Hasso
Plattner
Institut

IT Systems Engineering | Universitat Potsdam

Distributed Data Management
Partitioning

Thorsten Papenbrock

F-2.04, Campus I 77

7

Hasso Plattner Institut 9

Distributing Data

Hasso
Replication vs. Partitioning ﬂ Inetitut

Replication

Store copies of the same data on several nodes

Introduces redundancy

Improves scalability (parallel I/O; no memory scalability!)

Improves availability (nodes can fully take the load of failed nodes)
Improves latency (requests can be served by the closest/underutilized node)

Partitioning our focus now
= Store the data split in subsets (partitions) on several nodes Distributed Data
= Also known as sharding Management
- . Partitioning
= Improves scalability (some parallel I/O; memory consumption)
= Improves availability (node failures take out only parts of the data) ThorstenPapenbrock

Improves latency (place partitions close to where they are accessed most) | Slide 2

Different mechanisms but usually used together

Distributing Data

Horizontal vs. Vertical Partitioning

Different dimensions but
essentially the
same partitioning strategies

I I A N N -t-

I D D N N N~

=

i

Used in most
distributed systems

Used in column-
based DBMSs

Distributed Data
Management

Partitioning

ThorstenPapenbrock
Slide 3

Distributing Data Hasso
- : I - Plattner
Replication and Partitioning Institut
Node 1 Node 2
Partition 1 Partition 2 Partition 3 Partition 2 Partition 3 Partition 4 n read
Leader Follower Follower Follower Leader Follower
User
A V\ /4 A
| [N v
Distributed Data
i i i . . . Management
Partition 1 Partition 2 Partition 4 Partition 1 Partition 3 Partition 4 T
Follower Leader Follower Follower Follower Leader Partitioning
ThorstenPapenbrock
Node 3 Node 4 slide 4

]
Distributing Data ﬂ Hasso
Partitioning Inetitut

Synonymes

= shard (MongoDB, Elasticsearch, SolrCloud)
= region (HBase)

= tablet (Bigtable)

= vnode (Cassandra, Riak)

vBucket (Couchbase)

Partitioning Algorithm
] L Distributed Data
= Each data item (record, row, document, ...) belongs to exactly one partition Management

(considering replicated partitions as same partitions). Partitioning
= Algorithm tasks:
1. Given any data item, assign it to a partition. ThorstenPapenbrock

Slide 5
2. Keep partitions (possibly) balanced.

Overview

Partitioning

Partitioning of Key-Value Data

= Partitioning by Key Range

= Partitioning by Hash of Key

Partitioning and Secondary Indexes

= Partitioning Secondary Indexes by Document
= Partitioning Secondary Indexes by Term
Rebalancing Partitions

*» Fixed Number of Partitions

* Fixed Number of Partitions per Node

» Fixed Partition Size

Request Routing

= Parallel Query Execution

Hasso
Plattner
Institut

Distributed Data
Management

Partitioning

ThorstenPapenbrock
Slide 6

Overview

Partitioning

Partitioning of Key-Value Data

= Partitioning by Key Range

= Partitioning by Hash of Key
Partitioning and Secondary Indexes

= Partitioning Secondary Indexes by Document
= Partitioning Secondary Indexes by Term
Rebalancing Partitions

= Fixed Number of Partitions

= Fixed Number of Partitions per Node

» Fixed Partition Size

Request Routing

= Parallel Query Execution

Hasso
Plattner
Institut

Distributed Data
Management

Partitioning

ThorstenPapenbrock
Slide 7

Partitioning of Key-Value Data ﬂ Hasso
Plattner
Concepts Institut

Key-Value Data
= All data models:
= relational (ID - record) = document (key —» document)

= key-value (key - value) = graph (key - node/edge)

= column-family (row key — super column)
Different dimensions but

. . similar techniques
Dimension —
= Horizontal partitioning: distribution of rows, records, key-value pairs, ...

. P . . Distributed Data
» Vertical partitioning: distribution of columns, super columns, value groups, ...Management

Partitioning
Unbalancing issues
= Size/Load Skew: Some partitions have more data/queries than others. ThorstenPapenbrock
Slide 8

» Hot spots: Partitions that have disproportionately high load.

Partitioning of Key-Value Data

Partitioning by Key Range

Range Partitioning
= Arrange keys in a continuous, sorted range.

= Split this range into partitions:
= also continuous and sorted
= jdentified by min and max key value
= not evenly spaced if key range is skewed:
= e.g. as many words in [A,Ble] as in [Usa,Z]

= implemented as (for instance) SSTables and LSM-Trees 20, T TTTISeeI i 12 ae ey, 2l
Partition lookup for (new or existing) key inserts (and most reads) go to the

i . n y X] partition with the newest entries.
= Find partition where mi " < ke < ma~ (binary search)

Strength: range queries / o
Weakness: load skew if certain key ranges are accessed Slide 9

more frequently than others

Partitioning of Key-Value Data

ﬂHaSSO
Partitioning by Hash of Key Inatitut

Hash Partitioning
= Map the (skewed) range of keys to a uniformly distributed range of hashes.

= Use e.g. equidistant range partitioning on the range of hashes. Why not simply hash % n?

o

= Hash function: > Later!

= calculates the key-to-hashes mapping (one-way-function)
= skewed input, uniform output

= e.g. MD5: a 128-bit hash function that maps arbitrary strings to
numbers between 0 and 2128 - 1

—
iy s P “2014-04-1917:08:10" ——» 7,372 ————\
Partition lookup for (new or existing) key 2014-04-19 170811 3 18,805 -
H H "2014-04-19 17:08:12" ——» 50,537
')
- F“}Ld part|t|0n X/Vhere x . “2014-04-1917:08:13" ——> 31,579 ~
mi < has (ke’) < ma (binary search)| <0140419170814'— 62,253
St th ff t | d b | . “2014-04-1917:08:15" _h_? 24,510 3 1
. as
reng ' cifective loa d anCIng (here: first 2 bytes po pl p2 p3 p4 p5s | p6 | p7
. of MD5 hash)
Weakness: range queries : 0 16383 32767 49151 65535

i
Partitioning of Key-Value Data

Hasso
Excursus: Hashing arbitrarily long keys ﬂ ttner
Key Padding
001010102 01011110801101111210011101%01400000

Hashing

= Use cases:

n Cryptography Seed k bits k bits k bits k bits k bits Hash
= Checksums s bits s bits s bits S bit_s| s bits s bits

= Partitioning
= Algorithm: (MD4, MD5, SHA-1, SHA-2, ...) Merkle-Damg8rd construction:
= Interpret key as bit-sequence. A generic method to hash
. . . . arbitrary-length inputs to
= Divide key into blocks of equal size k (e.g. k = 64 * 8 bit). fixed}lleng’?h haslimes.
= Pad last block if it is too short.
= For each block:

= Combine the k block-bits with the s buffer bits (e.g. s = 128 bit)
(first block starts with a standard seed sequence).

= Combine algorithm uses some hashing-specific combination of bit-operations
(AND, OR, bit-shifts, XOR, NOT, ...).

i

Partitioning of Key-Value Data Hasso
Excursus: Hashing arbitrarily long keys ﬂ ttner
Key Padding
Hashing 00101010% 010111105 01101111510011101% 01400000
= Use cases: ' ' ' '
= Cryptography Seed k bits k bits k bits kbitsl k bits Hash
= Checksums s bits ﬂ s bits ‘ircs’ ﬂ s bits
= Partitioning
- Algorithm: (MD4, MD5, SHA-1, SHA-2, ...) MD5
S | - = 22 ora e

Constant that changes

Weak for encryption, The current part of the v S N
but good for partitioning input key (= k bits) Eﬂﬁ

R
— |
F(X,Y,2) :=
T (X and Y) or (not(X) and Z)
—

= MD5: in every step
“Message Digest 5” .
Bitshift
= SHA-2:

“Secure Hash Algorithm”

i
Partitioning of Key-Value Data Hasso ’
Excursus: Hashing arbitrarily long keys ﬂ Inatitut
Key Padding
OOlOlOlO;OlOllllO;01101111;1001110150lOOOOOO

Hashing

= Use cases:
k i L] - L] - e - L -
= Cryptography Seed bits k bits k bits k bits k bits Hash
= Checksums s bits s bits s bits s bit s bits s bits
= Partitioning
= Example: Input Digest
t hi
Fox > hash | ——»{DECD 345¢ 358 Ta5A T61a
function
L2 Gz izE: A 0086 45DB FBTD CBE2 823¢C
L:’:Em;g » m:?;:.'; . »! ACC7 6CD1 90B1 EEGE 3ABC
The red fox | Cryptographic . 8FD8 7558 7851 4F¥32 D1C6 Digest (= Hash) with
Jumps ouer hash 7681 79A9 ODA4 ATFE 4819 . :
the blue dog function f|X Iength Independent
: of input length
L'::uf:’: > ”th;fsr;"h'c ». FCD3 T¥DB SAF2 C6FF 915F P 9
the blue dog St D401 CORO 7TDOR 46AF FBAS
U= G2 izt cryptographic SACR D682 D588 4CT5 4BF4
L:’:‘t’,’l;";w > fu:?:::) . »! 1799 7p88 BCFS 92B9 6A6C

Overview

Partitioning

Hasso
Plattner
Institut

Partitioning of Key-Value Data

= Partitioning by Key Range

= Partitioning by Hash of Key
Partitioning and Secondary Indexes

= Partitioning Secondary Indexes by Document
= Partitioning Secondary Indexes by Term
Rebalancing Partitions

» Fixed Number of Partitions Distributed Data

= Fixed Number of Partitions per Node Management
Partitioning

= Fixed Partition Size

RequeSt ROUtmg ThorstenPapenbrock

= Parallel Query Execution Slide 14

Partitioning and Secondary Indexes ﬂ Hasso
Secondary Indexes Plattner

Institut

Secondary Index
= Any index (in addition to the primary key index) that ...

= may not identify all records uniquely.

= cannot be implemented as a clustered index (sorting/grouping not possible).
= Used to ...

= search for items with a certain value/property.

= accelerate frequent/complex queries.

= Does not map neatly to partitions and is larger than a clustered index. Distributed Data
» Must be partitioned as well. Management
Partitioning
Example: Indexes on color and maker of cars
CREATE INDEX idx_color_filter ON Cars (color); Lhorel e Papenbrock

CREATE INDEX idx_make_filter ON Cars (make);

Partitioning and Secondary Indexes Hasso
Partitioning Secondary Indexes e
. Institut
by Document: Local Index by Term: Global Index
= Every partition manages its own index with = Index entries are partitioned by their key
all pointers to local data items. independently from local data items.
» Vertically partitioned index » Horizontally partitioned index
» Insert/update/delete: performed locally » Insert/update/delete: require remote updates
= Select: queries all partition indexes = Select: queries only one partition index
Partition 0 Partition 1 Partition 0 Partition 1
PRIMARY KEY INDEX PRIMARY KEY INDEX PRIMARY KEY INDEX PRIMARY KEY INDEX
191 -—-(color::red", . make: “Honda', Iocalfon:"Palo Aito"} 515 — {color: *silver’, make:*Ford’, location: “Milpitas“} 191 — [color:"red’, make:"Honda’, location: “Palo Alto”) 515 — {color:“sliver’, make:*Ford’, location: “Milpitas")

14 — {color:"black’, make:"Dodge”, location: “San Jose" — {color:"red”, make:"Volvo’, location:“Cupertino” — |color; “black” make:" e’ location; “San Jose — (color:“red”, make:* ovc;' locatlon: “Cupertino”;
;06—» (color: “red”, make:"l[:)crz?. :oca:lon:"gunr:yvah]a"} ;gg—v{co:or:"sil‘\jerﬁ mall:e:“;\\/u::ii", :oca:ion:”gar?ta (Claraj") ic‘);_. :cg:on-::d-,k' ma:e:'rD;:? ; :oca::on:'xnr‘:yva’l’l") ggg..fco:oq-meén ma:ei”l\\/u:ﬂ",’ :o:a:llon:"ganpta. ‘Clara)"]
SECONDARY INDEXES (Partitioned by document) SECONDARY INDEXES (Partltioned by document) SECONDARY INDEXES (Partitioned by term) ="~ | b "'S'E'é";'"',;;\;w" mosxss :;"mo“ d by term)

e L - Sl sl colorblack —» [214) colorsitver — [515,893] !
coloryellow — [) ‘ color:silver :g?glsﬁl color;red_ a1 305)766] ae o) coloryetiow) >
makeDodge — (214] makeAudi — [893] e — 11l L e eh =il
el =i makeFord =ail51S i (306, 515] e =
make:Honda — [191] make:Volvo — [768] : :]

l scatter/gather read from all partitions % " am Iooklng for aredicait

% "I am looking for a red car”

Partitioning and Secondary Indexes

Hasso
Partitioning Secondary Indexes ... ﬂ ttner
by Document: Local Index by Term: Global Index
Every partition manages its own index with = Index entries are partitioned by their key
all pointers to local data items independently from local data items
» Vertically partitioned index » Horizontally partitioned index
Insert/update/delete: performed locally » Insert/update/delete: require remote updates
Select: queries all partition indexes = Select: queries only one partition index
OLTP view:
MongoDB Secondary indexes must not cost DynamoDB
) much even if this makes them)
Riak less effective. Riak
Cassandra — ——— Oracle Data Warehouse
Elasticsearch AR
SolrCloud Write costs can be expensive

because they are one-time efforts
VoltDB but reads must be efficient.

Overview

Partitioning

Partitioning of Key-Value Data

= Partitioning by Key Range

= Partitioning by Hash of Key

Partitioning and Secondary Indexes

= Partitioning Secondary Indexes by Document
= Partitioning Secondary Indexes by Term
Rebalancing Partitions

= Fixed Number of Partitions

= Fixed Number of Partitions per Node
= Fixed Partition Size

Request Routing

= Parallel Query Execution

Hasso
Plattner
Institut

Distributed Data
Management

Partitioning

ThorstenPapenbrock
Slide 18

Rebalancing Partitions
Rebalancing

Hasso
Plattner
Institut

Things change:
* Query load -» add more CPUs
= Data size —» add more disks and RAM

= Nodes fail - other nodes need to take over
)) hash (key) %n is still useful
> Require to move data around (rebalancing)! for e.g. load balancing or

fixed partitionings,

R lancing r iremen
ebalancing requirements because lookup is in O(1)

= Balanced result: even data distribution after rebalancing

» Downtime-less: continue accepting reads/writes during rebalancing Distributed Data
= Minimal data shift: move no more data than necessary between nodes Management
) Partitioning
How not to do it: hash (key) %n
* hash(key)%n - [0,n-1] assigns each key to exactly one of n nodes. ThorstenPapenbrock

= BUT: if n changes, most hashes yield new node numbers, i.e., need to move!slide 19
= Example: 123456 % 10 = 6, 123456 % 11 = 3, 123456 % 12 = 0, ...

\

Rebalancing Partitions
Fixed Number of Partitions

Hasso
Plattner
Institut

Idea
= Create many more partitions p than there are nodes n, i.e., several partitions per node.
= Let new nodes “steal” entire partitions from all other nodes until distribution is even again.

= Key — partition mappings stay fix

Wait! Before rebalancing (4 nodes in cluster)
= We only moved the problem: Nodeo Node 1 Node 2 Node 3
™ Partition N node mappings Change' p0 | p4 | p8 |p12|p16) p1|p5|p9 |p13[p17 p2|p6 p10p'|4p;l p3 | p7 |p11[p15|p19

= But: Partition - node mapping is ... '; \\\\ \ .

= much smaller (say 1000 partitions).

p0 | p8 |p12|p16 pl | p5 |p13|p17 p2 | p6 |p10|p18 p3 | p7 |p11|p15 p4 | p9 | p14|pi19

= usually fix in size (= #partitions).

. . Node 0 Node 1 Node 2 Node 3 Node 4
> On Iy a (pa rtia I) rewrite of a After rebalancing (5 nodes in cluster) Legend:

small data structure | partition remains on the same node
—) partition migrated to another node

Rebalancing Partitions
Fixed Number of Partitions

Hasso
Plattner
Institut

Idea
= Create many more partitions p than there are nodes n, i.e., several partitions per node.
= Let new nodes “steal” entire partitions from all other nodes until distribution is even again.

= Key — partition mappings stay fix

Choosing p is difficult Before rebalancing (4 nodes in cluster)
= If p is too large (partitions small): Nogeo Node 1 e Ll
. ExpenS|Ve part|t|0n management pO | p4 | p8 [p12|p16) pP1|p5|p9 |p13[p17 p2 | p6 |p10(p14 p;l p3 | p7 [p11|p15|p19,

= If p is too small (partitions large): '; \\\\ \ -:’I "

= Expensive rebalancing and recovery

p0 | p8 |p12|p16 pl | p5 |p13|p17 p2 | p6 |p10|p18 p3 | p7 |p11|p15 p4 | p9 | p14|pi19

Implementations

. . Node 0 Node 1 Node 2 Node 3 Node 4
= Riak, Elasticsearch, Couchbase, After rebalancing (5 nodes in cluster) Legend:

Voldemort partition remains on the same node
—) partition migrated to another node

Rebalancing Partitions

Hasso
Fixed Number of Partitions per Node ﬂ Inatitut

Idea Works well for any partitioning that
= Create a fix number of p partitions on each of the n nodes. | SPlits ranges (of keys or hashes).

= Let new nodes fill their own p partitions by randomly splitting partitions on other nodes.

= Steal e.g. half of p partitions from other nodes. partition — node
Implementations mappings that change!

Node
Node
= (Cassandra, Ketma m
Node O Node 2 Node 4
I ThorstenPapenbrock
Slide 22

Load may occasionally be
unbalanced but is expected
to even out over time

Rebalancing Partitions
Fixed Number of Partitions per Node

Hasso
Plattner
Institut

Consistent Hashing

= A popular implementation of the F.N.o.P.p.N. strategy that
keeps the partition-to-node assignment possibly stable
while nodes join and leave the cluster.

= Range of keys is modeled as a ring.
= Nodes are hashed/assighed to positions on the ring.

= Each node N, is responsible for all hashes/keys k
between its position i and the position j of
its clockwise predecessor N; with j<k=<i.

= If a node enters, it “steals” values from one node.

u

= If a node leaves, it “leaves” all its values to its higher neighbor.
» Most assigned values stay untouched.
» Partition sizes my be unbalanced.

Rebalancing Partitions
Fixed Number of Partitions per Node

Hasso
Plattner
Institut

Consistent Hashing

= Hashing every node to multiple positions
assigns multiple partitions to each node.

= Advantages:
= More stable partition balancing

= More scalable partition stealing

Rebalancing Partitions

Hasso
Fixed Partition Size ﬂ e

Idea
= Create some initial number of partitions (e.g. p = n for p partitions and n nodes).

= If a partition exceeds some max size threshold, split it. ﬁ Works well for any partitioning that

= If a partition falls below some min size threshold, merge it 2l [elg2E (ETREE OF 25 128))

» Number of partitions proportional to dataset size.

mappings that change! Split too large nodes.
Merge too small nodes.

Partition to node assignment partition — node Idea similar to B-Trees:
= Distribute partitions evenly between all nodes.

= If new nodes enter, let them steal.

» Same as for fixed number of partitions
Implementations
= Hbase, RethinkDB, MongoDB

Overview

Partitioning

Partitioning of Key-Value Data

= Partitioning by Key Range

= Partitioning by Hash of Key

Partitioning and Secondary Indexes

= Partitioning Secondary Indexes by Document
= Partitioning Secondary Indexes by Term
Rebalancing Partitions

= Fixed Number of Partitions

= Fixed Number of Partitions per Node

» Fixed Partition Size

Request Routing

= Parallel Query Execution

Hasso
Plattner
Institut

Distributed Data
Management

Partitioning

ThorstenPapenbrock
Slide 26

Request Routing 2 Partitions move between nodes
R regardless of the rebalancing strategy
Partition Lookup

Ask any node Ask a router Ask node directly

All nodes store a A routing tier stores the All clients store a
lookup table copy and lookup table copy and lookup table copy and
can redirect queries. can redirect queries. can locate partitions.

[_ g\/r jﬁoﬁ/f
@ —clie_nt_l @ client @

get"foo” / choose node 0 get “foo”
randomly ' = get*foo”
L\\r\outlng tier connect directly
to node 2
“foo” lives on node 2 "foo” lives on node 2

node 0 node 1 node 0 node 1 node 2

“foo” “foo"

i 3

.' :
o

]

%]

e = the knowledge of which partition is assigned to which node
e

Hasso
Plattner
Institut

Distributed Data
Management

Partitioning

ThorstenPapenbrock
Slide 27

Request Routing

Partition Lookup

-

Partitions move between nodes
regardless of the rebalancing strategy

Ask any node

All nodes store a
lookup table copy and
can redirect queries.

Ask a router Ask node directly

A routing tier stores the
lookup table copy and
can redirect queries.

R4

Requires a consensus
protocol to propagate
partition movement.

node 0| |node1

bde
node 2
e

2

@

get “foo”

client

All clients store a
lookup table copy and

can locate partitions.

| routing tier

“foo” lives on node 2

node 0

node 1

-~

Usually use a separate
coordination service that
tracks nodes and partitions.

node 2

Iz

—

s = the knowledge of which partition is assigned to which node

3

Hasso
Plattner
Institut

Distributed Data
Management

Partitioning

ThorstenPapenbrock
Slide 28

Request Routing
Partition Lookup: ZooKeeper EQ oo ED ED

Apache ZooKeeper | Client | | Client | | Client | | Client | | Client | | Client | | Client | | Client |

= A coordination service for services in distributed systems
* Tracks and offers cluster metadata:

= naming, localization, configuration, and synchronization of services

= Itself implemented as a

distributed key_value store I client I P Key range Partition Node IP address
o = A-ak — Bayes partition 0 node 0 10.20.30.100

. . get"Danube
= |Leader-follower replication L ZooKeeper | Bayeu — Ceanothus partition1 node1 10.20.30.101
routing tier Ceara — Deluc partition2 node2 10.20.30.102
Subscriber Model: | DO ﬁ Delusion — Frenssen partition 3 node 0 10.20.30.100
_____ 3 Freon — Holderlin partition 4 node 1 10.20.30.101
= Each router/client maintains e S ey Holderness —Krasnoje partition 5 node2 10.2030.102
H Krasnokamsk — Menadra partition 6 node 0 10.20.30.100
a TCP connection. node0| |node 1 Menage — Ottawa partition7 nodel 10.20.30.101
n Nod es Send hea rt beats ’ ' QOtter — Rethimnon partition 8 node 2 10.20.30.102
L. Reti — Solovets partition 9 node 0 10.20.30.100
and partition updates. Solovyov — Truck partition 10 node1 10.20.30.101
L Trudeau — Zywiec partition 11 node 2 10.20.30.102

= Router/clients get partition

addresses upon request. N = the knowledge of which partition is assigned to which node
L_-ﬁ_‘\.

Request Routing
Partition Lookup: ZooKeeper ED oo ED ED

ZooKeeper users: | Client | | Client | | Client | | Client | | Client | | Client | | Client | | Client |

= Espresso, HBase, SolrCloud, Kafka,
OpenStack Nova, Hadoop YARN ...

e
Many further SOA and Cloud More details on these features
systems that are no DBMSs! in the following sessions!

—

Features:

= Service discovery (e.g. find IP and port for a specific service)

» Linearizable atomic operations (e.g. atomic compare-and-set for implementing locks/leases)
= Total ordering of operations (e.g. generating monotonically increasing IDs for transactions)
= Failure detection (e.g. heartbeat failure detection to initiate leader elections)

» (Change notification (e.g. notify clients about new/failed clients in the cluster)

» Automatic cluster management (e.g. leader election, partition re-balancing, ...)

I ———————————————————————————————————————
Partitioning

Check yourself

The consistent hashing method as described on slide 11 has a number of
shortcomings. To overcome those issues, real-world implementations often
introduce additional virtual nodes for each physical node in the system.

1) Can you name three different shortcomings?

Hint: Think of assumptions that might not hold in practice.

2) How could virtual nodes solve those issues?

Hasso
Plattner
Institut

Distributed Data
Management

Partitioning

Tobias Bleiful3
Slide 31

