
Distributed Data Management

Distributed Systems
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

Introduction

Distributed Systems

Slide 2

Thorsten Papenbrock

I am facing …

 software bugs

 power failures

 head crashes

 hardware aging

 …

I am facing everything he faces and …

 network faults

 clock deviation

 partial (power/network/…) failures

 nondeterministic behavior

 …

Distributed System Developer Non-Distributed System Developer

Introduction

Distributed Systems

Slide 3

Thorsten Papenbrock

“My system is predictable.”

“I can debug easily.”

“A well operating system
should not have failures.”

“I use parallelism
whenever necessary.”

“My system is predictably unpredictable.”

“Debugging is hard.”

“A well operating system
properly deals with its failures.”

“Parallelism is my bread and butter.”

Distributed System Developer Non-Distributed System Developer

“Anything that can go wrong will go wrong”

So better be prepared!

Introduction

Reliability despite Unreliable Components

Slide 5

Distributed Systems

Distributed Data
Management

Thorsten Papenbrock

Building a reliable system from unreliable components

Given: n number of nodes in the cluster

 p likelihood that a node fails (in some arbitrary time interval)

Then: Probability a node failure in a cluster of size n can be calculated as …

 𝑃 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

= 1 − 1 − 𝑝 𝑛

Probability that n nodes with failure
probability p did not fail

Introduction

Reliability despite Unreliable Components

Slide 6

Distributed Systems

Distributed Data
Management

Thorsten Papenbrock

Building a reliable system from unreliable components

Given: n number of nodes in the cluster

 p likelihood that a node fails (in some arbitrary time interval)

Then: Probability a node failure in a cluster of size n can be calculated as …

 𝑃 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

= 1 − 1 − 𝑝 𝑛

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1

2
6

5
1

7
6

1
0
1

1
2
6

1
5
1

1
7
6

2
0
1

2
2
6

2
5
1

2
7
6

3
0
1

3
2
6

3
5
1

3
7
6

4
0
1

4
2
6

4
5
1

4
7
6

5
0
1

5
2
6

5
5
1

5
7
6

6
0
1

6
2
6

6
5
1

6
7
6

7
0
1

7
2
6

7
5
1

7
7
6

8
0
1

8
2
6

8
5
1

8
7
6

9
0
1

9
2
6

9
5
1

9
7
6

P
(
n

o
d

e
s
 f

a
il
e
d

)

n

p = 0.1%

If one nodes fails with a probability of 0.1%
per day (i.e. about once every three years) a
1000 node cluster has a disk failure of 63%

(i.e. at least every 2 days)

Introduction

Reliability despite Unreliable Components

Slide 7

Distributed Systems

Distributed Data
Management

Thorsten Papenbrock

Building a reliable system from unreliable components

Given: n number of nodes in the cluster

 p likelihood that a node fails (in some arbitrary time interval)

Then: Probability a node failure in a cluster of size n can be calculated as …

 𝑃 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

= 1 − 1 − 𝑝 𝑛

Without replication, this is guaranteed

data loss in very short time!

So what if we use replication?

Introduction

Reliability despite Unreliable Components

Slide 8

Distributed Systems

Distributed Data
Management

Thorsten Papenbrock

Building a reliable system from unreliable components

Given: n number of nodes in the cluster

 p likelihood that a node fails (in some arbitrary time interval)

 f number of nodes that fail at the same time

Then: Probability of exactly f failing nodes can be calculated as (Binomial distribution) …

 𝑃 𝑓 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

= 𝑛
𝑓 ∗ 𝑝𝑓 ∗ 1 − 𝑝 𝑛_𝑓

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

Number of different ways to pick
f nodes in the n node cluster

Failure probability of f independent
nodes with p failure likelihood

Well-being probability for
the n-f other nodes

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

Introduction

Reliability despite Unreliable Components

Slide 9

Distributed Systems

Distributed Data
Management

Thorsten Papenbrock

Building a reliable system from unreliable components

Given: n number of nodes in the cluster

 p likelihood that a node fails (in some arbitrary time interval)

 f number of nodes that fail at the same time

 r replication factor of a distributed system

Then: Probability of unrecoverable partition loss with exactly f failing nodes

 can be calculated as …

 𝑃 𝑝𝑎𝑟𝑡𝑖
𝑡

𝑖 𝑜
𝑛

 𝑙𝑜𝑠𝑡 ∣ 𝑓 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

=
𝑓
𝑟
𝑛
𝑟

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

All possible, entirely crashed replicas
of size r in f crashed nodes

All possible replica combinations
of size r on n nodes

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

Introduction

Reliability despite Unreliable Components

Slide 10

Thorsten Papenbrock

Building a reliable system from unreliable components

Given: n number of nodes in the cluster

 p likelihood that a node fails (in some arbitrary time interval)

 f number of nodes that fail at the same time

 r replication factor of a distributed system

 k number of partitions in the cluster

Then: Probability of unrecoverable data loss with exactly f failing nodes

 can be calculated as …

 𝑃 𝑑𝑎𝑡 𝑎 𝑙𝑜𝑠𝑠 ∣ 𝑓 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

= 1 − 𝑃 𝑝𝑎𝑟𝑡𝑖
𝑡

𝑖 𝑜
𝑛

 𝑛𝑜
𝑡
 𝑙𝑜𝑠𝑡 ∣ 𝑓 𝑛𝑜𝑑

𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

k

 = 1 − 1 − 𝑃(𝑝𝑎𝑟𝑡𝑖
𝑡

𝑖 𝑜
𝑛

 𝑙𝑜𝑠𝑡 ∣ 𝑓 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

) k

 = 1 − 1 −
𝑓
𝑟
𝑛
𝑟

k

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

Probability that all k par-
titions did not loose data

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

Introduction

Reliability despite Unreliable Components

Slide 11

Thorsten Papenbrock

Building a reliable system from unreliable components

Given: n number of nodes in the cluster

 p likelihood that a node fails (in some arbitrary time interval)

 f number of nodes that fail at the same time

 r replication factor of a distributed system

 k number of partitions in the cluster

Then: Probability of unrecoverable data loss can be calculated as …

 𝑃 𝑑𝑎𝑡 𝑎 𝑙𝑜𝑠𝑠 = 𝑃 𝑓 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑 𝑛

𝑓=𝑟 ∗ 𝑃 𝑑𝑎𝑡 𝑎 𝑙𝑜
𝑠
𝑠 ∣ 𝑓 𝑛𝑜𝑑

𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

 = 𝑛
𝑓
∗ 𝑝𝑓 ∗ 1 − 𝑝 𝑛_𝑓𝑛

𝑓=𝑟 ∗ 1 − 1 −
𝑓
𝑟
𝑛
𝑟

k

 https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

All numbers of failing nodes that
can cause data loss (i.e. f ≥ r)

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

Introduction

Reliability despite Unreliable Components

Slide 12

Thorsten Papenbrock

Building a reliable system from unreliable components

Then: Probability of unrecoverable data loss can be calculated as …

 𝑃 𝑑𝑎𝑡 𝑎 𝑙𝑜𝑠𝑠 = 𝑛
𝑓 ∗ 𝑝𝑓 ∗ 1 − 𝑝 𝑛_𝑓𝑛

𝑓=𝑟 ∗ 1 − 1 −
𝑓
𝑟
𝑛
𝑟

k

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

n = 1 10,000
p = 0.001
r = 3
k = 256 * n

Replication greatly reduces the
risk of loosing data!

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

Introduction

Reliability despite Unreliable Components

Slide 13

Thorsten Papenbrock

Building a reliable system from unreliable components

Then: Probability of unrecoverable data loss can be calculated as …

 𝑃 𝑑𝑎𝑡 𝑎 𝑙𝑜𝑠𝑠 = 𝑛
𝑓 ∗ 𝑝𝑓 ∗ 1 − 𝑝 𝑛_𝑓𝑛

𝑓=𝑟 ∗ 1 − 1 −
𝑓
𝑟
𝑛
𝑟

k

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

n = 1 10,000
p = 0.001
r = 3
k = 256 * n

A 4,000 node cluster has about the same
probability of data loss than one single

disk (with r = 3 and k = 256 * n).

It looses only 1/k of the data,
but that might have been the

most important values!

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

Introduction

Reliability despite Unreliable Components

Slide 14

Thorsten Papenbrock

Building a reliable system from unreliable components

Then: Probability of unrecoverable data loss can be calculated as …

 𝑃 𝑑𝑎𝑡 𝑎 𝑙𝑜𝑠𝑠 = 𝑛
𝑓 ∗ 𝑝𝑓 ∗ 1 − 𝑝 𝑛_𝑓𝑛

𝑓=𝑟 ∗ 1 − 1 −
𝑓
𝑟
𝑛
𝑟

k

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

n = 1 10,000
p = 0.001
r = 3
k = 256 * n

Although k=3 appears to be super reliable
(a failing replica always has two backups),

extremely large clusters require r>3
(or smaller k).

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html
https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html

Introduction

Reliability despite Unreliable Components

Slide 15

Distributed Systems

Distributed Data
Management

Thorsten Papenbrock

Building a reliable system from unreliable components

 With no special fault handling:

 A distributed system is at best as reliable as its weakest/strongest component.

 With fault handling:

 A distributed system is (much) more reliable as its unreliable components.

Fault handling examples

 Radio inference on wireless networks:

 Error-correcting codes allow digital data to be transmitted accurately.

 Unreliable Internet Protocol (IP):

 Transmission Control Protocol (TCP) retransmits missing packages,

eliminates duplicates, and reassembles packets in order.

Some easily solvable faults

Overview

Distributed Systems

Slide 16

Distributed Systems

Distributed Data
Management

Thorsten Papenbrock

Knowledge, Truth, Lies

Students communi-
cating their knowledge

Unreliable Clocks

An atomic clock with
minimum drift

Unreliable Networks

A shark raiding an
undersea cable

Unreliable Networks

Asynchronous Messaging Issues

Slide 17

Thorsten Papenbrock

Network

 Physical connection between autonomous, shared-nothing computing nodes

 Asynchronous messaging via packet binary sequences

 Nodes can send messages but no guarantees as to when/whether it arrives

Potential failures when sending a message

a) Request is lost on the network (e.g. cable unplugged).

b) Request is waiting in a queue and delivered later (e.g. recipient overloaded).

c) Remote node is unavailable (e.g. recipient crashed or is updating).

d) Response is delayed on the network (e.g. network overloaded).

e) Response is lost on the network (e.g. network switch misconfigured).

Sender can’t even tell if the packet was delivered …

Unreliable Networks

Detecting Faults

Slide 18

Thorsten Papenbrock

Using the operating system

 If a process on a node crashes, but the operating system (OS) still runs:

 OS can close or refuse TCP connections to notify clients with an error.

 OS can trigger failover scripts to explicitly notify certain clients.

Using the network switch

 If the client has access to the network switch:

 Switch can detect link failures on hardware level

(e.g. detect if remote is powered on).

Using timeouts

 Log the sending time for each message.

 Messages are declared lost if their recipient does not answer within a

certain timeout.

 Most universal fault detection mechanism

Distributed Systems

Distributed Data
Management

Unreliable Networks

Queues on the Network

Slide 19

Thorsten Papenbrock

Sender Receiver

TCP

TCP performs flow control
to avoid congestion,
resend failed messages …

Switch

Operating System

Virtual Machine

Switch buffers messages
if destination network
link is busy.

Operating system buffers
messages from network
if CPU/process is busy.

VM monitor buffers
messages for a VM if
it waits for CPU time.

 Many reasons for packages being delayed (query congestion)

 Even if the receiver could guarantee a processing time for messages,

the network cannot guarantee a transmission time for messages.

Unreliable Networks

Timeouts

Slide 20

Thorsten Papenbrock

Issues

 How to set the timeout?

 Too long (conservative): Program waits wastefully long before triggering fault handling.

 Too short (aggressive): More false message loss reports each triggering fault handling.

 How to handle failures?

 Resend message Messages might get handled multiple times!

 Reroute message Messages might worsen overload if this caused the timeout!

 Escalate as system error

Distributed Systems

 Network with high traffic due to data-intensive workloads

 Nodes with high CPU load due to compute intensive OLTP/OLAP jobs

 Overall high system load makes timeouts hard to predict.

Note that we cannot know:

 What caused the error?

 Has a message been worked on?

Unreliable Networks

Defining Timeouts Experimentally

Slide 21

Thorsten Papenbrock

The traditional heartbeat method

 The monitored process p sends periodical heartbeat messages to the server process q.

 Δi : the heartbeat send interval of p

 Δt : the initial wait time

 Δto : the timeout

 Upon receiving the first heartbeat (Δt),

p measures the time to the next heartbeat (Δto),

which is then set as the timeout.

 Problems:

 Static timeout: Query congestion might naturally delay heartbeats on higher load.

 Initialization: If the second heartbeat is delayed, Δto is set too large.

 Binary trust: Client is either trusted or suspected.

Unreliable Networks

Defining Timeouts Experimentally

The accrual failure detector method

 Accrual failure detector:

 German: “anwachsender Fehlererkenner”

 Output a suspicion-level for each node instead of binary trust or fixed timeout.

 Suspicion level:

 Measure describing the probability that node p has failed at time t.

 Defined as a continuous function for p over t : susp_levelp(t) ≥ 0

 Properties

 Asymptotic completeness: If p is faulty, susp_levelp(t) → ∞.

 Eventual monotony: If p is faulty, susp_levelp(t) monotonically increases.

 Upper bound: If p is correct, susp_levelp(t) has an upper bound.

 Reset: If p is correct, susp_levelp(t) = 0 for some t > t0.

 Used to adjust load balancing and timeout expectations

Trust is interpreted
from the development

of suspicion

i.e., whenever a
heartbeat arrives

Unreliable Networks

Defining Timeouts Experimentally

The accrual failure detector method

 Suspicion level: simplified example

S
u
s
p
ic

io
n

time t
heartbeat
received

heartbeat
received

heartbeat
received

Took a little longer, so lower
the expectation for the next

All seems fine

We lost it

Slide 23

Thorsten Papenbrock

Distributed Systems

Distributed Data
Management

Upper bound for correctly
operating nodes

Node seems
pretty busy

Unreliable Networks

Defining Timeouts Experimentally

The accrual failure detector method

 Suspicion level interpretation:

 Example interpretation algorithm:

 Initialize two dynamic thresholds Thigh and Tlow to the same arbitrary values >0

and start trusting a node.

 S-transition:

 Whenever susp_levelp(t) crosses Thigh upwards, Thigh = Thigh + 1 and suspect p.

 T-transition:

 Whenever susp_levelp(t) crosses Tlow downwards, Tlow = Thigh and trust p.

 The longer the algorithms monitors susp_levelp(t),

the better Thigh captures real node failures.

 Suspicion dynamically adjusts to the current latency and load.

 Thigh becomes a fix threshold that is robust against load changes.
Slide 24

Thorsten Papenbrock

Unreliable Networks

Defining Timeouts

Slide 25

Thorsten Papenbrock

The φ accrual failure detector

 A concrete implementation of the accrual failure detection method

 Implemented in Akka, Spark, Flink, Cassandra, Riak, ZooKeeper, …

 φ (Phi):

 Suspicion level: φp(t) = susp_levelp(t)

 Comparable: If φp(t) > φq(t), p is more likely to fail at time t than q, i.e.,

 p differs more clearly from its usual timing than q.

 Useful for fault detection and load balancing.

 General idea:

 Continuously measure response times (jitter) and availability of nodes via heartbeats.

 Calculate φp(t) based on p’s heartbeat history.

Naohiro Hayashibara, Xavier Défago, Rami Yared, and Takuya Katayama,
“The φ Accrual Failure Detector”,

Japan Advanced Institute of Science and Technology, School of Information Science,
Technical Report IS-RR-2004-010, May 2004

Unreliable Networks

Defining Timeouts

Slide 26

Thorsten Papenbrock

The φ accrual failure detector

 Variables

 Tlast: Arrival time of

most recent heartbeat

 tnow: Current time

 Plater: Probability that

a heartbeat will arrive

more than t time units

after the previous one

 Heartbeat arrivals

 Heartbeats arrive with a sequence number to restore their send order.

 Sampling window

 Stores the arrival times in a fixed sized window (last x heartbeats per node).

 Pre-calculates the arrival intervals, sum, and sum of squares of all samples.

Naohiro Hayashibara, Xavier Défago, Rami Yared, and Takuya Katayama,
“The φ Accrual Failure Detector”,

Japan Advanced Institute of Science and Technology, School of Information Science,
Technical Report IS-RR-2004-010, May 2004

Unreliable Networks

Defining Timeouts

Slide 27

Thorsten Papenbrock

The φ accrual failure detector

 Variables

 Tlast: Arrival time of

most recent heartbeat

 tnow: Current time

 Plater: Probability that

a heartbeat will arrive

more than t time units

after the previous one

 Estimation

1. Calculate the mean μ and the variance σ2 for the arrival time samples.

2. Calculate Plater(t):

Naohiro Hayashibara, Xavier Défago, Rami Yared, and Takuya Katayama,
“The φ Accrual Failure Detector”,

Japan Advanced Institute of Science and Technology, School of Information Science,
Technical Report IS-RR-2004-010, May 2004

μ

σ2

Unreliable Networks

Defining Timeouts

Slide 28

Thorsten Papenbrock

The φ accrual failure detector

 Variables

 Tlast: Arrival time of

most recent heartbeat

 tnow: Current time

 Plater: Probability that

a heartbeat will arrive

more than t time units

after the previous one

 φ calculation

3. Calculate φ using Plater and the time since p’s last heartbeat:

Naohiro Hayashibara, Xavier Défago, Rami Yared, and Takuya Katayama,
“The φ Accrual Failure Detector”,

Japan Advanced Institute of Science and Technology, School of Information Science,
Technical Report IS-RR-2004-010, May 2004

Interpretation by
application:

E.g. failure detection
with Thigh and Tlow
where Thigh = Φ Plater gets increasingly smaller; -log10 turns small values into very large values.

Unreliable Networks

Ignoring Timeouts

Slide 29

Thorsten Papenbrock

TCP vs. UDP

 User Datagram Protocol (UDP) does not use timeouts.

 No guarantee of delivery, ordering, or de-duplication.

 Preferable if outdated messages are worthless:

 Problematic for most analytical use cases!

video streaming gaming VoIP calls

sensor processing

Overview

Distributed Systems

Slide 30

Distributed Systems

Distributed Data
Management

Thorsten Papenbrock

Knowledge, Truth, Lies

Students communi-
cating their knowledge

Unreliable Clocks

An atomic clock with
minimum drift

Unreliable Networks

A shark raiding an
undersea cable

Unreliable clocks

often cause

silent, creeping failures and data loss.

Unreliable networks

usually cause

noticeable crashes and failures.

Unreliable Clocks

Clocks vs. Networks

Slide 31

Thorsten Papenbrock

Distributed Systems

Distributed Data
Management

Both need to be considered in application logic!

Unreliable Clocks

About Clocks

Slide 32

Thorsten Papenbrock

Computer clocks

 Actual hardware devices: quartz crystal oscillator

 Not perfectly accurate and not in sync with other clocks

Clock usage in distributed systems

1. Measure duration e.g.:

 Has this request timed out yet?

 What’s the 99th percentile response time of this service?

 How long did the user spend on this page?

2. Measure points in time e.g.:

 When was this heartbeat send?

 When does this cache entry expire?

 What’s the timestamp of this error message?

Distributed Systems

Distributed Data
Management

Unreliable Clocks

About Clocks

Slide 33

Thorsten Papenbrock

Kinds of clocks

a) Time-of-day clock:

 Returns the current time according to some calendar (e.g. millis since 01.01.1970 UTC).

 Example: clock_gettime(CLOCK_REALTIME) (Linux)

 System.currentTimeMillis() (Java)

 Can be changed completely (e.g., synchronized via NTP).

 Used to measure points in time.

b) Monotonic clock:

 A constantly forward moving clock with no reference point (specific values are meaningless).

 Example: clock_gettime(CLOCK_MONOTONIC) (Linux)

 System.nanoTime() (Java)

 Can be speeded up or slowed down (e.g., by 0.05% via NTP).

 Used to measure durations (time intervals).

Unreliable Clocks

Unreliability

Slide 34

Thorsten Papenbrock

Clock drift

 Natural deviation of mechanical clock speeds due to …

 machine temperature;

 gravitation;

 aging and abrasion.

 Unavoidable even if clocks get synchronized frequently

Illusion of synchronized clocks

 Clock drift: 17 sec drift for clocks synchronized once a day (Google)

 Back-shifts: clocks being forced to sync to past times

 Network delay: no synchronization can work around network delay

 Leap seconds: necessary time adjustment due to earth rotation

 Virtualization: VMs use virtualized clocks that pause if VM has no CPU time

Distributed Systems

Distributed Data
Management

Unreliable Clocks

Use Libraries for Time-Calculations!

Slide 35

Thorsten Papenbrock

Distributed Systems

Distributed Data
Management

https://www.youtube.com/watch?v=-5wpm-gesOY

“Time [and synchronization] is
so difficult to get right that you
don’t try to write it yourself!”

Tom
Scott

https://www.youtube.com/watch?v=-5wpm-gesOY
https://www.youtube.com/watch?v=-5wpm-gesOY
https://www.youtube.com/watch?v=-5wpm-gesOY
https://www.youtube.com/watch?v=-5wpm-gesOY
https://www.youtube.com/watch?v=-5wpm-gesOY

Unreliable Clocks

Risks

Slide 36

Thorsten Papenbrock

Synchronized clocks in distributed DBMSs

 Used often when messages require a

global ordering

 Last-Write-Wins (LWW):

 Writes get a timestamp from the first node that sees them.

 During change propagation, newer writes overwrite older writes.

 If clocks are out-of-sync, newer writes might get overwritten/dropped.

 Snapshot isolation:

 Transactions get a timestamp from the node that opens them.

 During transaction processing, transactions see only older changes.

 If clocks are out-of-sync, snapshots might be inconsistent.

Distributed Systems

Distributed Data
Management

x=2

x=1

x=1

Unreliable Clocks

Risks

Synchronized clocks in distributed DBMSs

 Used often when messages require a

global ordering

 Single-leader lease:

 In single-leader replication, the leader obtains a lease with a timestamp for being leader.

 Lease:

 Kind of a lock with timeout that can be held by only one node.

 If lease’s timeout expires, the leader needs to renew the lease.

 If leader fails and does not renew, another leader can be elected.

 If clocks are out-of-sync, leader might hold lease for too long (two leader brain split).

 If the leader pauses and resumes in a critical section, it might process writes without

permission.

while (true) {

 request = getIncomingRequest();

 if (lease.expiryTimeMillis –

 System.currentTimeMillis < 10000) {

 lease = lease.renew();

 }

 if (lease.isValid()) {

 process(request);

 }

}

Better not
pause here!

Remember:
no mutexes,

semaphores, …
in distributed

systems!

Unreliable Clocks

Synchronization

Slide 38

Thorsten Papenbrock

Network Time Protocol (NTP)

 Most popular clock synchronization protocol

for packet-switched, variable-latency data networks.

 Assumption:

 Some nodes (servers) have very precise clocks (atomic, GPS, …)

 Protocol:

 Nodes with less precise clocks

synchronize their clocks with

these reference clocks directly

or indirectly.

 The closer a node is to the

reference clocks, the more

precise it can (potentially)

sync its clock.

sanity checking

David
L. Mills

Unreliable Clocks

Synchronization

Slide 39

Thorsten Papenbrock

Network Time Protocol (NTP)

 Synchronization Algorithm:

 Client nodes regularly poll server nodes and calculate:

1. time offset

2. round-trip delay

 t0, t1, t2, and t3 are timestamps attaches to the sync message.

 θ and δ are passed through statistical analysis to remove outliers.

 Client then gradually adjusts its local clock using θ

e.g. by always adding 0.3 * θ to its local time.

Offset send Offset receive

t1 and t3 include
transmission time so

it is added and deleted

Because we calculated
the offset twice!

Unreliable Clocks

Synchronization

Slide 40

Thorsten Papenbrock

Network Time Protocol (NTP)

 Most popular clock synchronization protocol for packet-switched,

variable-latency data networks.

 Computers synchronize their time with a group of servers.

 Servers get their time from more accurate time sources.

Confidence in local time t

 Estimation about the deviation between local and system time

 A client’s local time t can be expected to be t + uncertainty.

 uncertainty ≈ own expected clock drift since last NTP-sync +

 network round-trip time + server’s uncertainty

 Systems that rely on synchronized clocks try to estimate uncertainty

and incorporate it in their application logic.

Distributed Systems

Distributed Data
Management

Unreliable Clocks

Locking

Slide 41

Thorsten Papenbrock

Distributed Systems

Distributed Data
Management

Leases

 Leases are necessary if a system requires that there is only one of some thing:

 One node with a certain permission for a particular resource

 One node with a particular role in the system (e.g. leader)

 Obtaining a lease grants exclusive rights for a certain time.

 Assumption:

 One node (lock service/server/authority) assigns locks/leases.

 If the time expires (monotonic time) …

 the lease owner must renew it.

 the lock service will re-assign the lease.

 We know that this approach alone can lead to split brain actions.

Unreliable Clocks

Locking

Slide 42

Thorsten Papenbrock

Distributed Systems

Distributed Data
Management

Leases

 If the time expires (monotonic time) …

 the lease owner must renew it.

 the lock service will re-assign the lease.

 Fencing token:

 A number that increases every time a lock is assigned.

 Handed to the lease owner as part of the lease.

 Lease owner must issue the fencing token with every action.

 Locked resource (!) checks if fence token is up-to-date (e.g. newest).

 Reject if other node possesses newer fence token.

To counter the problem:
A node wrongly thinks
that it has the lock!

8

Unreliable Clocks

Locking

Slide 43

Thorsten Papenbrock

Distributed Systems

Distributed Data
Management

Leases

 Example:

No Fencing

Fencing

Overview

Distributed Systems

Slide 44

Distributed Systems

Distributed Data
Management

Thorsten Papenbrock

Knowledge, Truth, Lies

Students communi-
cating their knowledge

Unreliable Clocks

An atomic clock with
minimum drift

Unreliable Networks

A shark raiding an
undersea cable

Knowledge, Truth, and Lies

Knowledge and Truth

Slide 45

Thorsten Papenbrock

Knowledge

 A node can know nothing about other nodes for sure.

 Can only make guesses based on received messages.

Truth

 = Statement supported by the cluster as a whole.

 Individual nodes may disagree with this statement.

 Can be defined by …

 Property

 A truth indicating statement property (e.g. versions or timestamps)

 Authority

 A representative node with a special role (e.g. master or leader)

 Majority

 A voting algorithm that finds a majority (e.g. via total order broadcast)

You know nothing, Jon Snow

Distributed Systems

Distributed Data
Management

Knowledge, Truth, and Lies

Knowledge and Truth

Slide 46

Thorsten Papenbrock

Property

 A truth indicating statement property (e.g. versions or timestamps)

 Determine truth:

 Ask every node.

 Compare the answers by their truth indicating property.

 Consider the answer with the highest property value as truth.

 Note: Property collisions (same property value for different statements) need to be avoided.

 Examples:

 A quorum read identifies the most recent value by its version.

 The reader will get the most recent value from r responses

(although n - w many nodes may disagree with that version).

 Lamport timestamps clearly mark the most recent value.

 All nodes will agree to that value

(regardless of whether it is underrepresented or not).

Distributed Systems

Distributed Data
Management

Knowledge, Truth, and Lies

Knowledge and Truth

Slide 47

Thorsten Papenbrock

Authority

 A representative node with a special role (e.g. master or leader)

 Determine truth:

 Ask the representative node.

 Consider its answer as truth.

 Note: Asking any other node in the cluster does not ensure “true” statements.

 Examples:

 A lease service hands out roles, locks and permissions.

 The service always knows the nodes with these leases

(although nodes might temporarily disagree).

 A replication leader accepts and forwards all write operations.

 The leader always serves the most recent version of a replica

(although some changes might not have propagated yet).

Distributed Systems

Distributed Data
Management

Knowledge, Truth, and Lies

Knowledge and Truth

Slide 48

Thorsten Papenbrock

Majority

 A voting algorithm that finds a majority (e.g. via total order broadcast)

 Determine truth:

 Ask every node.

 Consider the most frequent answer as truth.

 Note: Only clear majorities (>50% of the nodes) are stable; smaller majorities might have ties.

 Examples:

 A node loses its connection to the network, but is still alive.

 The majority sees the node disappear and will declare it dead

(although the connection and not the node was faulty).

 A change propagation message gets lost on the network.

 The majority holds an outdated value that is declared valid

(although the most recent value is on the node issuing the change).

Distributed Systems

Distributed Data
Management

Knowledge, Truth, and Lies

Lies: Byzantine Problem

Slide 49

Thorsten Papenbrock

Distributed Systems

Distributed Data
Management

©https://blog.cdemi.io/byzantine-fault-tolerance/

n Byzantine generals
need to agree whether

to attack or retreat.

Every general has an own
opinion but would agree

to a consensus.

They communicate by sending
messenger that can be

delayed or shot on their way.

Some generals are
traitors that report

inconsistent strategies.

Knowledge, Truth, and Lies

Lies: Byzantine Fault

Slide 50

Thorsten Papenbrock

Distributed Systems

Distributed Data
Management

©https://blog.cdemi.io/byzantine-fault-tolerance/

attack!

attack!

retreat!

retreat!
Nodes receive two
different majorities

and act inconsistently.

Some generals are
traitors that report

inconsistent strategies.

Knowledge, Truth, and Lies

Lies

Slide 51

Thorsten Papenbrock

Distributed Systems

Distributed Data
Management

Weak Lies

 Nodes accidentally send invalid information (with no bad intention):

 outdated, miss-calculated, damaged, lost, …

 Reasons:

 software bugs, signal interference, misconfiguration, hardware faults, software update …

 Protection:

 checksums (e.g. TCP), redundancy (e.g. NTP), quorums (e.g. Cassandra),

sanity checks (application), …

Byzantine Lies

 Nodes systematically send invalid information (usually with bad intention)

 Reasons:

 hardware faults, security compromises, malicious attacks, …

 Protection:

 complicated, often inefficient consensus protocols

 hardware-based, multiple-consensus-rounds, consensus-hierarchies, proof of work …

Distributed Systems

Summary

Slide 52

Thorsten Papenbrock

Distributed Systems

Distributed Data
Management

Unreliable Networks

 Messages can be lost, reordered, duplicated, and arbitrarily delayed

Unreliable Clocks

 Time is approximate at best, unsynchronized, and can pause

Knowledge, Truth, Lies

Students communi-
cating their knowledge

Unreliable Clocks

An atomic clock with
minimum drift

Unreliable Networks

A shark raiding an
undersea cable

Distributed Systems

Check yourself

Slide 53

Tobias Bleifuß

Distributed Systems

Distributed Data
Management

The φ accrual failure detector

■ Suppose we observed the following heartbeat intervals (in s):

■ 14, 34, 15, 11, 17, 10, 35, 29, 28, 21

■ Furthermore, assume we haven't received a heartbeat for 31s now.

■ Use the φ accrual failure detector to estimate the probability Plater that the heartbeat will
still arrive and give the value of φ.

■ In reality, the heartbeat intervals follow a Gaussian distribution with the parameters
mean μ=15.0 and variance σ2=100.0.
By what factor did we misjudge the probability of Plater?

Distributed Data Management

Introduction
Thorsten Papenbrock

G-3.1.09, Campus III

Hasso Plattner Institut

