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I am facing … 

 software bugs 

 power failures 

 head crashes 

 hardware aging  

 … 

I am facing everything he faces and … 

 network faults 

 clock deviation 

 partial (power/network/…) failures 

 nondeterministic behavior 

 … 

Distributed System Developer Non-Distributed System Developer 
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“My system is predictable.” 

“I can debug easily.” 

“A well operating system 
should not have failures.” 

“I use parallelism  
whenever necessary.” 

“My system is predictably unpredictable.” 

“Debugging is hard.” 

“A well operating system  
properly deals with its failures.” 

“Parallelism is my bread and butter.” 
 

Distributed System Developer Non-Distributed System Developer 



“Anything that can go wrong will go wrong” 

So better be prepared! 
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Building a reliable system from unreliable components 

Given:  n number of nodes in the cluster 

 p likelihood that a node fails (in some arbitrary time interval) 

Then: Probability a node failure in a cluster of size n can be calculated as … 

 

 

  

                   𝑃 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

= 1 − 1 − 𝑝 𝑛 

 

 

 

Probability that n nodes with failure 
probability p did not fail 
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Building a reliable system from unreliable components 

Given:  n number of nodes in the cluster 

 p likelihood that a node fails (in some arbitrary time interval) 

Then: Probability a node failure in a cluster of size n can be calculated as … 

                   𝑃 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

= 1 − 1 − 𝑝 𝑛 

 

 

 

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

1

2
6

5
1

7
6

1
0
1

1
2
6

1
5
1

1
7
6

2
0
1

2
2
6

2
5
1

2
7
6

3
0
1

3
2
6

3
5
1

3
7
6

4
0
1

4
2
6

4
5
1

4
7
6

5
0
1

5
2
6

5
5
1

5
7
6

6
0
1

6
2
6

6
5
1

6
7
6

7
0
1

7
2
6

7
5
1

7
7
6

8
0
1

8
2
6

8
5
1

8
7
6

9
0
1

9
2
6

9
5
1

9
7
6

P
(
n

o
d

e
s
 f

a
il
e
d

)
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p = 0.1% 

If one nodes fails with a probability of 0.1% 
per day (i.e. about once every three years) a 
1000 node cluster has a disk failure of 63% 

(i.e. at least every 2 days) 
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Building a reliable system from unreliable components 

Given:  n number of nodes in the cluster 

 p likelihood that a node fails (in some arbitrary time interval) 

Then: Probability a node failure in a cluster of size n can be calculated as … 

 

 

  

                   𝑃 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

= 1 − 1 − 𝑝 𝑛 

 

 

 
Without replication, this is guaranteed 

data loss in very short time! 

So what if we use replication? 
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Building a reliable system from unreliable components 

Given:  n number of nodes in the cluster 

 p likelihood that a node fails (in some arbitrary time interval) 

 f number of nodes that fail at the same time 

Then: Probability of exactly f failing nodes can be calculated as (Binomial distribution) … 

 

 

  

                   𝑃 𝑓 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

= 𝑛
𝑓 ∗ 𝑝𝑓 ∗ 1 − 𝑝 𝑛_𝑓 

 

 

 

https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html  

Number of different ways to pick 
f nodes in the n node cluster 

Failure probability of f independent 
nodes with p failure likelihood  

Well-being probability for 
the n-f other nodes 
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Building a reliable system from unreliable components 

Given:  n number of nodes in the cluster 

 p likelihood that a node fails (in some arbitrary time interval) 

 f number of nodes that fail at the same time 

 r replication factor of a distributed system 

Then: Probability of unrecoverable partition loss with exactly f failing nodes  

 can be calculated as … 

 

     𝑃 𝑝𝑎𝑟𝑡𝑖
𝑡

𝑖 𝑜
𝑛

 𝑙𝑜𝑠𝑡 ∣ 𝑓 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

=
𝑓
𝑟
𝑛
𝑟
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All possible, entirely crashed replicas 
of size r in f crashed nodes 

All possible replica combinations  
of size r on n nodes 
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Building a reliable system from unreliable components 

Given:  n number of nodes in the cluster 

 p likelihood that a node fails (in some arbitrary time interval) 

 f number of nodes that fail at the same time 

 r replication factor of a distributed system 

 k number of partitions in the cluster 

Then: Probability of unrecoverable data loss with exactly f failing nodes  

 can be calculated as … 

 𝑃 𝑑𝑎𝑡 𝑎 𝑙𝑜𝑠𝑠 ∣ 𝑓 𝑛𝑜𝑑
𝑒

𝑠
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𝑡
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                      = 1 − 1 − 𝑃(𝑝𝑎𝑟𝑡𝑖
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Probability that all k par- 
titions did not loose data  
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Building a reliable system from unreliable components 

Given:  n number of nodes in the cluster 

 p likelihood that a node fails (in some arbitrary time interval) 

 f number of nodes that fail at the same time 

 r replication factor of a distributed system 

 k number of partitions in the cluster 

Then: Probability of unrecoverable data loss can be calculated as … 

 𝑃 𝑑𝑎𝑡 𝑎 𝑙𝑜𝑠𝑠 =  𝑃 𝑓 𝑛𝑜𝑑
𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑 𝑛

𝑓=𝑟 ∗ 𝑃 𝑑𝑎𝑡 𝑎 𝑙𝑜
𝑠
𝑠 ∣ 𝑓 𝑛𝑜𝑑

𝑒

𝑠

 𝑓𝑎𝑖𝑙 𝑒
𝑑

 

       =  𝑛
𝑓
∗ 𝑝𝑓 ∗ 1 − 𝑝 𝑛_𝑓𝑛
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𝑓
𝑟
𝑛
𝑟

k  

 

 

 https://martin.kleppmann.com/2017/01/26/data-loss-in-large-clusters.html  

All numbers of failing nodes that 
can cause data loss (i.e. f ≥ r) 
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Building a reliable system from unreliable components 

Then: Probability of unrecoverable data loss can be calculated as … 

 𝑃 𝑑𝑎𝑡 𝑎 𝑙𝑜𝑠𝑠 =  𝑛
𝑓 ∗ 𝑝𝑓 ∗ 1 − 𝑝 𝑛_𝑓𝑛

𝑓=𝑟 ∗ 1 − 1 −
𝑓
𝑟
𝑛
𝑟

k  
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n = 1  10,000 
p = 0.001 
r = 3 
k = 256 * n 

Replication greatly reduces the 
risk of loosing data! 
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Then: Probability of unrecoverable data loss can be calculated as … 
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n = 1  10,000 
p = 0.001 
r = 3 
k = 256 * n 

A 4,000 node cluster has about the same 
probability of data loss than one single 

disk (with r = 3 and k = 256 * n). 

It looses only 1/k of the data, 
but that might have been the 

most important values! 
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Building a reliable system from unreliable components 

Then: Probability of unrecoverable data loss can be calculated as … 

 𝑃 𝑑𝑎𝑡 𝑎 𝑙𝑜𝑠𝑠 =  𝑛
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n = 1  10,000 
p = 0.001 
r = 3 
k = 256 * n 

Although k=3 appears to be super reliable 
(a failing replica always has two backups), 

extremely large clusters require r>3 
(or smaller k). 
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Building a reliable system from unreliable components 

 With no special fault handling: 

 A distributed system is at best as reliable as its weakest/strongest component. 

 With fault handling: 

 A distributed system is (much) more reliable as its unreliable components. 

 

Fault handling examples 

 Radio inference on wireless networks: 

 Error-correcting codes allow digital data to be transmitted accurately.  

 Unreliable Internet Protocol (IP): 

 Transmission Control Protocol (TCP) retransmits missing packages,  

eliminates duplicates, and reassembles packets in order. 

Some easily solvable faults 
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Knowledge, Truth, Lies 
 
 
 
 
 
 
 
 
 

Students communi-
cating their knowledge 

Unreliable Clocks 
 
 
 
 
 
 
 
 
 

An atomic clock with 
minimum drift 

Unreliable Networks 
 
 
 
 
 
 
 
 
 

A shark raiding an 
undersea cable 
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Network 

 Physical connection between autonomous, shared-nothing computing nodes 

 Asynchronous messaging via packet binary sequences 

 Nodes can send messages but no guarantees as to when/whether it arrives 

 

 

Potential failures when sending a message 

a) Request is lost on the network (e.g. cable unplugged). 

b) Request is waiting in a queue and delivered later (e.g. recipient overloaded). 

c) Remote node is unavailable (e.g. recipient crashed or is updating). 

d) Response is delayed on the network (e.g. network overloaded). 

e) Response is lost on the network (e.g. network switch misconfigured). 

Sender can’t even tell if the packet was delivered … 
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Using the operating system 

 If a process on a node crashes, but the operating system (OS) still runs:  

 OS can close or refuse TCP connections to notify clients with an error. 

 OS can trigger failover scripts to explicitly notify certain clients. 

Using the network switch 

 If the client has access to the network switch: 

 Switch can detect link failures on hardware level  

(e.g. detect if remote is powered on). 

Using timeouts 

 Log the sending time for each message. 

 Messages are declared lost if their recipient does not answer within a 

certain timeout. 

 Most universal fault detection mechanism 

 

 

 

 

Distributed Systems 

Distributed Data 
Management 
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Sender Receiver 

TCP 

 

TCP performs flow control 
to avoid congestion, 
resend failed messages … 

Switch 

 

Operating System 

 

Virtual Machine 

  

Switch buffers messages 
if destination network 
link is busy. 

Operating system buffers 
messages from network 
if CPU/process is busy. 

VM monitor buffers 
messages for a VM if  
it waits for CPU time. 

 Many reasons for packages being delayed (query congestion) 

 Even if the receiver could guarantee a processing time for messages, 

the network cannot guarantee a transmission time for messages. 
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Issues 

 How to set the timeout? 

 Too long (conservative): Program waits wastefully long before triggering fault handling. 

 Too short (aggressive): More false message loss reports each triggering fault handling. 

 How to handle failures? 

 Resend message   Messages might get handled multiple times! 

 Reroute message   Messages might worsen overload if this caused the timeout!  

 Escalate as system error 

Distributed Systems 

 Network with high traffic due to data-intensive workloads 

 Nodes with high CPU load due to compute intensive OLTP/OLAP jobs 

 Overall high system load makes timeouts hard to predict. 

Note that we cannot know: 

 What caused the error? 

 Has a message been worked on? 
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The traditional heartbeat method 

 The monitored process p sends periodical heartbeat messages to the server process q. 

 Δi : the heartbeat send interval of p 

 Δt : the initial wait time 

 Δto : the timeout 

 Upon receiving the first heartbeat (Δt),  

p measures the time to the next heartbeat (Δto),  

which is then set as the timeout. 

 Problems: 

 Static timeout: Query congestion might naturally delay heartbeats on higher load. 

 Initialization: If the second heartbeat is delayed, Δto is set too large. 

 Binary trust: Client is either trusted or suspected. 



Unreliable Networks 

Defining Timeouts Experimentally 

The accrual failure detector method 

 Accrual failure detector: 

 German: “anwachsender Fehlererkenner” 

 Output a suspicion-level for each node instead of binary trust or fixed timeout. 

 Suspicion level: 

 Measure describing the probability that node p has failed at time t. 

 Defined as a continuous function for p over t : susp_levelp(t) ≥ 0  

 Properties 

 Asymptotic completeness: If p is faulty, susp_levelp(t) → ∞. 

 Eventual monotony: If p is faulty, susp_levelp(t) monotonically increases. 

 Upper bound: If p is correct, susp_levelp(t) has an upper bound. 

 Reset: If p is correct, susp_levelp(t) = 0 for some t > t0.  

 Used to adjust load balancing and timeout expectations 

 

 

 

Trust is interpreted 
from the development 

of suspicion 

i.e., whenever a 
heartbeat arrives 



Unreliable Networks 

Defining Timeouts Experimentally 

The accrual failure detector method 

 Suspicion level: simplified example 

S
u
s
p
ic

io
n
 

time t 
heartbeat 
received 

heartbeat 
received 

heartbeat 
received 

Took a little longer, so lower 
the expectation for the next 

All seems fine 

We lost it 
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Distributed Systems 

Distributed Data 
Management 

Upper bound for correctly 
operating nodes 

Node seems 
pretty busy 
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Defining Timeouts Experimentally 

The accrual failure detector method 

 Suspicion level interpretation:  

 Example interpretation algorithm: 

 Initialize two dynamic thresholds Thigh and Tlow to the same arbitrary values >0 

and start trusting a node. 

 S-transition:  

 Whenever susp_levelp(t) crosses Thigh upwards, Thigh = Thigh + 1 and suspect p. 

 T-transition:  

 Whenever susp_levelp(t) crosses Tlow downwards, Tlow = Thigh and trust p. 

 The longer the algorithms monitors susp_levelp(t),  

the better Thigh captures real node failures. 

 Suspicion dynamically adjusts to the current latency and load. 

 Thigh becomes a fix threshold that is robust against load changes. 
Slide 24 
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The φ accrual failure detector 

 A concrete implementation of the accrual failure detection method 

 Implemented in Akka, Spark, Flink, Cassandra, Riak, ZooKeeper, … 

 φ (Phi):  

 Suspicion level: φp(t) = susp_levelp(t) 

 Comparable: If φp(t) > φq(t), p is more likely to fail at time t than q, i.e.,  

              p differs more clearly from its usual timing than q. 

 Useful for fault detection and load balancing. 

 General idea: 

 Continuously measure response times (jitter) and availability of nodes via heartbeats. 

 Calculate φp(t) based on p’s heartbeat history. 

 

Naohiro Hayashibara, Xavier Défago, Rami Yared, and Takuya Katayama,  
“The φ Accrual Failure Detector”,  

Japan Advanced Institute of Science and Technology, School of Information Science,  
Technical Report IS-RR-2004-010, May 2004 
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The φ accrual failure detector 

 Variables 

 Tlast: Arrival time of 

most recent heartbeat 

 tnow: Current time 

 Plater: Probability that  

a heartbeat will arrive  

more than t time units  

after the previous one 

 Heartbeat arrivals 

 Heartbeats arrive with a sequence number to restore their send order. 

 Sampling window 

 Stores the arrival times in a fixed sized window (last x heartbeats per node).  

 Pre-calculates the arrival intervals, sum, and sum of squares of all samples. 
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The φ accrual failure detector 

 Variables 

 Tlast: Arrival time of 

most recent heartbeat 

 tnow: Current time 

 Plater: Probability that  

a heartbeat will arrive  

more than t time units  

after the previous one 

 Estimation  

1. Calculate the mean μ and the variance σ2 for the arrival time samples. 

2. Calculate Plater(t): 

 

 

 

 

Naohiro Hayashibara, Xavier Défago, Rami Yared, and Takuya Katayama,  
“The φ Accrual Failure Detector”,  

Japan Advanced Institute of Science and Technology, School of Information Science,  
Technical Report IS-RR-2004-010, May 2004 

μ 

σ2 
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The φ accrual failure detector 

 Variables 

 Tlast: Arrival time of 

most recent heartbeat 

 tnow: Current time 

 Plater: Probability that  

a heartbeat will arrive  

more than t time units  

after the previous one 

 φ calculation  

3. Calculate φ using Plater and the time since p’s last heartbeat: 

 

 

 

Naohiro Hayashibara, Xavier Défago, Rami Yared, and Takuya Katayama,  
“The φ Accrual Failure Detector”,  

Japan Advanced Institute of Science and Technology, School of Information Science,  
Technical Report IS-RR-2004-010, May 2004 

Interpretation by 
application: 

E.g. failure detection 
with Thigh and Tlow 
where Thigh = Φ Plater gets increasingly smaller; -log10 turns small values into very large values. 
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TCP vs. UDP 

 User Datagram Protocol (UDP) does not use timeouts. 

 No guarantee of delivery, ordering, or de-duplication. 

 Preferable if outdated messages are worthless: 

 

 

 

 

 

 

 

 Problematic for most analytical use cases! 

video streaming gaming VoIP calls 

sensor processing 
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Unreliable clocks 

 

often cause  

silent, creeping failures and data loss. 

Unreliable networks 

 

usually cause  

noticeable crashes and failures. 
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Management 

Both need to be considered in application logic! 
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Computer clocks 

 Actual hardware devices: quartz crystal oscillator 

 Not perfectly accurate and not in sync with other clocks 

 

Clock usage in distributed systems 

1. Measure duration e.g.: 

 Has this request timed out yet? 

 What’s the 99th percentile response time of this service? 

 How long did the user spend on this page? 

2. Measure points in time e.g.: 

 When was this heartbeat send? 

 When does this cache entry expire? 

 What’s the timestamp of this error message? 

Distributed Systems 

Distributed Data 
Management 
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Kinds of clocks 

a) Time-of-day clock: 

 Returns the current time according to some calendar (e.g. millis since 01.01.1970 UTC). 

 Example:  clock_gettime(CLOCK_REALTIME) (Linux)  

  System.currentTimeMillis() (Java) 

 Can be changed completely (e.g., synchronized via NTP). 

 Used to measure points in time. 

b) Monotonic clock: 

 A constantly forward moving clock with no reference point (specific values are meaningless). 

 Example:  clock_gettime(CLOCK_MONOTONIC) (Linux)  

  System.nanoTime() (Java) 

 Can be speeded up or slowed down (e.g., by 0.05% via NTP). 

 Used to measure durations (time intervals). 
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Clock drift 

 Natural deviation of mechanical clock speeds due to … 

 machine temperature; 

 gravitation; 

 aging and abrasion. 

 Unavoidable even if clocks get synchronized frequently 

 

Illusion of synchronized clocks 

 Clock drift: 17 sec drift for clocks synchronized once a day (Google) 

 Back-shifts: clocks being forced to sync to past times 

 Network delay: no synchronization can work around network delay 

 Leap seconds: necessary time adjustment due to earth rotation 

 Virtualization: VMs use virtualized clocks that pause if VM has no CPU time 

Distributed Systems 

Distributed Data 
Management 
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https://www.youtube.com/watch?v=-5wpm-gesOY 

“Time [and synchronization] is 
so difficult to get right that you 
don’t try to write it yourself!” 

Tom  
Scott 

https://www.youtube.com/watch?v=-5wpm-gesOY
https://www.youtube.com/watch?v=-5wpm-gesOY
https://www.youtube.com/watch?v=-5wpm-gesOY
https://www.youtube.com/watch?v=-5wpm-gesOY
https://www.youtube.com/watch?v=-5wpm-gesOY
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Synchronized clocks in distributed DBMSs 

 Used often when messages require a  

global ordering 

 

 Last-Write-Wins (LWW): 

 Writes get a timestamp from the first node that sees them. 

 During change propagation, newer writes overwrite older writes. 

 If clocks are out-of-sync, newer writes might get overwritten/dropped. 

 

 Snapshot isolation: 

 Transactions get a timestamp from the node that opens them. 

 During transaction processing, transactions see only older changes. 

 If clocks are out-of-sync, snapshots might be inconsistent. 

Distributed Systems 

Distributed Data 
Management 

x=2 

x=1 

x=1 
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Risks 

Synchronized clocks in distributed DBMSs 

 Used often when messages require a  

global ordering 

 

 Single-leader lease: 

 In single-leader replication, the leader obtains a lease with a timestamp for being leader. 

 Lease:  

 Kind of a lock with timeout that can be held by only one node. 

 If lease’s timeout expires, the leader needs to renew the lease. 

 If leader fails and does not renew, another leader can be elected. 

 If clocks are out-of-sync, leader might hold lease for too long (two leader brain split). 

 If the leader pauses and resumes in a critical section, it might process writes without 

permission. 

while (true) { 

   request = getIncomingRequest(); 

   if (lease.expiryTimeMillis –  

             System.currentTimeMillis < 10000) { 

      lease = lease.renew(); 

   } 

   if (lease.isValid()) { 

      process(request); 

   } 

} 

Better not 
pause here! 

Remember:  
no mutexes, 

semaphores, … 
in distributed 

systems! 
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Network Time Protocol (NTP) 

 Most popular clock synchronization protocol  

for packet-switched, variable-latency data networks. 

 Assumption: 

 Some nodes (servers) have very precise clocks (atomic, GPS, …) 

 Protocol: 

 Nodes with less precise clocks  

synchronize their clocks with  

these reference clocks directly  

or indirectly. 

 The closer a node is to the  

reference clocks, the more  

precise it can (potentially) 

sync its clock.  

 

 

 

sanity checking 

David 
L. Mills 



Unreliable Clocks 

Synchronization 

Slide 39 

Thorsten Papenbrock 

Network Time Protocol (NTP) 

 Synchronization Algorithm: 

 Client nodes regularly poll server nodes and calculate: 

1. time offset 

 

 

2. round-trip delay 

 

 
     t0, t1, t2, and t3 are timestamps attaches to the sync message. 

 θ and δ are passed through statistical analysis to remove outliers. 

 Client then gradually adjusts its local clock using θ  

e.g. by always adding 0.3 * θ to its local time. 

 

 

 

Offset send Offset receive 

t1 and t3 include 
transmission time so 

it is added and deleted 

Because we calculated 
the offset twice! 



Unreliable Clocks 

Synchronization 

Slide 40 

Thorsten Papenbrock 

Network Time Protocol (NTP) 

 Most popular clock synchronization protocol for packet-switched,  

variable-latency data networks. 

 Computers synchronize their time with a group of servers. 

 Servers get their time from more accurate time sources. 

 

Confidence in local time t 

 Estimation about the deviation between local and system time 

 A client’s local time t can be expected to be t + uncertainty. 

 uncertainty ≈ own expected clock drift since last NTP-sync + 

            network round-trip time + server’s uncertainty 

 Systems that rely on synchronized clocks try to estimate uncertainty  

and incorporate it in their application logic. 

Distributed Systems 

Distributed Data 
Management 
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Leases 

 Leases are necessary if a system requires that there is only one of some thing: 

 One node with a certain permission for a particular resource 

 One node with a particular role in the system (e.g. leader) 

 Obtaining a lease grants exclusive rights for a certain time. 

 Assumption: 

 One node (lock service/server/authority) assigns locks/leases. 

 If the time expires (monotonic time) … 

 the lease owner must renew it. 

 the lock service will re-assign the lease. 

 

 We know that this approach alone can lead to split brain actions. 
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Leases 

 If the time expires (monotonic time) … 

 the lease owner must renew it. 

 the lock service will re-assign the lease. 

 

 

 Fencing token: 

 A number that increases every time a lock is assigned. 

 Handed to the lease owner as part of the lease. 

 Lease owner must issue the fencing token with every action. 

 Locked resource (!) checks if fence token is up-to-date (e.g. newest). 

 Reject if other node possesses newer fence token. 

 

To counter the problem:  
A node wrongly thinks 
that it has the lock! 

8 
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 Example:  

 

No Fencing 

Fencing 
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Knowledge 

 A node can know nothing about other nodes for sure. 

 Can only make guesses based on received messages. 

 

Truth 

 = Statement supported by the cluster as a whole.  

 Individual nodes may disagree with this statement. 

 Can be defined by … 

 Property 

 A truth indicating statement property (e.g. versions or timestamps) 

 Authority 

 A representative node with a special role (e.g. master or leader) 

 Majority 

 A voting algorithm that finds a majority (e.g. via total order broadcast) 

You know nothing, Jon Snow 

Distributed Systems 

Distributed Data 
Management 
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Property 

 A truth indicating statement property (e.g. versions or timestamps) 

 Determine truth: 

 Ask every node. 

 Compare the answers by their truth indicating property.  

 Consider the answer with the highest property value as truth. 

 Note: Property collisions (same property value for different statements) need to be avoided. 

 Examples:  

 A quorum read identifies the most recent value by its version. 

 The reader will get the most recent value from r responses 

(although n - w many nodes may disagree with that version). 

 Lamport timestamps clearly mark the most recent value. 

 All nodes will agree to that value  

(regardless of whether it is underrepresented or not). 

Distributed Systems 

Distributed Data 
Management 



Knowledge, Truth, and Lies 

Knowledge and Truth 

Slide 47 

Thorsten Papenbrock 

Authority 

 A representative node with a special role (e.g. master or leader) 

 Determine truth: 

 Ask the representative node. 

 Consider its answer as truth. 

 Note: Asking any other node in the cluster does not ensure “true” statements. 

 Examples: 

 A lease service hands out roles, locks and permissions. 

 The service always knows the nodes with these leases 

(although nodes might temporarily disagree). 

 A replication leader accepts and forwards all write operations. 

 The leader always serves the most recent version of a replica 

(although some changes might not have propagated yet). 

Distributed Systems 

Distributed Data 
Management 
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Majority 

 A voting algorithm that finds a majority (e.g. via total order broadcast) 

 Determine truth: 

 Ask every node. 

 Consider the most frequent answer as truth. 

 Note: Only clear majorities (>50% of the nodes) are stable; smaller majorities might have ties. 

 Examples:  

 A node loses its connection to the network, but is still alive. 

 The majority sees the node disappear and will declare it dead 

(although the connection and not the node was faulty). 

 A change propagation message gets lost on the network. 

 The majority holds an outdated value that is declared valid 

(although the most recent value is on the node issuing the change). 
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©https://blog.cdemi.io/byzantine-fault-tolerance/ 

n Byzantine generals 
need to agree whether 

to attack or retreat. 

Every general has an own 
opinion but would agree 

to a consensus. 

They communicate by sending 
messenger that can be 

delayed or shot on their way. 

Some generals are 
traitors that report 

inconsistent strategies. 
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attack! 

attack! 

retreat! 

retreat! 
Nodes receive two 
different majorities  

and act inconsistently. 

Some generals are 
traitors that report 

inconsistent strategies. 
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Weak Lies 

 Nodes accidentally send invalid information (with no bad intention): 

 outdated, miss-calculated, damaged, lost, … 

 Reasons: 

 software bugs, signal interference, misconfiguration, hardware faults, software update … 

 Protection: 

 checksums (e.g. TCP), redundancy (e.g. NTP), quorums (e.g. Cassandra),  

sanity checks (application), … 

Byzantine Lies 

 Nodes systematically send invalid information (usually with bad intention) 

 Reasons: 

 hardware faults, security compromises, malicious attacks, … 

 Protection: 

 complicated, often inefficient consensus protocols  

 hardware-based, multiple-consensus-rounds, consensus-hierarchies, proof of work … 
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Unreliable Networks 

 Messages can be lost, reordered, duplicated, and arbitrarily delayed 

Unreliable Clocks 

 Time is approximate at best, unsynchronized, and can pause 
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The φ accrual failure detector 

■ Suppose we observed the following heartbeat intervals (in s): 

■ 14, 34, 15, 11, 17, 10, 35, 29, 28, 21 

■ Furthermore, assume we haven't received a heartbeat for 31s now. 

 

■ Use the φ accrual failure detector to estimate the probability Plater that the heartbeat will 
still arrive and give the value of φ. 

■ In reality, the heartbeat intervals follow a Gaussian distribution with the parameters 
mean μ=15.0 and variance σ2=100.0. 
By what factor did we misjudge the probability of Plater?
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