
Distributed Data Management

Transactions
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

Transactions

An OLTP Topic

Slide 2

Transactions

Distributed Data
Management

Thorsten Papenbrock

Motivation

 Most database interactions consist of multiple, coherent operations.

 Interactions can be affected by other interfering interactions and errors.

 Database must ensure that interactions work correctly (→ transactions).

OLAP vs. OLTP

 OLAP systems …

 prepare the data once.

 send complex but individual, ungrouped read-queries.

 resend failed queries and do not interfere.

 OLTP systems …

 change the data frequently.

 send coherent operations with mixed read/write load.

 must ensure that interactions succeed consistently.

No real need for
transactions

Transactions!

Transactions

Definition

Slide 3

Transactions

Distributed Data
Management

Thorsten Papenbrock

Transaction

 A sequence of database operations (read/write) that carry a database from

one state into another (possibly changed) state.

 Transactions operate in different items (multi-object operations).

 Transactions succeed (commit) or fail (abort/rollback).

 The ACID safety guarantees must be satisfied:

 Atomicity: A transaction is executed entirely or not at all.

 Consistency: A transaction carries the database from a consistent state

into a consistent state (consistent = logically and technically sound).

 Isolation: A transaction does not contend with other transactions.

Contentious access to data is moderated by the database so that

transactions appear to run sequentially.

 Durability: A transaction causes, if successful, a persistent change to

the database.

See lecture “Database Systems I”
by Prof. Naumann

Most distributed DBMSs do
not support transactions
and stick to the BASE

consistency model

Transactions

Achieving Isolation

Slide 4

Distributed Data
Management

Thorsten Papenbrock

Locking

 Block an item (row, document, …) for exclusive reads/writes of one transaction.

 Two-Phase Locking:

 All locks in one transaction are set before the first lock is given up.

 Technique to ensure conflict-serializable execution of transactions.

Scheduling

 Creating an execution order for transaction operations.

 See: serial schedule, serializable schedule, legal schedule

See lecture “Database Systems I”
by Prof. Naumann

serializable
conflict

serializable

#
lo

c
k
s

time

atomic
 execute

Transactions

Locking is an issue
if data is replicated!

Transactions

Causal Ordering (recap)

Slide 5

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Thinking:
timelines that branch/merge;

events compare only along lines

 GIT

Linearizable (and Total Order Broadcast)

 Imposes a total order:

 All events can be compared.

 For one object, only the newest event is relevant.

 Implies causality:

 A linear order is always also a causal order of the events.

 Is expensive (due to global order enforcement)

Causal ordering

 Imposes a partial order:

 Some events are comparable (causal), others are not (concurrent)

 For many events some partial order is just fine:

 Order of writes, side-channel messages, transactions …

 Is cheaper (order enforcement only for related events)

Ordering Guarantees

Causal Consistency

Slide 6

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Causal ordering:

 Example: reads and writes in transactional systems

 Reads and writes are causally unrelated unless they …

 target the same object or

 connect through transactions.

 A system that guarantees causal ordering is causal consistent.

Transactions

Inconsistencies

Slide 7

Thorsten Papenbrock

Dirty Read: (write-read conflict)

 Reading a inconsistent value

 Example: w1(A) r2(A) w1(A) A was not finished and never supposed to be read.

Non-Repeatable Read: (read-write conflict)

 Reading an outdated value

 Example: r1(A) w2(A) r1(A) Re-reading A resulted in a different, inconsistent value.

Lost Update: (write-write conflict)

 Losing a written value

 Example: w1(A) w2(A) r1(A) Update of A is lost during the transaction.

Phantom Read: (read-write and write-read conflict)

 Reading/writing of inconsistent values

 Example: r1(A) w2(B) r1(B) w2(A) Either A’s or B’s value is a phantom

 (should not be there).

(w/r)<transaction>(<field>)

Transactions

Isolation

Slide 8

Thorsten Papenbrock

Isolation levels

 To ensure ACID, transactions must be serializable.

 Very costly, but any weaker level breaks isolation.

 READ_COMMITTED:

 Read only committed values (remember local logical UNDO/REDO logs).

 No dirty reads, because only consistent values are committed.

 Still non-repeatable reads, because transactions interleave.

See lecture “Database Systems I”
by Prof. Naumann

Isolations-Level Lost Update Dirty Reads Non-Repeatable Reads Phantom Reads

READ_UNCOMMITTED prevented possible possible possible

READ_COMMITTED prevented prevented possible possible

REPEATABLE_READ prevented prevented prevented possible

SERIALIZABLE prevented prevented prevented prevented

Usually default

Isolations-Level Lost Update Dirty Reads Non-Repeatable Reads Phantom Reads

READ_UNCOMMITTED prevented possible possible possible

READ_COMMITTED prevented prevented possible possible

REPEATABLE_READ prevented prevented prevented possible

SERIALIZABLE prevented prevented prevented prevented

Transactions

Isolation

Slide 9

Thorsten Papenbrock

Isolation levels

 Snapshot isolation: “readers don’t block writers and vice versa”

 Transactions see only data that was committed when they started.

 Uncommitted transactions may read old values;

hence, causal consistency but no linearizability!

 Is expensive, because it not only orders the events

for the same object but also for an entire transaction!

 Implementations:

shared/exclusive locks or multi-version concurrency control (MVCC)

Keep both old and
new value until

commit; let others
read the old value

Causally related operations
are ordered

(unrelated operations still
occur concurrently)

Transactions

Snapshot Isolation via MVCC

Slide 10

Snapshot Isolation via MVCC

 For each entry (row, key-value pair, …) store created by and deleted by fields.

 Instead of changing entries directly, always append new versions.

 Transactions can now operate on consistent snapshots (= changes up to a fixed version).

 Algorithm:

 At transaction start, make a list of all yet un-committed transactions.

 During execution, ignore all changes made by …

a) un-committed transactions from the start;

b) aborted transactions;

c) newer transactions (i.e. transactions with higher transaction id).

 At transaction end, commit all changes; if write conflicts exist, rollback.

 MVCC is an optimistic approach that performs well if transactions do not

collide frequently but causes many rollbacks otherwise.

Transactions

Snapshot Isolation via MVCC

Slide 11

Thorsten Papenbrock

Account 1

Account 2

Transaction
txid = 13

Transaction
txid = 12

SELECT balance
FROM accounts
WHERE id = 1

SELECT balance
FROM accounts
WHERE id = 2

UPDATE accounts
SET balance = balance + 100
WHERE id = 1

UPDATE accounts
SET balance = balance - 100
WHERE id = 2

created by = 3
deleted by = nil
id = 1
balance = 500

created by = 5
deleted by = nil
id = 2
balance = 500

created by = 3 13
deleted by = nil nil
id = 1 1
balance = 500 600

created by = 5 13
deleted by = nil nil
id = 2 2
balance = 500 400

COMMIT

COMMIT

500 500

ok ok

Isolations-Level Lost Update Dirty Reads Non-Repeatable Reads Phantom Reads

READ_UNCOMMITTED prevented possible possible possible

READ_COMMITTED prevented prevented possible possible

REPEATABLE_READ prevented prevented prevented possible

SERIALIZABLE prevented prevented prevented prevented

Transactions

Isolation

Slide 13

Thorsten Papenbrock

Isolation levels

 Snapshot isolation: “readers don’t block writers and vice versa”

 Although it avoids all standard anomalies, it is not truly SERIALIZABLE:

 Write Skew: (related to phantom reads)

 Same reads lead to different, non-conflicting but inconsistent writes.

 Example: Two transactions scan a list of job applicants. Both see that

no applicant was hired, yet, and mark one applicant as hired.

If they hire different applicants, no conflict is created but

the table is inconsistent (two hires for one job).

Read/Write locks
avoid this problem,

because all read
applicants are

locked for writing.

 SERIALIZABLE

Transactions

Consensus for Transaction Commits

Slide 14

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Two-Phase Commit (2PC)

 Goal:

 Ensure that all nodes consistently commit or abort a transaction.

 Consensus = “all agree”

 Requirements:

 One node that acts as a coordinator for a transaction (e.g. leader).

 Coordinator must be able to generate unique IDs for transactions.

 Steps: (coordinator view)

 Writing: Send the data to all nodes.

 Phase 1: Upon global success, send prepare requests to all nodes.

 Phase 2: Upon global success, send commit request to all nodes.

 2PC transaction commits are blocking operations.

“Let’s be ACID conform!”

If coordinator crashes: recover and
continue sending commits/aborts.

Get ready to commit (append all writes to log on disk).

 Crashes, power failures, exhausted memory, … are no excuses later on!

Transactions

Consensus for Transaction Commits

Slide 15

Thorsten Papenbrock

Two-Phase Commit (2PC)

 Steps:

Node 1

Node 2

Coordinator

write data write data prepare commit

ok

ok

yes ok

yes ok

= locks held by transaction

Obtain unique
transaction ID

Whenever any
response is

missing/negative,
abort transaction.

Writing Phase 1 Phase 2

Make a decision
and append it to

log on disk.

 commit point

Keep sending
commit messages

until all nodes
acknowledged.

If node crashes: recover
(and query coordinator)!

What if coordinator
cannot recover and a
new coordinator must

be elected?

Transactions

Consensus for Transaction Commits

Slide 16

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Three-Phase Commit (3PC)

 Extension of the 2PC protocol that safely handles unrecoverable coordinators

 Idea: Spit the commit phase into two rounds.

 Steps: (coordinator view)

 Writing: Send the data to all nodes.

 Phase 1: Upon global success, send prepare requests to all nodes.

 Phase 2: Upon global success, send pre-commit request to all nodes.

 Phase 3: Upon global success, send commit request to all nodes.

 If the coordinator dies:

 The new coordinator asks all nodes for their state.

 If at least one node is in pre-commit phase, the new coordinator

knows that the decision to commit was made and continues to push

pre-commit (and then commit) messages.

Without the pre-commit phase, a new
coordinator cannot know if a commit+close

was already done by some node.

Transactions

Consensus for Transaction Commits

Slide 17

Thorsten Papenbrock

Three-Phase Commit (3PC)

 Steps:

Node 1

Node 2

Coordinator

write data write data prepare pre-commit

ok

ok

yes ok

yes ok

= locks held by transaction

Writing Phase 1 Phase 2

commit

ok

ok

Phase 3

Transactions

Consensus for Transaction Commits

Slide 18

Thorsten Papenbrock

Three-Phase Commit (3PC)

 Steps:

Node 1

Node 2

Coordinator

write data write data prepare pre-commit

ok

ok

yes ok

yes ok

= locks held by transaction

Writing Phase 1 Phase 2

commit

ok

Phase 3

New coordinator sees node 2 in pre-commit state;
it re-sends pre-commit to node 1 and

continues pushing commit messages to node 1 and 2
(node 1 simply plays the protocol as it knows the transaction is already closed locally).

Transactions

Consensus for Transaction Commits

Slide 19

Thorsten Papenbrock

Three-Phase Commit (3PC)

 Steps:

Node 1

Node 2

Coordinator

write data write data prepare pre-commit

ok

ok

yes ok

yes ok

= locks held by transaction

Writing Phase 1 Phase 2 Phase 3

New coordinator sees node 1 and 2 in pre-commit state;
it continues pushing commit messages to node 1 and 2.

Transactions

Consensus for Transaction Commits

Slide 20

Thorsten Papenbrock

Three-Phase Commit (3PC)

 Steps:

Node 1

Node 2

Coordinator

write data write data prepare pre-commit

ok

ok

yes ok

yes

= locks held by transaction

Writing Phase 1 Phase 2 Phase 3

New coordinator sees node 1 in pre-commit state;
it sends pre-commit to node 2 and

then pushes commit messages to node 1 and 2.

Transactions

Consensus for Transaction Commits

Slide 21

Thorsten Papenbrock

Three-Phase Commit (3PC)

 Steps:

Node 1

Node 2

Coordinator

write data write data prepare

ok

ok

yes

yes

= locks held by transaction

Writing Phase 1 Phase 2 Phase 3

New coordinator sees all nodes in prepare (or earlier) state;
it sends abort messages to all nodes,

because the decision to commit was not made
(nothing was committed yet).

Transactions

Consensus for Transaction Commits

Slide 22

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Two/Three-Phase Commit (2PC / 3PC)

 What if the distributed database is a combination of different DBMS systems?

 eXtended Architecture (XA):

 Standard for implementing 2PC across multiple DBMSs

 Implemented as C API with bindings to e.g. Java:

 Java Transaction API (JTA) supported by various drivers for …

 databases, i.e., Java Database Connectivity (JDBC) and

 message brokers, i.e., Java Message Service (JMS).

 Used in:

 Databases: PostgreSQL, MySQL, DB2, SQL Server, Oracle, …

 Message Broker: ActiveMQ, HornetQ, MSMQ, IBM MQ, …

XA

Transactions

Consensus for Transaction Commits

Slide 23

Consistency and
Consensus

Distributed Data
Management

Thorsten Papenbrock

Two/Three-Phase Commit (2PC / 3PC)

 Evaluation 2PC:

 Expensive: about 10 times slower than single-node transactions in MySQL

 Risky: locks are held indefinitely long if coordinator is lost

 Evaluation 3PC:

 Expensive: even more expensive than 2PC

 Blocking: locks are held for long times

 Complex: automatically electing a new leader if the first failed is

 consensus voting inside a consensus protocol!

 Both are merely used in practical implementations.

2PC is no good consensus protocol
for non-transactional votings.

Transactions

Summary

Slide 24

Thorsten Papenbrock

 Transaction support costs memory resources:

 Additional fields (lock or changed/deleted), versions, temporary lists …

 Transaction support costs computing resources:

 Setting and checking locks, searching and cleaning versions …

 Transaction support scales badly in distributed systems:

 Many actions require voting and/or change propagation.

 Transaction support is an open research area:

 Achieving consistency for individual values in distributed systems is challenging;

achieving the same for sequences of changes is even harder!

If you like to read more about
distributed transaction handling, have a

look at these two books!

Distributed Data Management

Introduction
Thorsten Papenbrock

G-3.1.09, Campus III

Hasso Plattner Institut

