented Middleware

Hypertext Transfer Protocol (HTTP)

Slide 132

Communication

Distributed Data
Management

Thorsten Papenbrock

Request Message Pattern

 A request-line: <method> <resource identifier> <protocol version>

 Any header lines: <header field>: <value>

 An empty line

 A message-body: <any text format>

Examples

 GET http://hpi.de/naumann/people/thorsten-papenbrock/publications HTTP/1.1

 absolute URI: for requests to a proxy, which should forward the request

 no additional header fields

 GET /naumann/people/thorsten-papenbrock/publications HTTP/1.1

User-Agent: Mozilla/4.0 (compatible; MSIE5.01; Windows NT)

Host: www.hpi.de:80

Accept-Language: en-us

 relative URI: for request to origin server

 some header fields as example

optional

Service-oriented Middleware

Hypertext Transfer Protocol (HTTP)

Slide 133

Communication

Distributed Data
Management

Thorsten Papenbrock

Request Message Pattern

 A request-line: <method> <resource identifier> <protocol version>

 Any header lines: <header field>: <value>

 An empty line

 A message-body: <any text format>

Examples

 POST /naumann/people/thorsten-papenbrock/publications HTTP/1.1

Host: www.hpi.de:80

Content-Type: text/xml; charset=utf-8

Accept-Language: en-us

Accept-Encoding: gzip, deflate

Connection: Keep-Alive

<publication>A Hybrid Approach to Functional Dependency Discovery</publication>

 post a new publication entry to the publications resource (should be appended)

 flags indicate utf-8 formatted xml content and ask to keep the connection open

PUT would replace all publi-
cations with the new one

Service-oriented Middleware

Hypertext Transfer Protocol (HTTP)

Slide 134

Communication

Distributed Data
Management

Thorsten Papenbrock

Response Message Pattern

 A status-line: <protocol version> <status code> <reason-phrase>

 Any header lines: <header field>: <value>

 An empty line

 A message-body: <any text format>

Status codes

 1xx: Informational: the request was received and the process is continuing.

 2xx: Success: the action was successfully received, understood, and accepted.

 3xx: Redirection: further action must be taken in order to complete the request.

 4xx: Client Error: the request contains incorrect syntax or cannot be fulfilled.

 5xx: Server Error: the server failed to fulfill an apparently valid request.

optional

Service-oriented Middleware

Hypertext Transfer Protocol (HTTP)

Slide 135

Communication

Distributed Data
Management

Thorsten Papenbrock

Response Message Pattern

 A status-line: <protocol version> <status code> <reason-phrase>

 Any header lines: <header field>: <value>

 An empty line

 A message-body: <any text format>

Example

 GET http://www.my-host.com/my-new-homepage.html

 HTTP/1.1 200 OK

 Date: Mon, 24 Jul 2017 12:28:53 GMT

 Server: Apache/2.2.14 (Win32)

 Last-Modified: Sat, 22 Jul 2017 13:15:56 GMT

 Content-Length: 98

 Content-Type: text/html

 Connection: Closed

 <html><body><h1>Welcome to my homepage!</h1></body></html>

optional

Service-oriented Middleware

Hypertext Transfer Protocol (HTTP)

Slide 136

Communication

Distributed Data
Management

Thorsten Papenbrock

The cURL Program

 Library and command-line tool for transferring data using various protocols

 Originally developed as “see url” in 1997

 Examples:

 curl -i -X GET http://localhost:8080/datasets

 curl -i -X GET http://localhost:8080/datasets/by/csv

 curl -i -X POST -d '{"name":"Planets","ending":"csv","path":"datasets"}'

 -H 'Content-Type:application/json;charset=UTF-8‘

 http://localhost:8080/datasets

 curl -i -X DELETE http://localhost:8080/datasets/1

 curl -i -X GET http://localhost:8080/datasets/1

 curl -i -X PUT -d '{"name":"Planets","ending":"csv","path":"datasets"}'

 -H 'Content-Type:application/json;charset=UTF-8‘

 http://localhost:8080/datasets/1

Service-oriented Middleware

Popular Service Protocols

Slide 137

Communication

Distributed Data
Management

Thorsten Papenbrock

HTTP

 Used by the largest SOA systems on the planet, e.g., the World Wide Web.

(HTTP) REST

 If you need clearer conventions for HTTP service APIs.

(e.g. to make them easier to maintain and better machine consumable)

 Used by many Web applications to connect front- and backend systems.

(HTTP + RPC) SOAP

 If you develop heterogeneous distributed systems that need to communicate

not only data but also instructions (i.e., method calls).

 Used by many large scale, heterogeneous distributed systems.

Service-oriented Middleware

Representational State Transfer (REST)

Slide 138

Communication

Distributed Data
Management

Thorsten Papenbrock

 A design philosophy for HTTP services:

 Resources are the main concept

 CRUD (create, read, update, delete) operations on resources should

use their corresponding HTTP methods

 Focus on simplicity

 OpenAPI Specification:

 Creates the RESTful contract for your API.

 RESTful contract describes all resources and their supported methods.

 a language-agnostic interface description for the RESTful API

 Implemented in, e.g., the Swagger framework

(see https://swagger.io/)

No method miss-use like
GET ...publications/?delete_id=42

which is typical for many HTTP services

https://swagger.io/
https://swagger.io/

Service-oriented Middleware

Popular Service Protocols

Slide 139

Communication

Distributed Data
Management

Thorsten Papenbrock

HTTP

 Used by the largest SOA systems on the planet, e.g., the World Wide Web.

(HTTP) REST

 If you need clearer conventions for HTTP service APIs.

(e.g. to make them easier to maintain and better machine consumable)

 Used by many Web applications to connect front- and backend systems.

(HTTP + RPC) SOAP

 If you develop heterogeneous distributed systems that need to communicate

not only data but also instructions (i.e., method calls).

 Used by many large scale, heterogeneous distributed systems.

Service-oriented Middleware

Simple Object Access Protocol (SOAP)

Slide 140

Communication

Distributed Data
Management

Thorsten Papenbrock

 An XML-based RPC protocol for making network API requests.

 Uses functions as main concepts (in contrast to resources in REST).

 Often implemented on top of HTTP but waiving most of its features.

 Comes with its own standards (the web service framework WS[…]).

 Idea:

 A server describes the API of its service in a WSDL document

(Web Service Description Language; an XML dialect).

 A client can use the WSDL document to generate the API code in its

own programming language and then call the API functions.

 Both server and client can access the API in their own language.

 Both programming languages and their IDEs must support SOAP for code

and message generation.

 Interoperability without this support is difficult.

Service-oriented Middleware

Simple Object Access Protocol (SOAP)

Slide 141

Communication

Distributed Data
Management

Thorsten Papenbrock

Server

(C++)

Client

(Java)

Service
(C++)

WSDL

C++ interface Java interface

Ja
v
a
 p

ro
to

c
o
l

C
+

+
 p

ro
to

c
o
l

Server

(C++)

Client

(Java)

Service
(C++)

WSDL

C++ interface Java interface

Ja
v
a
 p

ro
to

c
o
l

C
+

+
 p

ro
to

c
o
l

<?xml version="1.0"?>

<definitions name="Booking">

 <message name="getBookingRequest">
 <part name=“user" type="xs:string"/>
 <part name=“house" type="xs:string"/>
 </message>

 <message name="getAvailabilityResponse">
 <part name=“available" type="xs:boolean"/>
 </message>

 <portType name="BookingPort">
 <operation name="processBooking">
 <input message="getBookingRequest"/>
 <output message="getAvailability Response"/>
 </operation>
 </portType>

Service-oriented Middleware

Simple Object Access Protocol (SOAP)

Slide 142

Communication

Distributed Data
Management

Thorsten Papenbrock

Simple Object Access Protocol (SOAP)

 Simple example:

WSDL File

public interface BookingPort {

 public boolean processBooking(String user, String house);

}

A (simple), language-agnostic interface definition

WSDL File

 <binding name="BookingBinding" type="BookingPort">
 <soap:binding
 style="document“
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="processBooking">
 <soap:operation
 soapAction="http://example.com/processBooking "/>
 <input>
 <soap:body use="literal"/>
 </input>
 <output>
 <soap:body use="literal"/>
 </output>
 </operation>
 </binding>

 <service name="BookingService">
 <documentation>A SOAP booking service</documentation>
 <port
 name="BookingPort"
 binding="BookingBinding">
 <soap:address location="http://example.com/booking"/>
 </port>
 </service>

</definitions>

<?xml version="1.0"?>

<definitions name="Booking">

 <message name="getBookingRequest">
 <part name=“user" type="xs:string"/>
 <part name=“house" type="xs:string"/>
 </message>

 <message name="getAvailabilityResponse">
 <part name=“available" type="xs:boolean"/>
 </message>

 <portType name="BookingPort">
 <operation name="processBooking">
 <input message="getBookingRequest"/>
 <output message="getAvailability Response"/>
 </operation>
 </portType>

Service-oriented Middleware

Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP)

 Simple example:

WSDL File (cont.)

Binding of an interface to concrete
HTTP SOAP calls

Bundling of service calls to
a SOAP service WSDL File

Overview

Communication

 Message Passing

 OSI Model

 Socket-based

Communication

 Message-oriented

Middleware

 Service-oriented

Middleware

 Database-oriented

Middleware

Message-Passing Dataflow

 Sending and receiving of

messages

Dataflow through Services

 Calling services and waiting

for responses

Dataflow through Databases

 Storage and retrieval of data

Database-oriented Middleware

Models of Dataflow

Slide 145

Communication

Distributed Data
Management

Thorsten Papenbrock

Process 1 Process 2

Process 1 Process 2

Process 1 Process 2

Process 1 and 2 can be the same
(send a message to myself)

Database-oriented Middleware

Communication Principle

Slide 146

Communication

Distributed Data
Management

Thorsten Papenbrock

 Processes write data to and read data from a database:

 Communication through manipulation of (persistent) global state

 Requires commonly understood model, schema, and encoding:

 Model: relational, key-value, wide-column, document, graph, …

 Schema: either schema-on-read or schema-on-write

 Encoding: Unicode, binary, …

 Implicit message exchange:

 No explicit sender or receiver (think of broadcast messages)

 Varying message lifetimes:

 Data can quickly be overwritten (= overwritten message is lost).

 Data can stay forever (known as: data outlives code).

 Shared memory parallel applications are very similar w.r.t. this model.

Every data value is a message

Database-oriented Middleware

Models of Dataflow

Slide 147

Communication

Distributed Data
Management

Thorsten Papenbrock

Databases

Message-Passing

Services

“I have a new booking
request!

Someone should

handle it …”

“I have a new booking
request!

Can you handle it?”

“I have a new booking
request!

Book it!”

Database-oriented Middleware

Models of Dataflow

Slide 148

Communication

Distributed Data
Management

Thorsten Papenbrock

Databases

 Data

 No response

 Non-blocking

 Asynchronous

 No addressing

Message-Passing

 Messages

 Maybe response

 Usually non-blocking

 Usually asynchronous

 Addressing recipient or

queue/mailbox/topic

Services

 Function calls

 Response

 Blocking

 Synchronous

 Addressing recipient

Communication

Outlook

Slide 149

Communication

Distributed Data
Management

Thorsten Papenbrock

https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams

About what we have
seen so far.

https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams
https://www.lightbend.com/blog/cloud-native-streaming-data-with-akka-streams-kafka-steams

Distributed Data Analytics

Introduction
Thorsten Papenbrock

G-3.1.09, Campus III

Hasso Plattner Institut

