
Distributed Data Management

Batch Processing
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

Distributed Data Management

What we learned so far!

Slide 2

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Foundations

 What do Moore’s and Amdahl’s Laws tell us about distributed systems?

Encoding and Communication

 How do we (de)serialize and send messages in distributed systems?

Data Models and Query Languages

 How to conceptually design and practically query data in distributed systems?

Storage and Retrieval

 How to physically structure data in distributed systems?

Replication and Partitioning

 How to introduce redundancy and grouping in distributed systems?

Distributed Systems

 How to deal with network and time unreliability in distributed systems?

Consistency and Consensus

 How to enforce ACID and CAP guarantees in distributed systems?

Distributed Data Management

What we learned so far!

Slide 3

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Akka

 A toolkit for building distributed systems

 Implements several tools that support the build process

 Failure detectors, persistence functionality, reliability features, API connectors, …

 Allows us to implement any protocol, application or system that we can imagine.

 Does very little to protect us against programming errors, unstable systems,

non-scalable algorithms, inperformant protocols, data loss, …

 Akka is a powerful toolkit but no programming framework!

Now: Frameworks for building distributed systems

 Observation:

 Certain data- and task-parallel tasks repeat frequently in distributed systems.

 Idea:

 Build a framework that solves these tasks efficiently and effectively.

“Computerized batch processing, since the 1964 intro-
duction of the IBM System/360, has primarily referred
to the scripted running of one or more programs, as
directed by Job Control Language, with no human

interaction other than, if JCL-requested, the mounting
of one or more pre-determined input and/or output

computer tapes.”

Wikipedia, 2018

System that loads data from
punch cards batch-wise into

memory for processing.

Distributed Data Management

Batch Processing

Slide 5

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Properties:

 Large (data-intensive) jobs are

(automatically) broken down into

sequences of smaller tasks

(e.g. reading, writing, filtering,

sorting, mapping, joining data).

 Tasks are well-understood,

recurring, (side-effect free),

standard activities.

 No (or only minimal) human

interaction is involved.

 Processing is compute intensive

(and offline) in nature.

Distributed Data Management

Batch Processing

Slide 6

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Why batch processing (frameworks) in distributed computing?

(or why database reads, service calls, and message sends are insufficient)

 Components that we keep re-implementing

 Mechanisms for reliable data transfer

 Channels for large data transmission

 Techniques to ensure fault tolerance

 Functions for data extraction, transformation, and loading

 Most data-intensive jobs follow the same pattern

1. Extract data from some (distributed) source.

2. Transform data in a certain way (utilizing all available resources).

3. Load result into some (distributed) sink.

 All three steps build upon recurring standard steps (i.e., functions/programs).

 Much resemblance to what batch processes do.

Distributed Data Management

Types of Systems

Slide 7

Batch Processing

Thorsten Papenbrock

Distributed Data
Management

Services (online systems)

 Accept requests and send responses

 Performance measure: response time and availability

 Expected runtime: milliseconds to seconds

Batch processing systems (offline systems)

 Take (large amounts of) data; run (complex) jobs; produce some output

 Performance measure: throughput (i.e., data per time)

 Expected runtime: minutes to days

Stream processing systems (near-real-time systems)

 Consume volatile inputs; operate stream jobs; produce some output

 Performance measure: throughput and precision

 Expected runtime: near-real-time (i.e., as data arrives)

OLTP

OLAP

now

Distributed Data Management

ETL Systems

Slide 8

Batch Processing

Thorsten Papenbrock

Distributed Data
Management

Customer

Employee

Supplier DeliveryDB

InventoryDB

SalesDB

Staging
Area

Operational
Systems

ETL

ETL

ETL

ETL ETL

Data
Marts

Purchasing

Sales Analyst

Reporting

Systems of record

Data
Warehouse

Derived data systems

Not only data warehouses:

 Caches

 Materialized views

 Indexes

 Denormalized values

 …

 Redundant data!

“Extract Transform Load” (ETL):
Periodic data transformation processes (= batch jobs)

in the context of data warehousing

Distributed Data Management

Use Cases

Slide 9

Thorsten Papenbrock

Machine Learning Algorithms

(classification, recommendation, prediction, …)

Statistical and Numerical Algorithms

(aggregation, counting, summarization, …)

Spatial Algorithms

(neighbor search, clustering, …)

Approximating Algorithms

(similarity search, fuzzy matching, …)

Transformation Algorithms

(parsing, filtering, translation, …)

Distributed Data Management

The Sushi Principle

Slide 10

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Sushi Principle:

 Also known as “raw data is better”
Bobby Johnson and Joseph Adler at Strata+Hadoop World, 2015

 Data are sequences of bytes with arbitrary data model and encoding:

 text, sensor readings, matrices, feature vectors, genome sequences, …

 Simply dump all data to disk and figure out how to process it later.

 “data lakes” or “enterprise data hubs”

 A strategy for data warehousing:

 Bringing data together is important (for across-dataset joins/unions).

 Careful schema design is expensive and often lossy.

 Data parsing and interpretation at query time, i.e., in batch processes

Distributed Data Management

Indicators

Slide 11

… for (distributed) batch processing:

 Job can be broken down into a sequence of standard tasks.

 Job has data parallel nature.

 Job targets data analytics or data transformation.

 Job uses very large datasets where data management is a

central issue for computing the solution

(distributed data sources, large intermediate state, …).

 Job is a complex query beyond simple item selections.

 Data analytics and data transformation jobs

Distributed Data Management

Indicators

Slide 12

… against (distributed) batch processing:

 Job cannot be broken down into standard tasks.

 Job has task parallel nature.

 Job has many side effects.

 Job involves user interaction and other dynamic behavior.

 Job consists of complex branching logic.

 Job processes heterogeneous workloads

(many small, different tasks vs. one, big task).

 Job requires connections to many external systems.

 Data intensive, scalable systems and applications

Overview

Batch Processing

Slide 13

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Beyond MapReduce Distributed Filesystems
and MapReduce

Batch Processing
with Unix Tools

Batch Processing with Unix Tools

Analyzing a Log File

Slide 14

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Log file analysis example:

 A log file generated by an nginx web server:

 Log file format:

 Task:

 “Find the 5 most requested resources in the log”

66.249.65.159 - - [06/Feb/2017:19:10:38 +0600] "GET /css/typography.css HTTP/1.1" 404 177 "-" "Mozilla/5.0

(Macintosh; Intel Mac OS X 10_9_5) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/40.0.2214.15 Safari/537.36"

66.249.65.3 - - [06/Feb/2017:19:11:24 +0600] "GET /logo.ico HTTP/1.1" 200 4223 "-" "Mozilla/5.0 (compatible;

Googlebot/2.1; +http://www.google.com/bot.html)"

66.249.65.62 - - [06/Feb/2017:19:12:14 +0600] "GET /2013/05/24/batch-processing.html HTTP/1.1" 200 4356 "-"

"Mozilla/5.0 (compatible; Googlebot/2.1; +http://www.google.com/bot.html)"

$remote_addr - $remote_user [$time_local] "$request" $status
$body_bytes_sent "$http_referer" "$http_user_agent"

The “batch” of data

Batch Processing with Unix Tools

Analyzing a Log File: Unix

Slide 15

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Log file analysis example:

 Unix command chaining:

$ cat /var/log/nginx/access.log |
 awk ’{print $7}’ |
 sort |
 uniq -c |
 sort -r -n -h |
 head -n 5

Read the log file.

Split the lines on whitespaces and
report line 7 (=request URL).

Unix pipes “|” connect the output of
a command to the input of another.

Sort the list of URLs alphabetically.

Filter out repeated lines and
add a count to each distinct value (“-c”).

Sort the count-URL-pairs
numerically (“n”) in reverse order (“r”).

Output only the first n=5 count-URL-pairs

Batch Processing with Unix Tools

Analyzing a Log File: Unix

Slide 16

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Log file analysis example:

 Unix command chaining:

$ cat /var/log/nginx/access.log |
 awk ’{print $7}’ |
 sort |
 uniq -c |
 sort -r -n -h |
 head -n 5

4189 /logo.ico

3631 /2013/05/24/batch-processing.html

2124 /2012/01/12/storage-and-retrieval.html

1369 /

 915 /css/typography.css

Batch Processing with Unix Tools

UNIX Command Concept

Slide 17

Thorsten Papenbrock

Philosophy

 Let each program do one thing well.

 Expect the output of every program to become the input of another.

 Build software to be tried early.

 Use tools in preference of unskilled help.

Useful standard input stream commands (programs)

 grep: Searches for lines of text that match a regular expression.

 sed: Parses and transforms text in streams (usually for substitution or filtering).

 awk: Executes user defined AWK programming code on some input.

 xargs: Passes arguments to UNIX commands that disregard the standard input stream.

 sort: Sorts a batch of text lines by some criterion.

 uniq: Collapses adjacent identical text lines.

Larger programs are build by
composing smaller programs.

Batch Processing with Unix Tools

Commands vs. Custom Program

Slide 18

Thorsten Papenbrock

 Commands Custom Program

The command concept is …

 usually shorter (as operators hide complexity).

 better to maintain and optimize (as operators group functionality).

 easier to distribute (due to operator independence).

$ cat /var/log/nginx/access.log |
 awk ’{print $7}’ |
 sort |
 uniq -c |
 sort -r -n |
 head -n 5

counts = Hash.new(0)

File.open(‘/var/log/nginx/access.log’) do |file|
 file.each do |line|
 url = line.split[6]
 counts[url] += 1
 end
end

top5 = counts.map{|url, count| [count,url]}.sort.reverse[0…5]
top5.each{|count, url| puts “#{count} #{url}”}

UNIX

Ruby

Although that’s exactly
what UNIX does not!

Batch Processing with Unix Tools

UNIX Command Concept

Slide 19

Thorsten Papenbrock

What UNIX does right:

 Immutable inputs: Repetitive executions produce same results.

 No side-effects: Inputs are turned into outputs, nothing (bad/unforeseen/…) happens.

 Arbitrary stops: Pipelines can be ended at any point (e.g. via outputting with less).

 Persistence: Outputs can be written to files and used as inputs by other commands;

allows to (re-)start later stages with rerunning the entire pipeline.

What UNIX does not:

 Distribution: All commands are executed locally on one machine.

Keep the nice parts but
go for distribution!

User defined functions (UDFs),
though, may produce side effects!

Cluster computing frameworks

Batch Processing

Distributed Data
Management

Overview

Batch Processing

Slide 20

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Beyond MapReduce Batch Processing
with Unix Tools

Distributed Filesystems
and MapReduce

Distributed File Systems and MapReduce

Distributed File System

Slide 21

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Distributed File System

 Stores data (of any format) distributed on multiple shared-nothing machines

 Provides traditional file system interfaces, i.e., appear like local file systems

 Usually implemented as leader-based storage systems:

 Availability and fault-tolerance (partitioning and replication)

 Examples:

 Hadoop Distributed FS (HDFS), GlusterFS, Quantcast FS (QFS), Google FS (GFS) …

 Not to be confused with …

 Network Attached Storage (NAS)

 Storage Area Network (SAN)

 RAID systems

Shared disc architectures
with special hardware

(head devices; fibre channels)

= Redundancy over several disks

Similar techniques for error detection and
recovery, but locally in contrast to distributed FSs

Distributed File Systems and MapReduce

Distributed File System

Slide 22

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Distributed File Systems for Distributed Batch Processing

 Serve as data source/sink for inputs/outputs of cluster computing frameworks

 Similar to stdin and stdout in UNIX command pipelines

 Advantages for analytical cluster computing:

 Light-weight: store and retrieve blocks of data

(no fancy querying, i.e., joins, aggregations, …)

 Resource localization: provide means to find the host of a block

(to schedule client processes reading that block on the same node)

 Resource allocation: provide means to explicitly assign blocks to nodes

(for load-based resource re-allocation)

Distributed File Systems and MapReduce

Distributed File System

Slide 23

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Hadoop Distributed File System (HDFS)

 Arguably the most popular distributed file system implementation

 Subproject of Apache Hadoop; implemented in Java

 Optimized for …

 Fault-tolerance (node crashes are seen as the norm, not an exception)

 High throughput (not low latency)

 Large files (gigabytes to petabytes; broken into 128 MB blocks)

 Analytical workloads (write once, read many times)

 Streaming data access (full file scans)

 Philosophy:

 “Moving computation is cheaper than moving data”

 Provides interfaces for applications to move themselves

closer to where the data is located.

Full CRUD support, but
Reads dominate and

Updates mean file overwrite

HDFS clusters often contain
thousands of nodes!

Distributed File Systems and MapReduce

Distributed File System

Slide 24

Thorsten Papenbrock

Hadoop Distributed File System (HDFS)

 Classical leader-based storage system:

 Namenode = Leader

 Replication for fault-tolerance

 Partitioning for parallel reads

 Namenode:

 Serves all data management

and localization requests

 Datanodes:

 Handle the Namenode’s data

management instructions (Block ops)

 Handle read and write requests

from clients (data never flows through the Namenode)

Every node runs an
HDFS deamon process.

With secondary
Namenode as backup!

Distributed File Systems and MapReduce

Distributed File System

Slide 25

Thorsten Papenbrock

Hadoop Distributed File System (HDFS)

 Namespaces:

 Traditional hierarchical file

names and paths

 Managed by Namenode

 Replication:

 Number of replicas can be

specified per file (default 3)

 Replica placement policy can

be configured

 Racks:

 HDFS is aware of racks:

nodes within one rack are

more likely to fail jointly

Distributed File Systems and MapReduce

Distributed File System

Slide 26

Thorsten Papenbrock

Hadoop Distributed File System (HDFS)

 Writes and Replication:

1. Client node queries the namenode for a write operation.

2. Namenode provides the address of the datanode with the target block.

3. Client writes the data directly to the target datanode (not to any replica).

4. Datanode starts to replicate the written block with all replicas of that block.

5. Datanode acknowledges the write to the client.

 Datanode crash: Namenode sends the address of an active datanode hosting the target

block to proceed the write operation.

 Client crash: Datanodes may revert the block from a replica or finish the write.*
*in theory; might in practice corrupt the file

 Conflict management:

 File access uses read/write locks, i.e., leases on blocks to avoid inconsistencies.

Distributed File Systems and MapReduce

Distributed File System

Slide 27

Thorsten Papenbrock

Hadoop Distributed File System (HDFS)

 An example HDFS session:

$ start-dfs.sh

$ bin/hadoop fs -mkdir /user/input

$ bin/hadoop fs -put /home/file.txt /user/input

$ bin/hadoop fs -ls /user/input

$ bin/hadoop fs -cat /user/output/outfile.txt

$ bin/hadoop fs -get /user/output/ /home/hadoop_tp/

$ stop-dfs.sh

Start the HDFS

Create a folder

Copy a local file to the HDFS

List all current files in a folder

Print the content of a file

Copy a file from HDFS to local

Stop the HDFS (files persist)

Batch Processing

Distributed Data
Management

Distributed File Systems and MapReduce

Distributed File System

Slide 28

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Hadoop Distributed File System (HDFS)

 File system commands:

 ls <path> Lists the contents of the directory (names, owner, size, …).

 du <path> Shows disk usage in bytes.

 cp <src> <dest> Copies the file or directory from src to dest within HDFS.

 rm <path> Removes a file or empty directory.

 put <src> <dest> Copies a local file or directory to DFS.

 get <src> <dest> Copies a file or directory from HDFS to local file system.

 cat <file-name> Displays the contents of file on stdout.

 mkdir <path> Creates a directory in HDFS.

 setrep <rep> <path> Sets the targets replication factor to rep.

 chown <path> Sets the owning user and/or group.

 help <cmd-name> Returns usage information for a command.

 …

Distributed File Systems and MapReduce

Distributed File System

Slide 29

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Hadoop’s Java API

See book: “Hadoop: The definitive guide”

Classes that abstract from the distribution,
but what if you need to exploit the distribution?

Distributed File Systems and MapReduce

Distributed File System

Slide 30

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Hadoop’s Java API: Pushing computation to the relevant blocks

1. Programmatically query the block locations.

2. Run the code for these blocks on the same machines.

FileSystem fs = FileSystem.get(conf);

Path dataset = new Path(fs.getHomeDirectory(), "/path/to/file.csv");

FileStatus status = fs.getFileStatus(dataset);

BlockLocation[] locations = fs.getFileBlockLocations(status, 0, status.getLen());

for (BlockLocation loc : locations) {

 System.out.println("Length: " + loc.getLength());

 for (String host : loc.getHosts()) {

 System.out.println("Host: " + host);

 }

}

Multiple hosts due to replication

<dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-hdfs</artifactId>
 <version>3.1.1</version>
</dependency>

<dependency>
 <groupId>org.apache.hadoop</groupId>
 <artifactId>hadoop-common</artifactId>
 <version>3.1.1</version>
</dependency>

See MapReduce, Spark, Flink, …

Distributed File Systems and MapReduce

Distributed Batch Processing

Slide 31

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Functional Programming

 A programming paradigm where code is based on the evaluation functions.

 Function:

 Takes argument(s) and produces output(s)

 Avoid side-effects: no changing state; no mutable objects

 Calls with same arguments produce same outputs.

 Very nice property for parallelization/distribution!

 See UNIX commands

 Functional languages:

 Fully functional: Lisp, Clojure, Erlang, Haskell, …

 Functional nature: JavaScript, Scala, …

 Functional support: C++, C#, Java, PHP, Perl, …

 Functional distribution: MapReduce, Spark, Flink, Storm, …

Main difference to procedures!

Allow side-effects and
procedural/imperative code

Data Transformation Pipeline

 Chaining of functions:

 Function outputs are forwarded to inputs of other functions.

 One output can become the input of more than one other function.

 Directed (acyclic) graphs (DAG):

 functions = nodes

 dataflow = edges

 acyclic: no directed loops

 Topological ordering possible

Distributed File Systems and MapReduce

Distributed Batch Processing

Slide 32

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Some distribution frameworks support loops,
which are needed for iterative algorithms

(machine learning, clustering, data cleaning, …)

Distributed File Systems and MapReduce

Distributed Batch Processing

Slide 33

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Data Transformation Pipeline

 Transformation functions (TF):

 Fixed signature and implementation

 Used to construct the pipeline topology

 Have no side-effects

 Operate on the same data formats

 May take and apply user defined callback functions

 User defined callback functions (UDF):

 Implement a certain, transformation-function-specific interface

 Define the application specific tasks within a transformation function

TF

UDF

TF

UDF

Distributed File Systems and MapReduce

Distributed Batch Processing

Slide 34

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Data Transformation Pipeline

 Example: Function pipelining in Java 1.8+

 Characteristics:

 Immutable inputs and outputs: Pipelines do no harm; can re-execute

and output intermediate results (e.g. for debugging).

 Separation of logic and wiring: Outputs match inputs; transformation

functions can be optimized independently from their UDFs.

String[] records = {"lisa,17", "mike,32", "carl,12", "nina,24"};

Stream.of(records)

 .distinct()

 .map(s -> s.split(","))

 .filter(t -> Integer.valueOf(t[1]).intValue() >= 18)

 .map(t -> t[0])

 .sorted()

 .forEach(System.out::println);

UDF

UDF

UDF UDF
TF TF TF TF TF TF TF

Distributed File Systems and MapReduce

Distributed Batch Processing

Slide 35

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Data Transformation Pipeline

 Data parallel:

 The same function can be applied to different data in parallel

(functions can always operate on different data due to stateless nature).

 Task parallel:

 Consecutive functions can be executed in parallel

(start working on output before previous function has finished).

Distributed File Systems and MapReduce

MapReduce

Slide 36

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

MapReduce

 A low-level, functional programming model for analytical cluster computing

 Implemented in, for instance, Hadoop, CouchDB, and MongoDB

 Defines two transformation functions:

 map()

 Takes one key-value pair

 (e.g. filename and records);

 outputs key-value pair(s).

 reduce()

 Takes a collection of key-value

 pairs with same key;

 outputs value(s).

 Both functions apply a user defined callback

function on their inputs.

Each partition of the data
with a local mapper

Distributed File Systems and MapReduce

MapReduce

Slide 37

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

MapReduce

 A low-level, functional programming model for analytical cluster computing

 Implemented in, for instance, Hadoop, CouchDB, and MongoDB

 The framework’s tasks:

1. Read the input data from HDFS,

split continuous data into records,

assign values to nearby mappers.

2. Write/read key-value pairs to/from HDFS,

group pairs with same key (via sorting),

assign keys to reducers.

3. Write reducer results to HDFS.

 Reducer functions get an iterator for their inputs

(they can start while pairs are still being added).

1. Input reader 2. Partition & compare 3. Output writer

It’s rather Map-Sort-Group-Reduce ;-)

Distributed File Systems and MapReduce

MapReduce

Slide 38

Thorsten Papenbrock

MapReduce

 A low-level, functional programming model for analytical cluster computing

 Implemented in, for instance, Hadoop, CouchDB, and MongoDB

 The MapReduce sort:

1. Pre-sort the output of all

local mappers (Quicksort).

2. Persist the output on disk.

 Block until pre-sort done!

3. Range partition the key space

and assign ranges to reducer nodes.

4. Sort the pre-sorted partitions

on the reducer nodes (Mergesort).

 Super optimized and (due to persistence) reliable operation!

Distributed File Systems and MapReduce

MapReduce

Slide 39

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

MapReduce

 Sandwich

© https://clojurebridgelondon.github.io/workshop/functions/map-reduce-sandwich.html

“Every task is map-reduce!”

Distributed File Systems and MapReduce

MapReduce

Slide 40

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

MapReduce

 Word Count

A mapper could also
pre-aggregate words

in its document.

Slide 41

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

MapReduce

 Word Count

Distributed File Systems and MapReduce

MapReduce

Example: Word Count

Example: Word Count

 Why is this cool?

Distributed File Systems and MapReduce

MapReduce

Assume this input is
10TB or larger.

The word-to-count map would be
several TB large as well and would,
therefore, not fit on one machine.

Example: Word Count

 Why is this cool?

Distributed File Systems and MapReduce

MapReduce

A distributed solution would need to shuffle several TB
of data reliably, efficiently and scalable in the cluster.

MapReduce automatically performs data serialization/deserialization,
task scheduling, load balancing, failure handling, …

Assume this input is
10TB or larger.

Distributed File Systems and MapReduce

MapReduce

Slide 45

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

MapReduce Scheduler

 Pipeline startup:

 Assigns transformation functions (and their processes) to nodes.

 Tries to execute functions near the data that they are started with.

 Considers that nodes have enough spare RAM and CPU for their jobs.

 Shuffling:

 Group key-value pairs by key:

 Pre-sort key-value pairs on each node.

 Calculate global sortation by merging pre-sorted lists.

 Idea similar as in “SSTables and LSMTrees”

 Distribute load (= key-value pair groups) evenly across reducer nodes.

 See “partitioning by hash of key”

Distributed File Systems and MapReduce

MapReduce

Slide 46

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Reduce-side, sort-merge Joins

 Example:

 Use two mapper:

 one for each side of the join

 mapping key = join key

 Primary sort:

 by key (user/user_id)

 Secondary sort:

 by value (url > dob)

In this way, the records from
the two relations arrive

grouped in each reducer.

 Faster pairing algorithm

πActivities.url,User.dob(Activities ⋈Activities.user=User.user_id User)

One dob (first) that is
matched to many urls

Distributed File Systems and MapReduce

MapReduce

Slide 47

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Map-side Joins

 Broadcast hash join:

 Criterion: One side of the join is small and fits into main memory.

 Algorithm:

1. Broadcast the small relation to all mappers which store it in memory.

2. Mappers read the large partition and hash-join records to in-memory records.

 Partitioned hash join:

 Algorithm:

1. Partition both sides of the join by their join attributes.

2. Mappers read the same partition from both sides and hash-join their records.

 Merge join:

 Algorithm:

1. Partition and sort both sides by their join attributes.

2. Mappers read the same partition from both sides and merge-join their records.

Join relations in the mapping phase
without a reduce phase!

“replicated join” (Pig)
“MapJoin” (Hive)

“bucketed map join” (Hive)

Distributed File Systems and MapReduce

Apache Hadoop

Slide 48

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Apache Hadoop

 A framework implementing MapReduce on HDFS

(http://hadoop.apache.org/)

 Published by Google and Yahoo in 2004

 Contains the following modules:

 Hadoop Common: General libraries and utilities for Hadoop modules

 Hadoop Distributed File System (HDFS): A distributed file system

implementation that stores data on commodity machines

 Hadoop YARN: A platform responsible for managing computing

resources in clusters and using them for scheduling applications

 Hadoop MapReduce: A MapReduce implementation

 Did the Terraby Sort in 2008 on 910 nodes in 3.48 minutes

(http://sortbenchmark.org/YahooHadoop.pdf).

http://hadoop.apache.org/
http://hadoop.apache.org/
http://sortbenchmark.org/YahooHadoop.pdf
http://sortbenchmark.org/YahooHadoop.pdf
http://sortbenchmark.org/YahooHadoop.pdf

Distributed File Systems and MapReduce

Apache Hadoop

Slide 49

Thorsten Papenbrock

Apache Hadoop YARN

 “Yet Another Resource Negotiator” (YARN)

 A cluster manager for physical resources of an HDFS

 Resources: CPU, memory, disk, network, … (grouped in resource containers)

 YARN consists of …

a. ResourceManager:

 Global resource management and allocation

b. ApplicationMaster:

 Configuration, coordination, and distribution

of services (ZooKeeper)

 Negotiates resources with the ResourceManager

 Framework-specific (YARN also works with e.g. Spark)

 Takes compiled binaries and distributes their execution in the cluster

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html

Distributed File Systems and MapReduce

Apache Hadoop

Slide 50

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Limitations

 Disk-based messaging:

 Intermediate results always move via disk from mapper to reducer.

 Static job structure:

 MapReduce jobs always consist of (one) map and (zero or one) reduce.

 No arbitrary chaining of these two functions.

 Larger workflows need to run multiple jobs one after the other.

 Need for workflow scheduler that run and manage workflows

(e.g. Oozie, Azkaban, Luigi, Airflow, and Pinball).

 Only two functions:

 Most queries can be expressed as sequence of MapReduce jobs,

but additional, dedicated functions can improve the performance

(e.g. sorting, deduplication, union, joining, …).

Distributed File Systems and MapReduce

Apache Hadoop

Slide 51

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Higher-level tools on top of Apache Hadoop

 Apache Pig:

 A platform that defines the higher-level query language Pig Latin.

 Compiles Pig Latin queries to Hadoop MapReduce, Tez, or Spark jobs.

 Pig Latin is similar to SQL with procedural elements.

 Example:

A = LOAD 'products' USING PigStorage() AS (name:chararry, weight:int, price:int);

B = GROUP A BY price;

C = FOREACH B GENERATE price, COUNT($0);

DUMP C;

http://pig.apache.org/docs/r0.17.0/basic.html

(0.10,14)

(0.25,23)

(0.50,16)

(1.99,82)

(2.50,17)

function map(String name, String file):

 for each product p in file

 emit (p.rice, p.name)

function reduce(Int price, Iterator names):

 count = 0

 for each name in names

 count++

 emit (price,count)

By Yahoo

Distributed File Systems and MapReduce

Apache Hadoop

Slide 52

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Higher-level tools on top of Apache Hadoop

 Apache Hive:

 A tool that defines the higher-level query language HiveQL.

 Compiles HiveQL queries to Hadoop MapReduce, Tez, or Spark jobs.

 HiveQL is based on SQL and provides some extensions.

 Example:

INSERT OVERWRITE TABLE pv_users

SELECT pv.*, u.gender, u.age

FROM user u JOIN page_view pv ON (pv.userid = u.id)

WHERE pv.date = '2017-03-03';

https://cwiki.apache.org/confluence/display/Hive/Tutorial

Results are always
written to a table

By Facebook

Distributed File Systems and MapReduce

Apache Hadoop

Slide 53

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Higher-level tools on top of Apache Hadoop

 Hive vs. Pig: Word count

Distributed File Systems and MapReduce

Apache Hadoop

Slide 54

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Higher-level tools on top of Apache Hadoop

 Hive vs. Pig:

Hive Pig

Declarative SQLish Language Procedural Data Flow Language

Designed for creating reports Designed for programming

Mainly used by data analysts Mainly used by researchers/programmers

No dedicated metadata database Uses dedicated tables for results

Supports the Avro file format Does not support it

Distributed File Systems and MapReduce

Apache Hadoop

Slide 55

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Higher-level tools on top of Apache Hadoop

 Apache Flume:

 A distributed service for collecting, aggregating, and moving large

amounts of streaming data into HDFS

 Reliable: Uses transactions to guarantee message delivery.

 Available: Buffers data in case of load spikes (if sink cannot keep up).

 Sources:

 Supported:

 ElasticSearch, Hbase,
Hive, Kafka, …

 In Development:

 Storm, Solr, Spark, …

Distributed File Systems and MapReduce

Apache Hadoop

Slide 56

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Distributed File Systems and MapReduce

Apache Hadoop

Slide 57

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Distributed File Systems and MapReduce

Apache Hadoop

Slide 58

Batch Processing

Distributed Data
Management

Thorsten Papenbrock
A cluster resource manager for arbitrary

(also non-Hadoop) technologies

Distributed File Systems and MapReduce

Hadoop vs. MPP Databases

Slide 59

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Massively Parallel Processing (MPP) Databases

 Classical databases with distributed storage and parallel query processing

 Use the same concepts as we discussed earlier:

 Partitioning, replication, distributed indexes, functional parallelism, …

How Hadoop (and other MapReduce variations) differ

 Diversity of storage

 Hadoop is data model independent; MPP databases enforce one.

 Diversity of processing models

 Hadoop executes arbitrary UDFs; MPP database only SQL.

 Design for frequent faults

 Hadoop tries to recover from faults; MPP databases abort failed queries.

 Reading workloads

 Hadoop answers queries; MPP databases support full data manipulation.

It is difficult to do machine
learning, image processing,
full-text search, … in SQL!

Long running OLAP queries!

Overview

Batch Processing

Slide 60

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Batch Processing
with Unix Tools

Distributed Filesystems
and MapReduce

Beyond MapReduce

Beyond MapReduce

MapReduce’s Workflow Design

Slide 61

Thorsten Papenbrock

map reduce map reduce map reduce map reduce

“Extract customers
from text data”

“Join customers
with shopping cards”

“Aggregate expenses
by customer”

“Sort expenses
descendingly”

MapReduce Job 1 MapReduce Job 2 MapReduce Job 3 MapReduce Job 4

MapReduce Workflow

Beyond MapReduce

MapReduce’s Workflow Design

Slide 62

Thorsten Papenbrock

 Data is always written to disk.

 Good for reliability

 Bad for performance: I/O overhead and no “real” pipelining

(i.e., later jobs wait until earlier jobs have completely finished)

 Workflow construction is complicated (without Hive, Pig, Cascading, etc.).

map reduce map reduce map reduce map reduce

“Extract customers
from text data”

“Join customers
with shopping cards”

“Aggregate expenses
by customer”

“Sort expenses
descendingly”

Redundant mapper work:
Mappers often only read back what reducers wrote.

Beyond MapReduce

Data Flow Engines

Slide 63

Thorsten Papenbrock

Data Flow Engine

 MapReduce-like distributed batch processing frameworks

that handle an entire workflow as one job.

 Directed Acyclic Graph (DAG) processing:

 Transformation functions (operators) can form arbitrary DAGs.

 No strict alternating map-reduce

 Outputs are directly connected to inputs of other operators.

 No mandatory disk usage

 Sorting is done explicitly.

 Not in every shuffle step

 Scheduler can place subsequent tasks that consume the same data

on the same machine, because it knows the entire pipeline.

 Less unnecessary data shuffling “locality optimizations”

Beyond MapReduce

Data Flow Engines

Slide 64

Thorsten Papenbrock

Data Flow Engine

 MapReduce-like distributed batch processing frameworks

that handle an entire workflow as one job.

 Directed Acyclic Graph (DAG) processing:

 Data can (often) be exchanged via local resources of one machine

(shared memory buffer or local disk).

 Less data exchange via network/HDFS

 Operators start processing as soon as their input is ready.

 No waiting for entire processing stages to finish

 Existing JVM processes are reused to run further operators.

 No process launches for every task

Dryad and Nephele (Stratosphere)
were the first research systems that

inspired most modern data flow engines

Beyond MapReduce

Data Flow Engines

Slide 65

Thorsten Papenbrock

Fault tolerance

 Checkpointing:

 Some intermediate results are written to disk.

 If operators crash, pipeline re-computes affected partitions from nearest checkpoint.

 Re-computation:

 Requires that computations are deterministic.

 Using randomness, current time, external resources, set orders, …

breaks determinism.

map map reduce map map reduce map reduce

Beyond MapReduce

Data Flow Engines

Slide 66

Thorsten Papenbrock

Joins (and Groupings)

 Supported options for connecting outputs to inputs:

a) Broadcast:

 Send the records of one relation to all partitions.

 broadcast hash join

b) Repartition without sorting:

 Partition the records of two relations by key.

 Skip the sorting (saving its overhead).

 hash join

c) Repartition with sorting:

 Partitions the records of two relations by key and sorts

each partition (like in MapReduce’s shuffle phase).

 sort-merge join

Batch Processing

Distributed Data
Management

Very important for non-
blocking, streaming pipelines

Most data flow engines use a cost-based query optimizer
to automatically choose a join-strategy and join-order.

Beyond MapReduce

Data Flow Engines

Slide 67

Thorsten Papenbrock

Data Flow Engine

 Most popular implementations:

 Tez: https://tez.apache.org/
Bikas Saha, Hitesh Shah, Siddharth Seth, et al.: “Apache Tez: A Unifying

Framework for Modeling and Building Data Processing Applications,” at ACM

International Conference on Management of Data (SIGMOD), June 2015.

 Spark: https://spark.apache.org/
Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, et al.: “Resilient Distributed

Datasets: A Fault-Tolerant Abstraction for In-Memory Cluster Computing,” at

9th USENIX Symposium on Networked Systems Design and Implementation (NSDI),

April 2012.

 Flink: https://flink.apache.org/
Alexander Alexandrov, Rico Bergmann, Stephan Ewen, et al.: “The Stratosphere

Platform for Big Data Analytics,” The VLDB Journal, volume 23, number 6, pages

939–964, May 2014.

Most query engines (e.g. Hive and Pig) can use these instead of MapReduce.

https://tez.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://flink.apache.org/
https://flink.apache.org/

Beyond MapReduce

Apache Tez

Slide 68

Thorsten Papenbrock

Tez

 A comparatively thin library tightly coupled to YARN

 Designed for …

 high performance batch applications and

 interactive data processing applications.

 Clearly improves upon MapReduce’s efficiency

 Less mature than Spark and Flink:

 Less concise and more difficult API

 No streaming or machine learning support

 Slower

Batch Processing

Distributed Data
Management

Batch Processing

Distributed Data
Management

Beyond MapReduce

Apache Spark

Slide 69

Thorsten Papenbrock

Spark

 Large framework with own

network communication layer,

scheduler, and user-facing APIs

 Can also use YARN & Mesos

 Achievements:

 Has won the 100 Terabyte

sort competition

with 206 nodes in 23 min

(MapReduce: 2100 nodes in 72 min).

 Has performed petabyte sort,

for which no competition

exists.

Beyond MapReduce

Apache Spark

Slide 70

Thorsten Papenbrock

Spark – The Word Count Example

Batch Processing

Distributed Data
Management

// Spark wordcount

object WordCount {

 def main(args: Array[String]) {

 val env = new SparkContext("local","wordCount")

 val data = List("hi","how are you","hi")

 val dataSet = env.parallelize(data)

 val words = dataSet.flatMap(value => value.split("\\s+"))

 val mappedWords = words.map(value => (value,1))

 val sum = mappedWords.reduceByKey(_+_)

 println(sum.collect())

 }

}

Single point of execution!
(workflows are lazily executed)

Pipeline construction

Connect to the local Spark cluster with a new job called wordCount

Beyond MapReduce

Apache Spark

Slide 71

Thorsten Papenbrock

Spark – The Word Count Example

Batch Processing

Distributed Data
Management

// Spark wordcount

object WordCount {

 def main(args: Array[String]) {

 val env = new SparkContext("local","wordCount")

 val data = List("hi","how are you","hi")

 val dataSet = env.parallelize(data)

 val words = dataSet.flatMap(value => value.split("\\s+"))

 val mappedWords = words.map(value => (value,1))

 val sum = mappedWords.reduceByKey(_+_)

 println(sum.collect())

 }

}

RDDs store the ancestry of data:
input partition and operator chain

Resilient Distributed Datasets (RDDs)

 An immutable distributed collection of objects

(with arbitrary types: native and user-defined)

 Fundamental data structure of Spark

 Fault-tolerant:

 Can be persisted on disk

 Can be reconstructed by re-executing

parts of the pipeline

 By default: hold in memory

 Write to disk …

 if memory is exhausted

 for checkpointing

 before network shuffle

Beyond MapReduce

Apache Spark

Slide 72

Thorsten Papenbrock

Spark – The Word Count Example

Batch Processing

Distributed Data
Management

// Spark wordcount

object WordCount {

 def main(args: Array[String]) {

 val env = new SparkContext("local","wordCount")

 val data = List("hi","how are you","hi")

 val sum = env.parallelize(data)

 .flatMap(value => value.split("\\s+"))

 .map(value => (value,1))

 .reduceByKey(_+_)

 println(sum.collect())

 }

}

Method chaining

Beyond MapReduce

Apache Spark

Slide 73

Thorsten Papenbrock

Spark – The Word Count Example

Batch Processing

Distributed Data
Management

// Spark wordcount

object WordCount {

 def main(args: Array[String]) {

 val env = new SparkContext("local","wordCount")

 val data = List("hi","how are you","hi")

 val sum = env.parallelize(data)

 .flatMap(value => value.split("\\s+"))

 .map(value => (value,1))

 .reduceByKey(_+_)

 println(sum.collect())

 }

}

An RDD can be created by …

 parallelizing a local collection or

 referencing a dataset in external storage
(HDFS, HBase, Cassandra, MongoDB …)

Beyond MapReduce

Apache Flink

Slide 74

Thorsten Papenbrock

Flink

 Large framework with own

network communication layer,

scheduler, and user-facing APIs

 Designed for stream processing

but with batch processing capabilities

 Originated from the Stratosphere project

(DFG project: TU Berlin, HU Berlin, and HPI)

 Developed by Ververica

(former Data Artisans, which was acquired

by Alibaba for €90 million)

 Official publication with 445 citations (as of 2019):
A. Alexandrov, R. Bergmann, S. Ewen, J. Freytag, F. Hueske, A. Heise, O. Kao, M. Leich, U. Leser,

V. Markl, F. Naumann, M. Peters, A Rheinländer, M. Sax, S. Schelter, M. Höger, K. Tzoumas, and

D. Warneke, “The Stratosphere Platform for Big Data Analytics”, VLDBJ, 2014.

Beyond MapReduce

Apache Spark

Slide 75

Thorsten Papenbrock

Flink – The Word Count Example

Batch Processing

Distributed Data
Management

// Flink wordcount

object WordCount {

 def main(args: Array[String]) {

 val env = ExecutionEnvironment.getExecutionEnvironment

 val data = List("hi","how are you","hi")

 val dataSet = env.fromCollection(data)

 val words = dataSet.flatMap(value => value.split("\\s+"))

 val mappedWords = words.map(value => (value,1))

 val grouped = mappedWords.groupBy(0)

 val sum = grouped.sum(1)

 println(sum.collect())

 }

}

Single point of execution!
(workflows are lazily executed)

Pipeline construction

Connect to the local Flink cluster via ExecutionEnvironment

Beyond MapReduce

Apache Spark vs. Apache Flink

Slide 76

Large framework with own
network communication layer,
scheduler, and user-facing APIs

Large framework with own
network communication layer,
scheduler, and user-facing APIs

Large frameworks with own
network communication layer,
scheduler, and user-facing APIs

Both implement custom memory management:

 Own memory management inside the JVM

 Automatic disk spilling if jobs exceed RAM capacity

 Reduced garbage collection overhead

Both support batch and stream processing

Both offer interactive, graph, SQL and machine learning libraries

Beyond MapReduce

Spark vs. Flink

Slide 77

Thorsten Papenbrock

// Spark wordcount

object WordCount {

 def main(args: Array[String]) {

 val env = new SparkContext("local","wordCount")

 val data = List("hi","how are you","hi")

 val dataSet = env.parallelize(data)

 val words = dataSet.flatMap(value => value.split("\\s+"))

 val mappedWords = words.map(value => (value,1))

 val sum = mappedWords.reduceByKey(_+_)

 println(sum.collect())

 }

}

// Flink wordcount

object WordCount {

 def main(args: Array[String]) {

 val env = ExecutionEnvironment.getExecutionEnvironment

 val data = List("hi","how are you","hi")

 val dataSet = env.fromCollection(data)

 val words = dataSet.flatMap(value => value.split("\\s+"))

 val mappedWords = words.map(value => (value,1))

 val grouped = mappedWords.groupBy(0)

 val sum = grouped.sum(1)

 println(sum.collect())

 }

}

Both Spark and Flink mimic Scala/Java collection API’s

Beyond MapReduce

Apache Spark vs. Apache Flink

Slide 78

Large framework with own
network communication layer,
scheduler, and user-facing APIs

Large framework with own
network communication layer,
scheduler, and user-facing APIs

Large frameworks with own
network communication layer,
scheduler, and user-facing APIs

A batch processing framework
that emulates stream processing

A stream processing framework
that emulates batch processing

stream processing = faster batch processing batch processing = bounded stream processing

Beyond MapReduce

Apache Spark vs. Apache Flink

Slide 79

Thorsten Papenbrock

Spark Streaming

 Mini-batch Model:

Cut event stream into small

batches; process each batch in

sequence.

 Latency: seconds to minutes

Flink Streaming

 Streaming Model:

Handle event stream directly;

process each event immediately

when it arrives.

 Latency: milliseconds to seconds

Pull shuffling model:
Operators pull their input from their

predecessors (copy via network) and prepare
their output to be pulled when it is ready.

Push shuffling model:
Operators push their outputs to

subsequent operators (copy via network)
and act on inputs that they receive.

True streaming:
Data elements are

immediately "pipelined"
through the DAG.

https://www.linkedin.com/pulse/spark-streaming-vs-flink-bo-yang

Beyond MapReduce

Apache Spark vs. Apache Flink

Slide 80

Thorsten Papenbrock

RDDs and DStreams:
RDDs are Java objects;

DStreams are RDDs under the hood;
mixing batches & streams in one job is easy.

Dataset and DataStream:
Datasets are logical plans (optimizable);
Datasets and DataStreams are different;
mixing batches & streams is less clear.

http://blog.madhukaraphatak.com/introduction-to-flink-for-spark-developers-flink-vs-spark/

Unfolded iterations :
Spark programs implement iterations by

repeatedly appending the iterative part to the
DAG, i.e., the loop is fixed into the pipeline.

Controlled iterations:
Flink offers controlled cyclic dependency
graphs, i.e., real cycles in their pipeline

graphs.

A B C D C D C D E A B C D E

But: native streaming
support with DataFrames

in development

Beyond MapReduce

Apache Spark vs. Apache Flink

Slide 81

Thorsten Papenbrock

Spark state storage

 Saves state in RDDs, which are

periodically checkpointed to disk

 Users cannot choose another

checkpointing strategy

(but they can rdd.persist() manually)

Flink state storage

 Offers three pluggable state

storage options:

 MemoryStateBackend

 FsStateBackend

 RocksDBStateBackend

No upgrade/resume support:
Spark's checkpoints are tied to specific DAG;

changing or resuming a DAG requires a
re-start of the entire pipeline.

Upgrade/resume support:
Flink’s checkpoints are not tied to a DAG;
when changing or resuming a DAG, Flink
can probably use previous checkpoints.

https://www.linkedin.com/pulse/spark-streaming-vs-flink-bo-yang

Beyond MapReduce

Apache Spark vs. Apache Flink

Slide 82

Thorsten Papenbrock

Basic window support:
e.g. supports sliding window,

but not session window.

Advanced windowing support:
sliding windows, session windows, custom

event eviction …

More mature:

 large community

 widely used and tested

 proved to work well in terms of scalability
and fault tolerance

 superior SQL and data source support

Less mature:

 smaller community

 younger than Spark

 may still need some work regarding fault
tolerance and edge cases

 basic SQL and data source support

https://www.linkedin.com/pulse/spark-streaming-vs-flink-bo-yang

Beyond MapReduce

Apache Spark vs. Apache Flink

Slide 83

Thorsten Papenbrock

Choose…

 for batch processing

 if reliability matters most

Choose…

 for stream processing

 if real-time latencies matter most

https://www.linkedin.com/pulse/spark-streaming-vs-flink-bo-yang

Beyond MapReduce

Graph Processing as Batch Job

Slide 84

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Beyond MapReduce

Graph Processing as Batch Job

Slide 85

Thorsten Papenbrock

OLAP: point vs. batch queries

 Point query: Perform some action or extraction on a small sub-graph.

 Batch query: Perform some processing or analysis on the entire graph.

Examples

 Cliques search (all subgraphs, in which all vertices are adjacent to each other)

 Minimum spanning tree search (a minimal set of nodes that connects to all other nodes)

 Closure calculation (for each path of length two, the transitive edge)

 Page rank calculation (for each node, the popularity of this node)

 All pairs shortest path search (for each node, the shortest path to all other nodes)

 Usually iterative algorithms

Beyond MapReduce

Graph Processing as Batch Job

Slide 86

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Intuition

 Think of each graph node as an actor with state and mailbox.

 Think in iterations:

1. Nodes send sets of messages to other nodes.

2. All messages are collected, grouped by receiver, and delivered in one batch.

 1./2. are separated by the grouping operator (synchronization barrier)

 1./2. repeat until batch job is done

 Bulk Synchronous Parallel (BSP) model:

 Formalizes this intuition of Graph Batch Jobs

 Difference to a simple, iterating MapReduce job:

 Nodes hold state that carries over from one iteration to the next.

 Implementations:

 Pregel, Apache Giraph, Spark’s GraphX API, Flink’s Gelly API, …

(1) Per vertex
operator

calculations

(2) Bulk output
shuffling

Beyond MapReduce

All Pairs Shortest Path

Slide 87

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Example Graph

A B

C D

B1 C1 D1

 B1
C2

 C1
D2

D1

 B1
 C2
D3

 C1
D2

D1

End iteration, because
nothing changed

A0 B0 C0 D0

A0
B1
C1

B0
C1

C0
D1

D0

A0
B1
C1
D2

B0
C1
D2

C0
D1

D0

A0
B1
C1
D2

B0
C1
D2

C0
D1

D0

Send local
paths list +1

to every
incoming

node

Send local
paths list +1

to every
incoming

node

Send local
paths list +1

to every
incoming

node

Optimization?

Beyond MapReduce

All Pairs Shortest Path

Slide 88

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

Example Graph

A B

C D

B1 C1 D1

C2

D2

D3

End iteration, because
nothing was send

A0 B0 C0 D0

A0
B1
C1

B0
C1

C0
D1

D0

A0
B1
C1
D2

B0
C1
D2

C0
D1

D0

A0
B1
C1
D2

B0
C1
D2

C0
D1

D0

Send local
paths list +1

to every
incoming

node

Send local
paths list +1

to every
incoming

node

Send changes
to local paths
+1 to every

incoming
node

Beyond MapReduce

Awesome - Repository of curated References

Slide 89

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

https://github.com/emijrp/awesome-awesome

https://github.com/emijrp/awesome-awesome
https://github.com/emijrp/awesome-awesome
https://github.com/emijrp/awesome-awesome
https://github.com/emijrp/awesome-awesome

Beyond MapReduce

Awesome - Repository of curated References

Slide 90

Batch Processing

Distributed Data
Management

Thorsten Papenbrock

https://github.com/onurakpolat/awesome-bigdata

https://github.com/onurakpolat/awesome-bigdata
https://github.com/onurakpolat/awesome-bigdata
https://github.com/onurakpolat/awesome-bigdata
https://github.com/onurakpolat/awesome-bigdata

Beyond MapReduce

Awesome - Repository of curated References

Slide 91

Distributed Programming

 AddThis Hydra - distributed data processing and storage system originally developed at AddThis.

 AMPLab SIMR - run Spark on Hadoop MapReduce v1.

 Apache APEX - a unified, enterprise platform for big data stream and batch processing.

 Apache Beam - an unified model and set of language-specific SDKs for defining and executing data processing workflows.

 Apache Crunch - a simple Java API for tasks like joining and data aggregation that are tedious to implement on plain MapReduce.

 Apache DataFu - collection of user-defined functions for Hadoop and Pig developed by LinkedIn.

 Apache Flink - high-performance runtime, and automatic program optimization.

 Apache Gearpump - real-time big data streaming engine based on Akka.

 Apache Gora - framework for in-memory data model and persistence.

 Apache Hama - BSP (Bulk Synchronous Parallel) computing framework.

 Apache MapReduce - programming model for processing large data sets with a parallel, distributed algorithm on a cluster.

 Apache Pig - high level language to express data analysis programs for Hadoop.

 Apache REEF - retainable evaluator execution framework to simplify and unify the lower layers of big data systems.

 Apache S4 - framework for stream processing, implementation of S4.

 Apache Spark - framework for in-memory cluster computing.

 Apache Spark Streaming - framework for stream processing, part of Spark.

Beyond MapReduce

Awesome - Repository of curated References

Slide 92

Distributed Programming (cont.)

 Apache Storm - framework for stream processing by Twitter also on YARN.

 Apache Samza - stream processing framework, based on Kafka and YARN.

 Apache Tez - application framework for executing a complex DAG (directed acyclic graph) of tasks, built on YARN.

 Apache Twill - abstraction over YARN that reduces the complexity of developing distributed applications.

 Cascalog - data processing and querying library.

 Cheetah - High Performance, Custom Data Warehouse on Top of MapReduce.

 Concurrent Cascading - framework for data management/analytics on Hadoop.

 Damballa Parkour - MapReduce library for Clojure.

 Datasalt Pangool - alternative MapReduce paradigm.

 DataTorrent StrAM - real-time engine to enable distributed, asynchronous, real time in-memory big-data computations in as

unblocked a way as possible, with minimal overhead and impact on performance.

 Facebook Corona - Hadoop enhancement which removes single point of failure.

 Facebook Peregrine - MapReduce framework.

 Facebook Scuba - distributed in-memory datastore.

 Google Dataflow - create data pipelines to help themæingest, transform and analyze data.

 Google MapReduce - MapReduce framework.

Beyond MapReduce

Awesome - Repository of curated References

Distributed Programming (cont.)

 Google MillWheel - fault tolerant stream processing framework.

 IBM Streams - platform for distributed processing and real-time analytics. Provides toolkits for advanced analytics like geospatial,

time series, etc. out of the box.

 JAQL - declarative programming language for working with structured, semi-structured and unstructured data.

 Kite - a set of libraries, tools, examples, and documentation focused on making it easier to build systems in the Hadoop ecosystem.

 Metamarkets Druid - framework for real-time analysis of large datasets.

 Netflix PigPen - MapReduce for Clojure which compiles to Apache Pig.

 Nokia Disco - MapReduce framework developed by Nokia.

 Onyx - distributed computation for the cloud.

 Pinterest Pinlater - asynchronous job execution system.

 Pydoop - Python MapReduce and HDFS API for Hadoop.

 Rackerlabs Blueflood - multi-tenant distributed metric processing system

 Skale - high performance distributed data processing in NodeJS.

 Stratosphere - general purpose cluster computing framework.

 Streamdrill - useful for counting activities of event streams over different time windows and finding the most active one.

 streamsx.topology - Libraries to enable building IBM Streams application in Java, Python or Scala.

Beyond MapReduce

Awesome - Repository of curated References

Slide 94

Distributed Programming (cont.)

 Tuktu - Easy-to-use platform for batch and streaming computation, built using Scala, Akka and Play!

 Twitter Heron - Heron is a realtime, distributed, fault-tolerant stream processing engine from Twitter replacing Storm.

 Twitter Scalding - Scala library for MapReduce jobs, built on Cascading.

 Twitter Summingbird - Streaming MapReduce with Scalding and Storm, by Twitter.

 Twitter TSAR - TimeSeries AggregatoR by Twitter.

 Wallaroo - ultrafast and elastic data processing engine. Big or fast data - no fuss, no Java needed.

Frameworks

 IBM Streams - platform for distributed processing and real-time analytics. Integrates with many of the popular technologies

in the Big Data ecosystem (Kafka, HDFS, Spark, etc.)

 Apache Hadoop - framework for distributed processing including MapReduce (parallel processing), YARN (job scheduling)

and HDFS (distributed file system).

 Tigon - high Throughput Real-time Stream Processing Framework.

 Pachyderm - data storage platform built on Docker and Kubernetes for reproducible data processing and analysis.

Distributed Data Management

Introduction
Thorsten Papenbrock

G-3.1.09, Campus III

Hasso Plattner Institut

