

Chapter 10. Batch Processing

Distributed Data Management Batch Processing

Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

Distributed Data Management What we learned so far!

Foundations

- What do Moore's and Amdahl's Laws tell us about distributed systems?
- Encoding and Communication
- How do we (de)serialize and send messages in distributed systems?

Data Models and Query Languages

How to conceptually design and practically query data in distributed systems?

Storage and Retrieval

How to physically structure data in distributed systems?

Replication and Partitioning

How to introduce redundancy and grouping in distributed systems?

Distributed Systems

How to deal with network and time unreliability in distributed systems?

Consistency and Consensus

How to enforce ACID and CAP guarantees in distributed systems?

Hasso Plattner

Institut

HPI

Distributed Data Management

Batch Processing

Distributed Data Management What we learned so far!

Akka

- A toolkit for building distributed systems
- Implements several tools that support the build process
 - Failure detectors, persistence functionality, reliability features, API connectors, ...
- Allows us to implement any protocol, application or system that we can imagine.
- Does very little to protect us against programming errors, unstable systems, non-scalable algorithms, inperformant protocols, data loss, ...
 - > Akka is a powerful toolkit but no programming framework!

Now: Frameworks for building distributed systems

- Observation:
 - Certain data- and task-parallel tasks repeat frequently in distributed systems.
- Idea:
 - Build a framework that solves these tasks efficiently and effectively.

Batch Processing

"Computerized batch processing, since the 1964 introduction of the IBM System/360, has primarily referred to the scripted running of one or more programs, as directed by Job Control Language, with no human interaction other than, if JCL-requested, the mounting of one or more pre-determined input and/or output computer tapes."

TO PERSON NAME

Wikipedia, 2018

IBM

NAMES COMPANY AND ADDRESS OF TAXABLE PARTY OF TAXABLE PAR

System that loads data from punch cards batch-wise into memory for processing.

Distributed Data Management Batch Processing

Properties:

- Large (data-intensive) jobs are (automatically) broken down into sequences of smaller tasks (e.g. reading, writing, filtering, sorting, mapping, joining data).
- Tasks are well-understood, recurring, (side-effect free), standard activities.
- No (or only minimal) human interaction is involved.
- Processing is compute intensive (and offline) in nature.

Distributed Data Management Batch Processing

Distributed Data Management Batch Processing

Why batch processing (frameworks) in distributed computing?

(or why database reads, service calls, and message sends are insufficient)

- Components that we keep re-implementing
 - Mechanisms for reliable data transfer
 - Channels for large data transmission
 - Techniques to ensure fault tolerance
 - Functions for data extraction, transformation, and loading
- Most data-intensive jobs follow the same pattern
 - 1. Extract data from some (distributed) source.
 - 2. Transform data in a certain way (utilizing all available resources).
 - 3. Load result into some (distributed) sink.
 - > All three steps build upon recurring standard steps (i.e., functions/programs).
 - > Much resemblance to what batch processes do.

Batch Processing

Distributed Data Management Types of Systems

Services (online systems)

- Accept requests and send responses
- Performance measure: response time and availability
- Expected runtime: milliseconds to seconds

Batch processing systems (offline systems)

- Take (large amounts of) data; run (complex) jobs; produce some output
- Performance measure: throughput (i.e., data per time)
- Expected runtime: minutes to days

Stream processing systems (near-real-time systems)

- Consume volatile inputs; operate stream jobs; produce some output
- Performance measure: throughput and precision
- Expected runtime: near-real-time (i.e., as data arrives)

now

OLAF

OLTP

Distributed Data Management

Batch Processing

Distributed Data Management Use Cases

Statistical and Numerical Algorithms (aggregation, counting, summarization, ...)

Machine Learning Algorithms (classification, recommendation, prediction, ...)

Transformation Algorithms (parsing, filtering, translation, ...)

Approximating Algorithms (similarity search, fuzzy matching, ...)

Spatial Algorithms (neighbor search, clustering, ...) ThorstenPapenbrock Slide **9**

Hasso

Plattner

Institut

HPI

Distributed Data Management The Sushi Principle

Sushi Principle:

- Also known as "raw data is better" Bobby Johnson and Joseph Adler at Strata+Hadoop World, 2015
- Data are sequences of bytes with arbitrary data model and encoding:
 - text, sensor readings, matrices, feature vectors, genome sequences, ...
- Simply dump all data to disk and figure out how to process it later.
 - "data lakes" or "enterprise data hubs"
- A strategy for data warehousing:
 - Bringing data together is important (for across-dataset joins/unions).
 - Careful schema design is expensive and often lossy.
 - > Data parsing and interpretation at query time, i.e., in batch processes

ThorstenPapenbrock Slide **10**

Batch Processing

Distributed Data Management Indicators

- ... for (distributed) batch processing:
- Job can be broken down into a sequence of standard tasks.
- Job has data parallel nature.
- Job targets data analytics or data transformation.
- Job uses very large datasets where data management is a central issue for computing the solution (distributed data sources, large intermediate state, ...).
- Job is a complex query beyond simple item selections.
- Data analytics and data transformation jobs

Distributed Data Management Indicators

- ... **against** (distributed) batch processing:
- Job cannot be broken down into standard tasks.
- Job has task parallel nature.
- Job has many side effects.
- Job involves user interaction and other dynamic behavior.
- Job consists of complex branching logic.
- Job processes heterogeneous workloads (many small, different tasks vs. one, big task).
- Job requires connections to many external systems.
 - Data intensive, scalable systems and applications

Overview Batch Processing

Distributed Data Management

Batch Processing

Batch Processing with Unix Tools Analyzing a Log File

Log file analysis example:

• A log file generated by an nginx web server:

The "batch" of data

66.249.65.159 - - [06/Feb/2017:19:10:38 +0600] "GET /css/typography.css HTTP/1.1" 404 177 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.15 Safari/537.36" 66.249.65.3 - - [06/Feb/2017:19:11:24 +0600] "GET /logo.ico HTTP/1.1" 200 4223 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

66.249.65.62 - - [06/Feb/2017:19:12:14 +0600] "GET /2013/05/24/batch-processing.html HTTP/1.1" 200 4356 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

• Log file format:

\$remote_addr - \$remote_user [\$time_local] "\$request" \$status
\$body_bytes_sent "\$http_referer" "\$http_user_agent"

Distributed Data Management

Batch Processing

- Task:
 - "Find the 5 most requested resources in the log"

Batch Processing with Unix Tools Analyzing a Log File: Unix

Batch Processing with Unix Tools Analyzing a Log File: Unix

thorsten@tody~

Log file analysis example:

File

• Unix command chaining:

66.249.65.159 - - [06/Feb/2017:19:10:38 +0600] "GET /css/typography.css HTTP/1.1" 404 177 "-" "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_9_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.15 Safari/537.36" 66.249.65.3 - - [06/Feb/2017:19:11:24 +0600] "GET /logo.ico HTTP/1.1" 200 4223 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

66.249.65.62 - - [06/Feb/2017:19:12:14 +0600] "GET /2013/05/24/batch-processing.html HTTP/1.1" 200 4356 "-" "Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

\$ cat /var/log/nginx/access.log awk '{print \$7}' sort uniq -c sort -r -n -h head -n 5

Edit View Search Terminal Help

4189 /logo.icoDistributed Data
Management3631 /2013/05/24/batch-processing.htmlBatch Processing2124 /2012/01/12/storage-and-retrieval.htmlThorstenPapenbrock1369 /
915 /css/typography.cssThorstenPapenbrock

Batch Processing with Unix Tools UNIX Command Concept

Philosophy

- Let each program do **one** thing well.
- Expect the **output** of every program to become the **input** of another.
- Build software to be tried early.
- Use tools in preference of unskilled help.

Useful standard input stream commands (programs)

- grep: Searches for lines of text that match a regular expression.
- sed: Parses and transforms text in streams (usually for substitution or filtering).
- awk: Executes user defined AWK programming code on some input.
- xargs: Passes arguments to UNIX commands that disregard the standard input stream.
- sort: Sorts a batch of text lines by some criterion.
- uniq: Collapses adjacent identical text lines.

Larger programs are build by composing smaller programs.

Batch Processing with Unix Tools Commands vs. Custom Program

Commands

<pre>\$ cat /var/log/nginx/access.log</pre>	
awk '{print \$7}'	
sort	
uniq -c	
sort -r -n	
head -n 5	
	NIX

Custom Program

```
counts = Hash.new(0)
File.open('/var/log/nginx/access.log') do |file|
    file.each do |line|
    url = line.split[6]
    counts[url] += 1
    end
end
top5 = counts.map{|url, count| [count,url]}.sort.reverse[0...5]
top5.each{|count, url| puts "#{count} #{url}"}
Rubv
```

The command concept is ...

- usually shorter (as operators hide complexity).
- better to maintain and optimize (as operators group functionality).
- easier to distribute (due to operator independence).

ThorstenPapenbrock

Although that's exactly what UNIX does **not**!

Batch Processing with Unix Tools UNIX Command Concept

What UNIX does right:

- User defined functions (UDFs), though, may produce side effects!
- Immutable inputs: Repetitive executions produce same results.
- No side-effects: Inputs are turned into outputs, nothing (bad/unforeseen/...) happens.
- Arbitrary stops: Pipelines can be ended at any point (e.g. via outputting with less).
- Persistence: Outputs can be written to files and used as inputs by other commands; allows to (re-)start later stages with rerunning the entire pipeline.

What UNIX does not:

Distribution: All commands are executed locally on one machine.

Distributed Data Management

Batch Processing

Overview Batch Processing

Distributed Data Management Batch Processing

Distributed File System

- Stores data (of any format) distributed on multiple shared-nothing machines
- Provides traditional file system interfaces, i.e., appear like local file systems
- Usually implemented as leader-based storage systems:
 - Availability and fault-tolerance (partitioning and replication)
- Examples:
 - Hadoop Distributed FS (HDFS), GlusterFS, Quantcast FS (QFS), Google FS (GFS) ...
- Not to be confused with ...
 - Network Attached Storage (NAS)
 - Storage Area Network (SAN)
 - RAID systems

Shared disc architectures with special hardware (head devices; fibre channels)

= Redundancy over several disks

Similar techniques for error detection and recovery, but locally in contrast to distributed FSs

Distributed Data Management

Hasso

nstitut

Batch Processing

Distributed File Systems for Distributed Batch Processing

- Serve as data source/sink for inputs/outputs of cluster computing frameworks
 - Similar to stdin and stdout in UNIX command pipelines
- Advantages for analytical cluster computing:
 - Light-weight: store and retrieve blocks of data (no fancy querying, i.e., joins, aggregations, ...)

 Resource localization: provide means to find the host of a block (to schedule client processes reading that block on the same node)

Resource allocation: provide means to explicitly assign blocks to nodes (for load-based resource re-allocation)

Distributed Data Management

Batch Processing

Hadoop Distributed File System (HDFS)

- Arguably the most popular distributed file system implementation
- Subproject of Apache Hadoop; implemented in Java
- Optimized for ...
 - Fault-tolerance (node crashes are seen as the norm, not an exception)
 - High throughput (not low latency)
 - Large files (gigabytes to petabytes; broken into 128 MB blocks)
 - Analytical workloads (write once, read many times)
 - Streaming data access (full file scans)
- Philosophy:
 - "Moving computation is cheaper than moving data"
 - Provides interfaces for applications to move themselves closer to where the data is located.

Full CRUD support, but Reads dominate and Updates mean file overwrite

ThorstenPapenbrock Slide **23**

HDFS clusters often contain thousands of nodes!

HPI

Hasso Plattner Institut

Hadoop Distributed File System (HDFS)

- Namespaces:
 - Traditional hierarchical file names and paths
 - Managed by Namenode
- Replication:
 - Number of replicas can be specified per file (default 3)
 - Replica placement policy can be configured
- Racks:
 - HDFS is aware of racks: nodes within one rack are more likely to fail jointly

Block Replication

Namenode (Filename, numReplicas, block-ids, ...) /users/sameerp/data/part-0, r:2, {1,3}, ... /users/sameerp/data/part-1, r:3, {2,4,5}, ...

Thorsten Papenbrock

Hadoop Distributed File System (HDFS)

- Writes and Replication:
 - 1. Client node queries the namenode for a write operation.
 - 2. Namenode provides the address of the datanode with the target block.
 - 3. Client writes the data directly to the target datanode (not to any replica).
 - 4. Datanode starts to replicate the written block with all replicas of that block.
 - 5. Datanode acknowledges the write to the client.
 - Datanode crash: Namenode sends the address of an active datanode hosting the target block to proceed the write operation.
 - Client crash: Datanodes may revert the block from a replica or finish the write.*
 *in theory; might in practice corrupt the file
- Conflict management:

ThorstenPapenbrock

Slide 26

• File access uses read/write locks, i.e., leases on blocks to avoid inconsistencies.

Hadoop Distributed File System (HDFS)

• An example HDFS session:

Hadoop Distributed File System (HDFS)

• File system commands:

cat <file-name>

mkdir <path>

chown <path>

help <cmd-name>

- **ls <path>** Lists the contents of the directory (names, owner, size, ...).
- du <path> Shows disk usage in bytes.
- cp <src> <dest> Copies the file or directory from src to dest within HDFS.
 - rm <path> Removes a file or empty directory.
- put <src> <dest>
 Copies a local file or directory to DFS.
- get <src> <dest> Copies a file or directory from HDFS to local file system.
 - Displays the contents of file on stdout.
 - Creates a directory in HDFS.
 - setrep <rep> <path> Sets the targets replication factor to rep.
 - Sets the owning user and/or group.
 - Returns usage information for a command.

Distributed Data Management

Batch Processing

ThorstenPapenbrock Slide **28**

• ...

HPI Hasso Plattner Institut

P

Hadoop's Java API: Pushing computation to the relevant blocks

- 1. Programmatically query the block locations.
- 2. Run the code for these blocks on the same machines.

Path dataset = new **Path**(fs.getHomeDirectory(), "/path/to/file.csv");

<dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-hdfs</artifactId> <version>3.1.1</version> </dependency>

FileSystem fs = FileSystem.get(conf);

<dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-common</artifactId> <version>3.1.1</version> </dependency>

See MapReduce, Spark, Flink, ...

ThorstenPapenbrock Slide **30**

Distributed Data

Batch Processing

Management

FileStatus status = fs.getFileStatus(dataset); BlockLocation[] locations = fs.getFileBlockLocations(status, 0, status.getLen()); for (BlockLocation loc : locations) { System.out.println("Length: " + loc.getLength()); for (String host : loc.getHosts()) { System.out.println("Host: " + host); } Multiple hosts due to replication

Distributed File Systems and MapReduce **Distributed Batch Processing**

Functional Programming

- A programming paradigm where code is based on the evaluation functions.
- Function:
 - Takes argument(s) and produces output(s)
 - Avoid side-effects: no changing state; no mutable objects
 - Calls with same arguments produce same outputs.
 - Very nice property for parallelization/distribution!
 - See UNIX commands
- Functional languages:
 - Fully functional: Lisp, Clojure, Erlang, Haskell, ...
 - Functional nature: JavaScript, Scala, ...
 - Functional support: C++, C#, Java, PHP, Perl, ...
 - Functional distribution: MapReduce, Spark, Flink, Storm, ...

Main difference to procedures!

Allow side-effects and procedural/imperative code

ThorstenPapenbrock Slide **31**

Distributed Data Management

Distributed File Systems and MapReduce **Distributed Batch Processing**

Data Transformation Pipeline

- Chaining of functions:
 - Function outputs are forwarded to inputs of other functions.
 - One output can become the input of more than one other function.
- Directed (acyclic) graphs (DAG):
 - functions = nodes
 - dataflow = edges
 - acyclic: no directed loops
 - Topological ordering possible

Some distribution frameworks support loops, which are needed for iterative algorithms (machine learning, clustering, data cleaning, ...)

Distributed Data Management

Batch Processing

Distributed File Systems and MapReduce
Distributed Batch Processing

Data Transformation Pipeline

- Transformation functions (TF):
 - Fixed signature and implementation
 - Used to construct the pipeline topology
 - Have no side-effects
 - Operate on the same data formats
 - May take and apply user defined callback functions
- User defined callback functions (UDF):
 - Implement a certain, transformation-function-specific interface
 - Define the application specific tasks within a transformation function

Batch Processing

Distributed File Systems and MapReduce **Distributed Batch Processing**

Data Transformation Pipeline

Example: Function pipelining in Java 1.8+

• Characteristics:

- Immutable inputs and outputs: Pipelines do no harm; can re-execute and output intermediate results (e.g. for debugging).
- Separation of logic and wiring: Outputs match inputs; transformation functions can be optimized independently from their UDFs.

ThorstenPapenbrock Slide **34**

Distributed Data Management

Batch Processing

HPI

Hasso Plattner

Institut

Distributed File Systems and MapReduce **Distributed Batch Processing**

Data Transformation Pipeline

- Data parallel:
 - The same function can be applied to different data in parallel (functions can always operate on different data due to stateless nature).
- Task parallel:
 - Consecutive functions can be executed in parallel (start working on output before previous function has finished).

Distributed Data Management Batch Processing

Distributed File Systems and MapReduce MapReduce

MapReduce

- A low-level, functional programming model for analytical cluster computing
- Implemented in, for instance, Hadoop, CouchDB, and MongoDB
- Defines two transformation functions:
 - map() Map(k1,v1) → list(k2,v2) Takes one key-value pair (e.g. filename and records); outputs key-value pair(s).
 - reduce() Reduce(k2, list (v2)) → list(v3)
 Takes a collection of key-value pairs with same key; outputs value(s).
- Both functions apply a user defined callback function on their inputs.

- A low-level, functional programming model for analytical cluster computing
- Implemented in, for instance, Hadoop, CouchDB, and MongoDB
- The framework's tasks:
 - Read the input data from HDFS, split continuous data into records, assign values to nearby mappers.
 - Write/read key-value pairs to/from HDFS, group pairs with same key (via sorting), assign keys to reducers.
 - 3. Write reducer results to HDFS.
- Reducer functions get an iterator for their inputs (they can start while pairs are still being added).

MapReduce

Distributed File Systems and MapReduce

MapReduce

- A low-level, functional programming model for analytical cluster computing
- Implemented in, for instance, Hadoop, CouchDB, and MongoDB
- The MapReduce sort:
 - 1. Pre-sort the output of all local mappers (Quicksort).
 - 2. Persist the output on disk.
 - Block until pre-sort done!
 - 3. Range partition the key space and assign ranges to reducer nodes.
 - Sort the pre-sorted partitions on the reducer nodes (Mergesort).
- Super optimized and (due to persistence) reliable operation!

© https://clojurebridgelondon.github.io/workshop/functions/map-reduce-sandwich.html

MapReduce

Word Count

```
function <u>map</u>(String name, String document):
  // name: document name
                                                            A mapper could also
  // document: document contents
                                                            pre-aggregate words
  for each word w in document:
                                                              in its document.
    emit (w, 1)
function <u>reduce</u>(String word, Iterator partialCounts):
                                                                      Distributed Data
  // word: a word
                                                                      Management
  // partialCounts: a list of aggregated partial counts
                                                                      Batch Processing
  sum = 0
  for each pc in partialCounts:
    sum += pc
                                                                      ThorstenPapenbrock
  emit (word, sum)
                                                                      Slide 40
```

```
public static class TokenizerMapper
    extends Mapper<Object, Text, Text, IntWritable>{
  private final static IntWritable one = new IntWritable(1);
  private Text word = new Text():
  public void map(Object key, Text value, Context context
                  ) throws IOException, InterruptedException {
   StringTokenizer itr = new StringTokenizer(value.toString());
   while (itr.hasMoreTokens()) {
     word.set(itr.nextToken());
     context.write(word. one):
public static class IntSumReducer
    extends Reducer<Text,IntWritable,Text,IntWritable> {
  private IntWritable result = new IntWritable();
  public void reduce(Text key, Iterable<IntWritable> values,
                     Context context
                     ) throws IOException, InterruptedException {
   int sum = 0;
   for (IntWritable val : values) {
      sum += val.get();
    result.set(sum);
   context.write(key, result);
  }
```

import java.io.IOException; import java.util.StringTokenizer;

```
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
```

```
public static void main(String[] args) throws Exception {
   Configuration conf = new Configuration();
   Job job = Job.getInstance(conf, "word count");
   job.setJarByClass(WordCount.class);
   job.setCombinerClass(IntSumReducer.class);
   job.setCombinerClass(IntSumReducer.class);
   job.setOutputKeyClass(Text.class);
   job.setOutputValueClass(IntWritable.class);
   FileInputFormat.addInputPath(job, new Path(args[0]));
   FileOutputFormat.setOutputPath(job, new Path(args[1]));
   System.exit(job.waitForCompletion(true) ? 0 : 1);
}
```

```
ThorstenPapenbrock
```

```
Slide 41
```


Example: Word Count

MapReduce Scheduler

- Pipeline startup:
 - Assigns transformation functions (and their processes) to nodes.
 - Tries to execute functions near the data that they are started with.
 - Considers that nodes have enough spare RAM and CPU for their jobs.
- Shuffling:
 - Group key-value pairs by key:
 - Pre-sort key-value pairs on each node.
 - Calculate global sortation by merging pre-sorted lists.
 - Idea similar as in "SSTables and LSMTrees"
 - Distribute load (= key-value pair groups) evenly across reducer nodes.
 - See "partitioning by hash of key"

Distributed Data Management

Batch Processing

ThorstenPapenbrock

Slide 45

Distributed File Systems and Mar MapReduce

Reduce-side, sort-merge Joins

Example:

⊓_{Activities.url,User.dob}(Activities ⋈_{Activities.user=User.user_id} ↓

- Use two mapper:
 - one for each side of the join
 - mapping key = join key
- Primary sort:
 - by key (user/user_id)
- Secondary sort:
 - by value (url > dob)

In this way, the records from the two relations arrive grouped in each reducer.

Faster pairing algorithm

Distributed File Systems and MapReduce

Map-side Joins

- Broadcast hash join:
 - Criterion: One side of the join is small and fits into main memory.
 - Algorithm:
 - 1. Broadcast the small relation to all mappers which store it in memory.
 - 2. Mappers read the large partition and hash-join records to in-memory records.

Join relations in the mapping phase without a reduce phase!

- Partitioned hash join:
 - Algorithm:
 - 1. Partition both sides of the join by their join attributes.
 - 2. Mappers read the same partition from both sides and hash-join their records.
- Merge join:
 - Algorithm:
 - 1. Partition and sort both sides by their join attributes.
 - Slide **47** 2. Mappers read the same partition from both sides and merge-join their records.

"bucketed map join" (Hive)

"replicated join" (Pig)

"MapJoin" (Hive)

HPI

Hasso Plattner

Institut

Distributed Data Management

Batch Processing

ThorstenPapenbrock

Apache Hadoop

- A framework implementing MapReduce on HDFS (<u>http://hadoop.apache.org/</u>)
- Published by Google and Yahoo in 2004
- Contains the following modules:

- Hadoop Distributed File System (HDFS): A distributed file system implementation that stores data on commodity machines
- Hadoop YARN: A platform responsible for managing computing resources in clusters and using them for scheduling applications
- Hadoop MapReduce: A MapReduce implementation
- Did the Terraby Sort in 2008 on 910 nodes in 3.48 minutes (<u>http://sortbenchmark.org/YahooHadoop.pdf</u>).

Apache Hadoop YARN

- "Yet Another Resource Negotiator" (YARN)
- A cluster manager for physical resources of an HDFS
- Resources: CPU, memory, disk, network, ... (grouped in resource containers)
- YARN consists of ...
 - a. ResourceManager:
 - Global resource management and allocation
 - b. ApplicationMaster:
 - Configuration, coordination, and distribution of services (ZooKeeper)
 - Negotiates resources with the ResourceManager
 - Framework-specific (YARN also works with e.g. Spark)
- Takes compiled binaries and distributes their execution in the cluster

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

ThorstenPapenbrock Slide **49**

Node

Manager

Limitations

- Disk-based messaging:
 - Intermediate results always move via disk from mapper to reducer.
- Static job structure:
 - MapReduce jobs always consist of (one) map and (zero or one) reduce.
 - No arbitrary chaining of these two functions.
 - Larger workflows need to run multiple jobs one after the other.
 - Need for workflow scheduler that run and manage workflows (e.g. Oozie, Azkaban, Luigi, Airflow, and Pinball).
- Only two functions:
 - Most queries can be expressed as sequence of MapReduce jobs, but additional, dedicated functions can improve the performance (e.g. sorting, deduplication, union, joining, ...).

Distributed Data Management

Batch Processing

Higher-level tools on top of Apache Hadoop

- Apache Pig:
 - A platform that defines the higher-level query language Pig Latin.
 - Compiles Pig Latin gueries to Hadoop MapReduce, Tez, or Spark jobs.
 - Pig Latin is similar to SQL with procedural elements.
 - Example:

By Yahoo

https://cwiki.apache.org/confluence/display/Hive/Tutorial

Distributed File Systems and MapReduce Apache Hadoop

Higher-level tools on top of Apache Hadoop

- Apache Hive:
 - A tool that defines the higher-level query language HiveQL.
 - Compiles HiveQL queries to Hadoop MapReduce, Tez, or Spark jobs.
 - HiveQL is based on SQL and provides some extensions.

```
Example:

INSERT OVERWRITE TABLE pv_users

SELECT pv.*, u.gender, u.age

FROM user u JOIN page_view pv ON (pv.userid = u.id)

WHERE pv.date = '2017-03-03';
```


ThorstenPapenbrock

Slide 52

By Facebook

Distributed File Systems and MapReduce Hasso HPI Plattner Apache Hadoop Institut Higher-level tools on top of Apache Hadoop Hive vs. Pig: Word count 1 input lines = LOAD '/tmp/word.txt' AS (line:chararray); 2 words = FOREACH input lines GENERATE FLATTEN(TOKENIZE(line)) AS word; 3 filtered words = FILTER words **BY** word MATCHES '\\w+'; 4 word groups = GROUP filtered words BY word; 5 word count = FOREACH word groups GENERATE COUNT(filtered words) AS count, group AS word; 6 ordered word count = **ORDER** word count **BY count DESC**; 7 STORE ordered word count **INTO** '/tmp/results.txt'; 1 DROP TABLE IF EXISTS docs; **Distributed Data** 2 **CREATE TABLE** docs (line STRING); Management 3 LOAD DATA INPATH 'input file' OVERWRITE INTO TABLE docs; Batch Processing

4 **CREATE TABLE** word_counts **AS**

5 SELECT word, count(1) AS count FROM

```
6 (SELECT explode(split(line, '\s')) AS word FROM docs) temp
```

7 GROUP BY word

```
8 ORDER BY word;
```


Higher-level tools on top of Apache Hadoop

Higher-level tools on top of Apache Hadoop

- Apache Flume:
 - A distributed service for collecting, aggregating, and moving large amounts of streaming data into HDFS
 - Reliable: Uses transactions to guarantee message delivery.
 - Available: Buffers data in case of load spikes (if sink cannot keep up).
 - Sources:

Distributed Data Management

Batch Processing

Distributed Data Management Batch Processing

Distributed Data Management

Batch Processing

Distributed File Systems and MapReduce Hadoop vs. MPP Databases

Massively Parallel Processing (MPP) Databases

- Classical databases with distributed storage and parallel query processing
- Use the same concepts as we discussed earlier:
 - Partitioning, replication, distributed indexes, functional parallelism, ...

How Hadoop (and other MapReduce variations) differ

- Diversity of storage
 - Hadoop is data model independent; MPP databases enforce one
- Diversity of processing models
 - Hadoop executes arbitrary UDFs; MPP database only SQL.
- Design for frequent faults
 - Hadoop tries to recover from faults; MPP databases abort failed queries. ThorstenPapenbrock

Reading workloads

Long running OLAP queries!

Hadoop answers queries; MPP databases support full data manipulation.

It is difficult to do machine learning, image processing, full-text search, ... in SQL!

Slide 59

Distributed Data Management

Batch Processing

Overview Batch Processing

Distributed Data Management

Batch Processing

Beyond MapReduce MapReduce's Workflow Design

Slide 61

Beyond MapReduce MapReduce's Workflow Design

Good for reliability \geq

- Bad for performance: I/O overhead and no "real" pipelining (i.e., later jobs wait until earlier jobs have completely finished)
- Workflow construction is complicated (without Hive, Pig, Cascading, etc.).

on the same machine, because

"locality optimizations"

Beyond MapReduce Data Flow Engines

Data Flow Engine

- MapReduce-like distributed batch processing frameworks that handle an entire workflow as one job.
- Directed Acyclic Graph (DAG) processing:
 - Transformation functions (operators) can form arbitrary DAGs.
 - No strict alternating map-reduce
 - Outputs are directly connected to inputs of other operators.
 - No mandatory disk usage
 - Sorting is done explicitly.
 - Not in every shuffle step
 - Scheduler can place subsequent tasks that consume the same data on the same machine, because it knows the entire pipeline.
 - Less unnecessary data shuffling

Pia/Hive - MR

Data Flow Engine

- MapReduce-like distributed batch processing frameworks that handle an entire workflow as one job.
- Directed Acyclic Graph (DAG) processing:
 - Data can (often) be exchanged via local resources of one machine (shared memory buffer or local disk).
 - Less data exchange via network/HDFS
 - Operators start processing as soon as their input is ready.
 - > No waiting for entire processing stages to finish
 - Existing JVM processes are reused to run further operators.
 - No process launches for every task

Dryad and Nephele (Stratosphere) were the first research systems that inspired most modern data flow engines ThorstenPapenbrock Slide **64**

Pig/Hive - MR

Fault tolerance

- Checkpointing:
 - Some intermediate results are written to disk.
 - If operators crash, pipeline re-computes affected partitions from nearest checkpoint.

- Re-computation:
 - Requires that computations are deterministic.
 - Using randomness, current time, external resources, set orders, ... breaks determinism.

Joins (and Groupings)

- Supported options for connecting outputs to inputs:
 - a) Broadcast:
 - Send the records of one relation to all partitions.
 - broadcast hash join
 - b) Repartition without sorting:
 - Partition the records of two relations by key.
 - Skip the sorting (saving its overhead).
 - hash join
 - c) Repartition with sorting:
 - Partitions the records of two relations by key and sorts each partition (like in MapReduce's shuffle phase).
 - sort-merge join

Most data flow engines use a cost-based query optimizer to automatically choose a join-strategy and join-order.

Very important for nonblocking, streaming pipelines

Distributed Data Management

Batch Processing

Data Flow Engine

- Most popular implementations:
 - Tez: <u>https://tez.apache.org/</u>

Bikas Saha, Hitesh Shah, Siddharth Seth, et al.: "**Apache Tez: A Unifying Framework for Modeling and Building Data Processing Applications**," at ACM International Conference on Management of Data (SIGMOD), June 2015.

Spark: <u>https://spark.apache.org/</u>

Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, et al.: "**Resilient Distributed Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing**," at 9th USENIX Symposium on Networked Systems Design and Implementation (NSDI), April 2012.

Flink: <u>https://flink.apache.org/</u>

Alexander Alexandrov, Rico Bergmann, Stephan Ewen, et al.: "**The Stratosphere Platform for Big Data Analytics**," *The VLDB Journal*, volume 23, number 6, pages 939–964, May 2014.

Most query engines (e.g. Hive and Pig) can use these instead of MapReduce.

Beyond MapReduce Apache Tez

Tez

- A comparatively thin library tightly coupled to YARN
- Designed for ...
 - high performance batch applications and
 - interactive data processing applications.
- Clearly improves upon MapReduce's efficiency
- Less mature than Spark and Flink:
 - Less concise and more difficult API
 - No streaming or machine learning support
 - Slower

Distributed Data Management

Batch Processing

Spark

- Large framework with own network communication layer, scheduler, and user-facing APIs
 - Can also use YARN & Mesos
- Achievements:
 - Has won the 100 Terabyte sort competition
 with 206 nodes in 23 min (MapReduce: 2100 nodes in 72 min).

Open Source

Shedooo

kubernetes

docker

Environments

Ecosystem

 Has performed petabyte sort, for which no competition exists.

Applications

IP[y]

thunder

Apache Ambari

Sparkling

H,O

Spark – The Word Count Example

Spark – The Word Count Example

```
// Spark wordcount
```

```
object WordCount {
```

```
def main(args: Array[String]) {
```

```
val env = new SparkContext("local","wordCount")
```

```
val data = List("hi","how are you","hi")
```

```
val dataSet = env.parallelize(data)
```

```
val words = dataSet.flatMap(value => value.split("\\s+"))
```

```
val mapped Words = words.map(value => (value,1))
```

```
val sum = mappedWords.reduceByKey(_+_)
```

println(, collect())

RDDs store the ancestry of data: input partition and operator chain

Resilient Distributed Datasets (RDDs)

- An immutable distributed collection of objects (with arbitrary types: native and user-defined)
- Fundamental data structure of Spark
- Fault-tolerant:
 - Can be persisted on disk
 - Can be reconstructed by re-executing parts of the pipeline
- By default: hold in memory
- Write to disk ...
 - if memory is exhausted
 - for checkpointing
 - before network shuffle

Distributed Data Management

Batch Processing

```
ThorstenPapenbrock
Slide 71
```


Spark – The Word Count Example

Beyond MapReduce Apache Spark

Spark – The Word Count Example

// Spark wordcount

```
object WordCount {
```

```
def main(args: Array[String]) {
```

```
val env = new SparkContext("local","wordCount")
```

val data = List("hi","how are you","hi")

```
val sum = env.parallelize(data)
```

```
.flatMap(value => value.split("\\s+"))
```

```
.map(value => (value,1))
```

```
.reduceByKey(_+_)
```

println(sum.collect())

An RDD can be created by ...

- parallelizing a local collection or
- referencing a dataset in external storage (HDFS, HBase, Cassandra, MongoDB ...)

Distributed Data Management

Batch Processing

Beyond MapReduce Apache Flink

Flink

- Large framework with own network communication layer, scheduler, and user-facing APIs
- Designed for stream processing but with batch processing capabilities
- Originated from the Stratosphere project (DFG project: TU Berlin, HU Berlin, and HPI)
- Developed by Ververica (former Data Artisans, which was acquired by Alibaba for €90 million)
- Official publication with 445 citations (as of 2019): A. Alexandrov, R. Bergmann, S. Ewen, J. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser, V. Markl, F. Naumann, M. Peters, A Rheinländer, M. Sax, S. Schelter, M. Höger, K. Tzoumas, and D. Warneke, "The Stratosphere Platform for Big Data Analytics", VLDBJ, 2014.

Beyond MapReduce Apache Spark

Flink – The Word Count Example

Beyond MapReduce Spark vs. Flink

// Spark wordcount
object WordCount {
 def main(args: Array[String]) {
 val env = new SparkContext("local","wordCount")
 val data = List("hi","how are you","hi")
 val dataSet = env.parallelize(data)
 val words = dataSet.flatMap(value => value.split("\\s+"))
 val mappedWords = words.map(value => (value,1))
 val sum = mappedWords.reduceByKey(_+_)

println(sum.collect())

// Flink wordcount

object WordCount {

def main(args: Array[String]) {
 val env = ExecutionEnvironment.getExecutionEnvironment
 val data = List("hi", "how are you", "hi")
 val dataSet = env.fromCollection(data)
 val words = dataSet.flatMap(value => value.split("\\s+"))
 val mappedWords = words.map(value => (value, 1))
 val grouped = mappedWords.groupBy(0)
 val sum = grouped.sum(1)
 println(sum.collect())
}

Both Spark and Flink mimic Scala/Java collection API's

Pull shuffling model: Operators pull their input from their predecessors (copy via network) and prepare their output to be pulled when it is ready. Push shuffling model: Operators push their outputs to subsequent operators (copy via network) and act on inputs that they receive.

Flink

Spark Streaming

Mini-batch Model:

Cut event stream into small batches; process each batch in sequence.

• Latency: seconds to minutes

Flink Streaming

• Streaming Model:

Handle event stream directly; process each event immediately when it arrives.

Latency: milliseconds to seconds

True streaming: Data elements are immediately "pipelined" through the DAG.

ThorstenPapenbrock Slide **79**

https://www.linkedin.com/pulse/spark-streaming-vs-flink-bo-yang

http://blog.madhukaraphatak.com/introduction-to-flink-for-spark-developers-flink-vs-spark/

No upgrade/resume support: Spark's checkpoints are tied to specific DAG; changing or resuming a DAG requires a re-start of the entire pipeline.

Spark state storage

- Saves state in RDDs, which are periodically checkpointed to disk
- Users cannot choose another checkpointing strategy (but they can rdd.persist() manually)

https://www.linkedin.com/pulse/spark-streaming-vs-flink-bo-yang

Upgrade/resume support: Flink's checkpoints are not tied to a DAG; when changing or resuming a DAG, Flink can probably use previous checkpoints.

Flink state storage

- Offers three pluggable state storage options:
 - MemoryStateBackend
 - FsStateBackend
 - RocksDBStateBackend

https://www.linkedin.com/pulse/spark-streaming-vs-flink-bo-yang

ThorstenPapenbrock Slide **83**

https://www.linkedin.com/pulse/spark-streaming-vs-flink-bo-yang

Beyond MapReduce Graph Processing as Batch Job

Distributed Data Management Batch Processing

Beyond MapReduce Graph Processing as Batch Job

OLAP: point vs. batch queries

- Point query: Perform some action or extraction on a small sub-graph.
- Batch query: Perform some processing or analysis on the entire graph.

Examples

- Cliques search (all subgraphs, in which all vertices are adjacent to each other)
- Minimum spanning tree search (a minimal set of nodes that connects to all other nodes)
- Closure calculation (for each path of length two, the transitive edge)
- Page rank calculation (for each node, the popularity of this node)
- All pairs shortest path search (for each node, the shortest path to all other nodes)
 - Usually iterative algorithms

Beyond MapReduce Graph Processing as Batch Job

Intuition

- Think of each graph node as an actor with state and mailbox.
- Think in iterations:
 - 1. Nodes send sets of messages to other nodes.
 - 2. All messages are collected, grouped by receiver, and delivered in one batch.
 - > 1./2. are separated by the grouping operator (synchronization barrier)
 - > 1./2. repeat until batch job is done
- Bulk Synchronous Parallel (BSP) model:
 - Formalizes this intuition of Graph Batch Jobs
 - Difference to a simple, iterating MapReduce job:
 - Nodes hold state that carries over from one iteration to the next.
 - Implementations:
 - Pregel, Apache Giraph, Spark's GraphX API, Flink's Gelly API, ...

- **Distributed Data Management** Batch Processing
- ThorstenPapenbrock Slide **86**

 (1) Per vertex operator calculations
 (2) Bulk output shuffling

Awesome Awesome

A curated list of awesome curated lists of many topics.

- Awesome Awesome
 - Computer management
 - Data processing r
 - Editors
 - Front-end development
 - Programming languages
 - Sciences
 - Web browsers
 - Websites
 - Web platforms
 - Other

https://github.com/emijrp/awesome-awesome

Data processing

- awesome-bigdata Big data frameworks, resources and other awesomeness.
- awesome-hadoop Hadoop ecosystem resources.

Awesome Big Data

https://github.com/onurakpolat/awesome-bigdata

A curated list of awesome big data frameworks, resources and other awesomeness. Inspired by awesome-php, awesomepython, awesome-ruby, hadoopecosystemtable & big-data.

- Awesome Big Data RDBMS
 - Frameworks

awesome

- Distributed Programming
- Distributed Filesystem
- Key-Map Data Model
- Document Data Model 0

- Key-value Data Model
- Graph Data Model
- NewSQL Databases
- Columnar Databases
- Time-Series Databases
- SQL-like processing
- Data Ingestion
- 0 Service Programming

- Scheduling
- Machine Learning
- Benchmarking
- Security
- System Deployment
- Applications
- Search engine and framework 0
- MySQL forks and evolutions

- PostgreSQL forks and evolutions
- Memcached forks and evolutions.
- Embedded Databases
- Business Intelligence
- Data Visualization
- Internet of things and sensor data
- Interesting Readings
- Interesting Papers

Slide **91**

Beyond MapReduce Awesome - Repository of curated References

Distributed Programming

- AddThis Hydra distributed data processing and storage system originally developed at AddThis.
- AMPLab SIMR run **Spark** on **Hadoop MapReduce** v1.
- Apache APEX a unified, enterprise platform for big data stream and batch processing.
- Apache Beam an unified model and set of language-specific SDKs for defining and executing data processing workflows.
- Apache Crunch a simple Java API for tasks like joining and data aggregation that are tedious to implement on plain **MapReduce**.
- Apache DataFu collection of user-defined functions for **Hadoop** and **Pig** developed by LinkedIn.
- **Apache Flink** high-performance runtime, and automatic program optimization.
- Apache Gearpump real-time big data streaming engine based on **Akka**.
- Apache Gora framework for in-memory data model and persistence.
- Apache Hama BSP (Bulk Synchronous Parallel) computing framework.
- **Apache MapReduce** programming model for processing large data sets with a parallel, distributed algorithm on a cluster.
- Apache Pig high level language to express data analysis programs for **Hadoop**.
- Apache REEF retainable evaluator execution framework to simplify and unify the lower layers of big data systems.
- Apache S4 framework for stream processing, implementation of S4.
- **Apache Spark** framework for in-memory cluster computing.
- Apache Spark Streaming framework for stream processing, part of Spark.

Distributed Programming (cont.)

- Apache Storm framework for stream processing by Twitter also on YARN.
- Apache Samza stream processing framework, based on Kafka and YARN.
- Apache Tez application framework for executing a complex DAG (directed acyclic graph) of tasks, built on YARN.
- Apache Twill abstraction over **YARN** that reduces the complexity of developing distributed applications.
- Cascalog data processing and querying library.
- Cheetah High Performance, Custom Data Warehouse on Top of MapReduce.
- Concurrent Cascading framework for data management/analytics on Hadoop.
- Damballa Parkour MapReduce library for Clojure.
- Datasalt Pangool alternative MapReduce paradigm.
- DataTorrent StrAM real-time engine to enable distributed, asynchronous, real time in-memory big-data computations in as unblocked a way as possible, with minimal overhead and impact on performance.
- Facebook Corona Hadoop enhancement which removes single point of failure.
- Facebook Peregrine MapReduce framework.
- Facebook Scuba distributed in-memory datastore.
- Google Dataflow create data pipelines to help themæingest, transform and analyze data.

Slide **92**

• Google MapReduce - MapReduce framework.

Distributed Programming (cont.)

Beyond MapReduce

- Google MillWheel fault tolerant stream processing framework.
- IBM Streams platform for distributed processing and real-time analytics. Provides toolkits for advanced analytics like geospatial. time series, etc. out of the box.
- JAOL declarative programming language for working with structured, semi-structured and unstructured data.
- Kite a set of libraries, tools, examples, and documentation focused on making it easier to build systems in the **Hadoop** ecosystem.
- Metamarkets Druid framework for real-time analysis of large datasets.
- Netflix PigPen MapReduce for Clojure which compiles to Apache Pig.
- Nokia Disco MapReduce framework developed by Nokia.
- Onyx distributed computation for the cloud.
- Pinterest Pinlater asynchronous job execution system.
- Pydoop Python MapReduce and HDFS API for Hadoop.
- Rackerlabs Blueflood multi-tenant distributed metric processing system
- Skale high performance distributed data processing in NodeJS.
- Stratosphere general purpose cluster computing framework.
- Streamdrill useful for counting activities of event streams over different time windows and finding the most active one.
- streamsx.topology Libraries to enable building IBM Streams application in Java, Python or Scala.

Distributed Programming (cont.)

- Tuktu Easy-to-use platform for batch and streaming computation, built using Scala, Akka and Play!
- Twitter Heron Heron is a realtime, distributed, fault-tolerant stream processing engine from Twitter replacing Storm.
- Twitter Scalding Scala library for MapReduce jobs, built on Cascading.
- Twitter Summingbird Streaming MapReduce with Scalding and Storm, by Twitter.
- Twitter TSAR TimeSeries AggregatoR by Twitter.
- Wallaroo ultrafast and elastic data processing engine. Big or fast data no fuss, no Java needed.

Frameworks

- IBM Streams platform for distributed processing and real-time analytics. Integrates with many of the popular technologies in the Big Data ecosystem (Kafka, **HDFS**, **Spark**, etc.)
- Apache Hadoop framework for distributed processing including MapReduce (parallel processing), YARN (job scheduling) and HDFS (distributed file system).
- Tigon high Throughput Real-time Stream Processing Framework.
- Pachyderm data storage platform built on Docker and Kubernetes for reproducible data processing and analysis.

