1

Hasso
Plattner
Institut

&Y’ - i . S 3 - : :: B IT Systems Engineering | Universitét Potsdam

I

& M e
. '+ .* To Databases

Distributed Data Management
Stream Processing

Thorsten Papenbrock

F-2.04, Campus II
Hasso Plattner Institut

i

Distributed Data Management ﬂHasso
Types of Systems Inetitut

Services (online systems)
= Accept requests and send responses
= Performance measure: response time and availability

= Expected runtime: milliseconds to seconds OLTP

Batch processing systems (offline systems)
= Take (large amounts of) data; run (complex) jobs; produce some output
= Performance measure: throughput (i.e., data per time)

= Expected runtime: minutes to days Distributed Data

Stream processing systems (near-real-time systems) Management

o) Stream Processing
= Consume volatile inputs; operate stream jobs; produce some output

i _ .
Performance measure: throughput and precision ThorstenPapenbrock

= Expected runtime: near-real-time (i.e., as data arrives) OLAP | S'ide2

Distributed Data Management ﬂ Hasso
Types of Systems Plattner

Institut

Batch processing systems (offline systems) can re-execute

TN Y N D N . —
| |
T -

Stream processing systems (near-real-time systems)

cannot re-execute

TN Y N D N . . —
w w

unbounded;
volatile; any size

Distributed Data Management ﬂ Hasso
Types of Systems Plattner

Institut

Batch processing systems (offline systems) one result

TN Y N D N . —
| |
historic data -

Stream processing systems (near-real-time systems)

one or a series of results

TN Y N D N . . —
w w

live data

i

Distributed Data Management Hasso
Use Cases for Streaming Data Inatitut

Sensor Processing
= Continuous and endless readings by nature
Process Monitoring

eeeee

= Side effects of processes that are continuously observed | v ss g os B o o o

Mahiavir

Location Tracking

= Continuous location updates of certain devices

Log Analysis

= Digital footprints of applications that grow continuously
User Interaction

= Continuous and oftentimes bursty click- and call-events
Market and Climate Prediction

= Changing stock market prices and weather characteristics

SAPACHE: E

park’
Spark Streaming (Recap)

Hasso
Plattner
Institut

Batched Stream Processing
= Reasons:
= Incremental processing: start processing data that is still being written to

= Latency reduction: pipeline data to maximizing resource utilization

e

~

- File File Transformation pipeline File
[Producer N Q read Q map ;:} filter E_:> reduce E;} write Q
File / /

/(\; ________ File ||) R

Input stream
might be
volatile, i.e.,
read-once only

: Stream processing reads the data exactly once
S~~~ "] and still guarantees fault-tolerance through

check pointing and write ahead logs (WAL) ThorstenPapenbrock
Slide 6

Distributed Data Management ﬂHasso
Plattner
Streams Institut

Data Stream
» Any data that is incrementally made available over time
= Examples:
» UniX stdin and stdout
= Filesystem APIs (e.g. Java’s FileInputStream)
= Online media delivery (audio/video streaming)
= Creation from ...
= static data: files or databases (read records line-wise) Distributed Data

= dynamic data: sensor readings, service calls, transmitted data, logs, ... "anagement

Stream Processing

Event

* = an immutable record in a stream (often with timestamp) ThorstenPapenbrock
= “Something that happened” Any format that allows

= Encoded in Json, XML, CSV, ... maybe in binary format incremental appends

Distributed Data Management
Batch vs. Stream

Hasso
Plattner
Institut

Batches [T

| Write once,
ead often

Send once,
receive once

AT O

Streams

maybe multiple
receivers

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 8

Overview

Stream Processing

Transmitting
Event Streams

Databases
and Streams

Processing Streams

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 9

Transmitting Event Streams
Event Transmission

Dataflow Th h D
ataflow Through Databases Process 2 needs to poll the

database for updates
> bad performance
» slow event propagation

Dataflow Th h [
ataflow Through Services Working speed of process 2

determines stream speed

>

Process 1 Process 2 » maybe bad performance

» ok-isch event propagation

i

Message-Passing Dataflow _
Asynchronous messaging and

< notification about new events

Process 1 Process 2° » good performance

d
A

» fast event propagation

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 10

Transmitting Event Streams
Message-Passing Dataflow (Recap)

Communication

= Objects send messages to other objects via queues.

Message

= Container for data (= events)

» Often carries metadata (sender, receiver, timestamp, ...)

Message queue

= Data structure (queue or list) assigned to communicating object(s)
» Enqueues messages in order of arrival

» Buffers incoming messages for being processed

> Notifies subscribers if new messages are available

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 11

Transmitting Event Streams
Message Congestion

What if the stream producer is faster than the stream consumer(s)?

Hasso
Plattner
Institut

a) Drop messages Most messaging systems use

= Delete messages that cannot be accepted.

» Ok for use cases where timeliness is more important than
completeness (e.g. for processing of sensor readings)

b) Buffer messages
= Store messages in a cache until resources are available.

» Ok to capture load spikes and if there is no constant overload that
fills up buffers permanently (e.g. for user activity event streams)

c) Apply backpressure
= Block the sender until resources are available.

= Ok if the sender can be blocked and if the stream is not generated
from outside (e.g. for reading a file as a stream from disk)

a mix of all three options.

 —

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 12

I —————
Transmitting Event Streams
Messaging Faults

What if nodes crash or temporarily go offline?
a) Fault ignorance
= Failed messages are lost.
» Ensures optimal throughput and latency
b) Fault tolerance
= Failed messages are recovered from checkpoints (disk or replicas).
» Ensures messaging reliability

e

More on fault tolerance later!

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 13

Transmitting Event Streams

Hasso
Message Brokers (Recap) ﬂ Inatitut

Message Broker

YV V V VY V

Also called message queue or message-oriented middleware

Part of the message-passing framework that delivers messages from their
sender to the receiver(s)

Maintains queues that sender can post messages to
Notifies subscribers on new messages

Resolves sender an receiver addresses

Applies binary encoding when necessary Process 1 — Process 2
Define the ... "—
= message congestion strategy f’-'é. \Message Broker
= messaging fault strategy _ ThorstenPapenbrock
If it blocks and persists, Slide 14

o) ' thenitis a database, right?

Transmitting Event Streams Hasso

Message Brokers vs. Databases ﬂmiﬁ?ﬁ{

Message Broker Database
» Short lived messages = Long-term persisted records
= Delete messages once = Store records until
successfully transmitted explicitly deleted
= Small working set = Large working set
= If the number of pending = If the number of records
messages increases, the increases, the performance
performance drops (disk!) is hardly affected
= Subscription-based retrieval = Query-based retrieval Distributed Data
Management
= Deliver messages to all = Read records upon client Stream Processing
subscribers of a queue query using indexes
= Push client communication = Pull client communication ThorstenPapenbrock
= Knows clients and initiates = Clients are unknown and Slide 15

communications initiate communications

Transmitting Event Streams
Message Brokers

Routing

Producer send messages to queues.

Message Broker notifies one or many consumers about such deliveries.

Routing strategies:
a) One-to-one messages (Load Balancing)
= Messages are routed to one subscriber ;e ?

Producer 1

> For data parallelism — |
Partition input stream

b) One-to-many messages (Fan-out) Corsumer 1 3

= Messages are routed to all subscribers ("™ X

> For task parallelism e
Replicate input stream

Hasso
Plattner
Institut

(b) fan-out

n m2 || m3] 4
= mi}|m2||m3 mi|--»
----- mi -m -m4 =24

ThorstenPapenbrock
Slide 16

Transmitting Event Streams
Message Brokers

Fault tolerance

Acknowledgement:

Consumer send an acknowledgement to the Message Broker when
they successfully received/completed a message.

Message Broker removes any completed message from its queues.

Redelivery:

If acknowledgement fails to appear, the Message Broker redelivers it
(perhaps to a different consumer).

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 17

Transmitting Event Streams
Message Brokers

Hasso
Plattner
Institut

Fault tolerance

Producer 1 %
Producer 2 %

Broker :

Consumer 1 %

.......

........ ml

Consumer 2 %

m3

m3 failed at consumer 2 and
is redelivered to consumer 3.

........ 5
m3 is preserved
but stream at
[ma e T consumer 3 is now
out-of-order!
crashed | »

ThorstenPapenbrock
Slide 18

Transmitting Event Streams
Message Brokers: Persist or Forget

Persist Forget

» Keep entire message stream » Remove processed messages from stream
(until reaching size or time limit) (immediately after acknowledgement)
. = Track consumers to forget old content
= Let consumers go back in time .
» Database-like » Volatile, light-weight
» Log-based Message Broker » Queue-based Message Brokers

(e.g. Kafka, Kinesis or DistributedLog) (e.g. RabbitMQ, ActiveMQ or HornetQ)

§g kafka BhRabbit

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 19

I ————————————————————————————————————
Transmitting Event Streams
Log-based Message Broker

Hasso
Plattner
Institut

= Message broker that persist messages as logs on disk (distributed, replicated)
» Logs are immutable and append-only
= Excellent sequential read performance
= Support parallel, conflict-free reading by multiple clients
= Uncontrolled one-to-many messaging (we do not know who will read a message)
» Replicated Logs
= For fault tolerance and better parallel read performance
* Leader-based (to avoid complex replication protocols)
= Partitioned Logs

Distributed Data
= For parallel writes Management

= Message ordering guaranteed only within a partition Stream Processing

(not between partitions)

= Partitioning strategies: ThorstenPapenbrock

= round-robin, load, partition size, semantic keys, ... Slide 20

ery - 1Java Message Service
Transmitting Event Streams (IMS) 2.0 Specification

Queue-based Message Broker oS Sissags ueving Protoco

= Message broker that store messages in queues (distributed, replicated)
= Queues are mutable (usually in-memory) FIFO list data structures
= Append messages at the end
= Remove messages from the top
= Controlled one-to-one or one-to-many messaging (usually via JMS! or AMQP? protocols)
= Replicated/Mirrored Queues

» For fault tolerance and availability only
(no performance gain, because all replicas need to do all appends/removes)

* Leader-based (to avoid complex replication protocols) o
Distributed Data

= No partitioning for queues Management
= Create multiple queues manually if needed Stream Processing
= Reliability:
» Send-and-acknowledge handshake with clients ThorstenPapenbrock

(keep messages until successfully acknowledged) Slide 21

Transmitting Event Streams
Message Brokers: Persist or Forget

Hasso
Plattner
Institut

https://content.pivotal.io/blog/
understanding-when-to-use-rabbitmqg-or-apache-kafka

http://kth.diva-portal.org/smash/get/
diva2:813137/FULLTEXTO1.pdf

i Replicas . Distributed Data
o : (brokers) = M t

ESiE=IS ; \ N anagemen
Ik 0l JH\T——HEL 5 o Stream Processing
Producers |, 18/ i

. / Bl dind

\\ ,;F CC!

. broker 4 gr’(‘i‘”p"";r ThorstenPapenbrock
""""""""""""""""" Slide 22

architecture

g Apache Kafka

Transmitting Event Streams ﬂ Hasso
Message Brokers: Persist or Forget Inetitut

Keep entire message stream
(until reaching size or time limit)

Remove processed messages from stream
(immediately after acknowledgement)

Track consumers to forget old content
Let consumers go back in time
» Database-like

Log-based Message Broker
(e.g. Kafka, Kinesis or DistributedLog)

» Volatile, light-weight

Queue-based Message Brokers Distributed Data
(e.g. RabbitMQ, ActiveMQ or HornetQ) Management
Stream Processing

E R a b b | t ThorstenPapenbrock
Slide 23

Transmitting Event Streams

Kafka

Topics and Partitions

Topics are logical groupings for event streams.

Every topic is created with a fixed number of partitions. y
Partitions are ordered lists of logically dependent events in a topic.

Hasso
Plattner
Institut

e.g. click-events, temperature-readings, location-signals

In many cases, event ordering is not a
concern and partitions are simply
arbitrary splits of a topic
(for parallelization and load-balancing)

e.g. click-events by user, temperature-readings by sensor, location-signals by car
Provide “happens-before semantic” for these events
Order is valid within each partition, not across different partitions.
Are accessed sequentially
* Producers write new events sequentially.
» Consumers read events sequentially.
Purpose:
= Parallelism: to read a topic in parallel

» Load-balancing: to store the events of one topic on multiple nodes

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 24

Hasso
Plattner
Institut

Transmitting Event Streams

Kafka

, . A producer can ask any broker
Topics and Partitions to locate the leader of a

(done via ZooKeeper).

prmuﬂe,ﬂ partition that it wants to write

| |
Every partition has a leader that Wﬁﬁae fg’f
accepts all writes to that partition and partifion
forwards them to its follower replicas.
Broker 1 Broker 2 Broker 3
4 +
Leading broker . : . Do . Distributed Data
for this partition -—-._.__‘/ L v i F Management
T . AT : Stream Processing
. : [] _Ill : [\._ln” .
i — Dll P =y E
Leaders for different partitions are Part.? Part. 3 ; :. Part.1 Part. 3
distributed in the cluster to allow IR T e ' ThorstenPapenbrock

parallel writes to one topic. e emmmm == = o Slide 25
Replication from

leader to replica

Transmitting Event Streams ﬂ Hasso
Kaﬂ(a Plattner

Institut

Producers and Consumers

= Producers

Post to concrete partitions within a topic (only one leader can take these posts).
= Define a Partitioner-strategy (on the producer side) to decide which partition is next.
= Round-Robin Partitioner-strategy is used by default.

Custom Partitioner-strategies let producers define semantic grouping functions.
= Consumers

Read concrete partitions within a topic (all broker with that partition can take these reads).

* Hold an offset pointer for every partition that they read (on consumer side). Distributed Data

= Poll and wait (no callback registration) N Management

Stream Processing

“Kafka does not track acknowledgments from
consumers [...]. Instead, it allows consumers to use
Kafka to track their position (offset) in each partition.” ThorstenPapenbrock

(Book: Kafka - The Definite Guide) | Slide 26

Transmitting Event Streams

Kafka

Producers and Consumers

Producers

= Post to concrete partitions within a topic (onl

. Define@ioner-str@m the produce " Metadata

Consumers

Round-Robin™Rartitioner-strategy is ust

When successful,

/

Custom Partitioner-strategies let produ

= Read concrete partitions within a topic (all bt

* Hold an offset pointer for every partition thal

= Poll and wait (no callback registration)

¥

Topic B
Partition 1

Batch 0
Batch 1
Batch 2

ProducerRecord
Topic
[Partition]
> P
[Key]
Value
Send ()
S
: If can't retty, Serializer
i throw exception l
—:7 2| Partitioner
|
|
| ¢
| TopicA
| Partition 0
|
: Batch 0
: Batch 1
! Batch 2
|
' |

Kafka Broker

Transmitting Event Streams ﬂ Hasso
Kafka

Plattner
Institut

Producers and Consumers

Partition 0

Partition 1

Partition 2

Partition 3

And in this way, Kafka kind of knows its consumers ...

Consumer Groups

A group of consumers that processes all events of one topic in parallel.
The offsets for a consumer group can be managed by Kafka on server side.
= A dedicated group coordinator manages offsets, membership, scheduling etc.

= Consumer commit successfully processed offsets to the group coordinator
so that the coordinator can re-assign partitions to consumers.

Topic "topicName" Consumer Event we are processing right now
1 345 |6]7]s]ow[n[ufni .--Tw_, _
X : : These events will be reprocessed
g et in case of rebalance, causing duplicates
1 3lals|e]7]s}o i i
[} [}
t T Heonmer1 |0 Lo f 123 als5 el 78]9 f10]mn
1 s[a]sel7[s]o]w0fnm i i T
[} [}
s e | Events returned
1 3lalslsel7l8lol10ln1tn2 b m H Last committed offset by last poll

Transmitting Event Streams

Kafka

Institut

Producers and Consumers

#partitions > #consumer

= Consumer take multiple
partitions and process them

#partitions = #consumer

= Every consumer takes one
partition; maximum

#partitions < #consumer

= Some consumers idle,
because the group reads

alternatingly. parallelism. every partition exactly once.
TopicT1 Consumer Group 1 TopicT1 Consumer Group 1 TopicT1 Consumer Group 1
Partition 0 Partition 0 '. »| Consumer 1 l Partition 0 »{ Consumer 1 l
” /] | —
Partition 1 Consumer 2 Partition 1 »| Consumer 2 Partition 1 »| Consumer 2
ez] || [Lponont] Gname2]
Partition 2 / Partition 2 'i »| Consumer 3 I Partition 2 » Consumer 3 l
Partition 3 Partition 3 »| Consumer 4 l Partition 3 | »| Consumer4 I
j e — g

Consumer 5

Transmitting Event Streams

Hasso
Kaﬂ(a Plattner
Institut
Producers and Consumers ')
Data Source TopicT1 Consumer Group 1
writes] Partition 0 p| Consumer 1 l
Log Partition 1 Consumer 2 .
0 ‘ 1 ‘ 2 ‘ 3 4 ‘ 5 ‘ 6 7 Partition 2 | Consumer3 l
reads reads Partition 3 —»| Consumer 4 |
\
(Destination 1 Destination 2] Distributed Data
cmemm || Cmmm Management
ﬂ A 3 Stream Processing
Different consumers that read Different consumer groups that
the same partition in parallel read same partitions in parallel ThorstenPapenbrock
and at different locations. (and at different locations). Slide 30

Transmitting Event Streams

Kafka

Hasso
Plattner
Institut

send message by
appending to log

Log-based Message Broker]
sequence offsets to ensure ordering
| =
" Producerclienq
2(3|4|5|6|7]|8]
« Partition 0 | 1 : . Only One_to_many
< :
'y messaging!
§' | Producer clienj S
Partition1 |1 2|3 |4 |5|6|7|8 Receive message by
. reading log sequentially;
" :
o T s T Consumergroup | WHenN reaching the end,
: ikttt et wait and poll again
S ’ -
@ - ,[———»| Consumer client T 1 Distributed Data
3 { Partiton1 |1 |23 |4|5[6|7 |V / | offsetforBo=a | - Management
R — y | offsetiorBi=5 |, Stream Processing
partition2 | 1|2 |34 |5 |6|7|8|9|10[11]12 _~—+»| Consumer client | .
\ C——> 7 | ofsetiorBa=g |- ThorstenPapenbrock
\ read sequentiaily U= Slide 31

= Stream B | | partitioning (and replication)

Transmitting Event Streams

Kafka

Example:

6 TB of disk capacity (= log size)
150 MB/s write throughput

Storing a history fo

r ~

events costs memory 11 h until an event is forgotten

Log-based Message Broker

(at maximum event throughput!)

. - j
Partition0 | 1 [2|3 | 4 Producer client |
%ﬁ — No one-to-one
] Producer clien scheduling:
Partition1 | 1| 2|3 | 4
& Max parallelism bound
% by number of partitions
Partition0 | 1|2 |3 | 4 Consumer group in a topic!
o - = : SanSUmEreliEnt . Distributed Data
& { Partition1 |1 |2|3[4|5]|6|7|V: [offsetiorBo=a | - Management
2 - — / offsetforB1=5 | . Stream Processing
Partiton2 | 1|2 (3|4 [5|6[7|8[9]10[11[12 Pang R
\ —— : ! offsetforB2=9 : ThorstenPapenbrock
T auentially ———— : Slide 32

Events with high processing costs block all subsequent events

I ————————————————————————————————————
Transmitting Event Streams

Kafka

Hasso
Plattner
Institut

Kafka APIs

= Communication with Kafka happens via specific APIs.

= The API can manage the specifics of the reading/writing process transparently.
» e.g. offset-tracking (consumers) and partition-scheduling (producers)

= Two options:
= A rich API that offers high abstraction, but limited control functions.

= A low-level API that provides access to offsets and allows consumers to rewind
them as the need.

Distributed Data
Event lifetime Management

= Configurable: Stream Processing

= By time of event

= Max partition size ThorstenPapenbrock
Slide 33

Transmitting Event Streams ﬂ Hasso
Kaﬂ(a Plattner

Institut

Optimizations that make Kafka fast:

= Sequential I/0:
= Sequential writes avoid disk seek times.
= Exclusive write access to logs avoids blocking (one writer per log).
» Sequential reads enable pre-fetching and caching of messages.

= Minimal serialization/deserialization:

» Standardized binary formats let producers, brokers and consumers use the same
data representations without individual modification.

= Zero-co olicy:
py policy Distributed Data

= Data exchange completely in kernel space without copying it to user space avoids Management
costly kernel-space to/from user-space copy processes Stream Processing

(due to standardized formats, there is no need to copy messages into user space).
= Batch processing:
ThorstenPapenbrock
= Batching of data reduces network calls and improves sequential writes. Slide 34

= Compression of batches (with LZ4, SNAPPY or GZIP) leads to better compression ratios.

Transmitting Event Streams Hasso
Plattner
Kafka Institut

Further reading
» Kafka: The Definitive Guide

» https://www.oreilly.com/library/
view/kafka-the-definitive/
9781491936153/

o Distributed Data
The Definitive Guide Management

Stream Processing

REAL-TIME DATA AND STREAM PROCESSING AT SCALE

Neha Narkhede, ThorstenPapenbrock

Gwen Shapira & Todd Palino Slide 35

https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/
https://www.oreilly.com/library/view/kafka-the-definitive/9781491936153/

Transmitting Event Streams ﬂ Hasso
Message Brokers: Persist or Forget Inetitut

Persist Forget

» Keep entire message stream = Remove processed messages from stream
(until reaching size or time limit) (immediately after acknowledgement)
. = Track consumers to forget old content
= Let consumers go back in time .
» Database-like » Volatile, light-weight
» Log-based Message Broker » Queue-based Message Brokers Distributed Data
(e.g. Kafka, Kinesis or DistributedLog) (e.g. RabbitMQ, ActiveMQ or HornetQ) Management

Stream Processing

Use if throughput matters, Use if one-to-one scheduling is needed,

event processing costs are similar and event processing costs differ and

the order of messages is important the order of messages is insignificant ThorstenPapenbrock
Slide 36

Transmitting Event Streams ﬂ Hasso
Message Brokers: Persist or Forget Inetitut

Persist Forget

» Keep entire message stream
(until reaching size or time limit)

Wait throughput?

Yes, because ...

" Let consumers go back in time » dumping events to storage instead of

> Database-like routing them to consumers is faster.

= Log-based Message Broker > broker does not need to track Distributed Data
(e.g. Kafka, Kinesis or DistributedLog acknowledgements for every event Management
(only consumers track their queue offset).

Stream Processing
» broker can utilize batching and pipelining

if th hput matt
Use if throughput matters, internally.

event processing costs are similar and

the order of messages is important ThorstenPapenbrock
Slide 37

Overview

Stream Processing

Hasso
Plattner
Institut

Transmitting Databases Processing Streams
Event Streams and Streams

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 38

I
Databases and Streams

Hasso
Data Storage — Keeping Systems in Sync ﬂ.‘ﬁ‘;}ﬂ'&{

y-

[Producer

Volatile
write/delete
instructions

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
OLTP System Search Index Caches Slide 39

i

Databases and Streams

Data Storage — Keeping Systems in Sync

Hasso
Plattner
Institut

set X=A setX=A
Client 1 % v

Database i ree

search index B
Distributed Data

Client 2 % ------ Management
Stream Processing

Write conflict:

Database and search index are inconsistent,
because they don’t share a common leader ThorstenPapenbrock
(that implements e.g. 2PC or MVCC). Slide 40

Databases and Streams

Data Storage — Keeping Systems in Sync

f
y-

[Producer

OLAP System OLTP System Search Idex

Hasso
Plattner
Institut

= Global ordering of events
(= eventual consistency)

= Fault-safe event delivery
» Backpressure on high load

Enables:

Caches

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 41

i@

Databases and Streams

Hasso
. - Platt
Data Storage - Keeping Systems in Sync Institut
~ = % Systemc:af record De’;"id data
] setX=A database systems
[PrOducer 6 t Change data capture

K\\ - Log of data changes \4% = 'Search
| o index
Events =
o ——— warehouse
log consumer applies changes

@\ Persisting Message Broker
O
~—

\

\

\

|

|

|

/

4

Client 2

>+o

Distributed Data
Management

Stream Processing

) [&

: ThorstenPapenbrock
OLAP System OLTP System Search Index Caches Slide 42

I
Databases and Streams

Hasso
Message Broker to Database ﬂmiﬁ?ﬁ{

Data Change Event Streams

= If events are change operations (writes/deletes) to individual objects (records)
it suffices to store only the most recent log entry for each object to rebuild a database.

= Log Compaction:
= Periodically removes outdated log entries from the log
= Lets the log grow linearly with the data

Message Broker - Database

= If the broker knows what the events mean (e.g. key-value mappings) o
. . Distributed Data
it can apply log compaction. Management

» Event log does not outgrow the maximum buffer size. Stream Processing

» Message broker becomes a database.
ThorstenPapenbrock

= Implemented by e.g. Apache Kafka Slide 43

I ﬁi
Databases and Streams

Hasso
Message Broker to Database ﬂmiﬁ?ﬁ{

Message Broker as a Database
= Advantages:
= Data Provenance/Auditability:
* The line of events describes the history of every value.
> Allows to follow a value back in time (e.g. the balance history of a bank account)
> Fraud protection, temporal analytics, data recovery, ...
= Command Query Responsibility Segregation (CQRS):
= Events describe what happened (= facts) not their implications.
> Allows consumers to read/interpret events differently (= different views)
» Multi-tenant systems, system evolution, data analytics, ...
= Disadvantages:
= Non-standing reads are slow (need to scan and interpret the entire event history).
= Deleting data means declaring it deleted (actually deleting data is hard). Slide 44

Overview

Stream Processing

Transmitting
Event Streams

Databases
and Streams

Processing Streams

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

¥ ThorstenPapenbrock

Slide 45

Processing Streams ﬂ Hasso
Scenarios Inetitut

Complex Event Processing (CEP)

= “Check a stream for patterns; whenever something special happens, raise a flag.”
= Similar to pattern matching with regular expressions (often SQL-dialects)

= Implementations: Esper, IBM InfoSphere, Apama, TIBICO StreamBase, SQLstream

Stream Analytics Approximation is
] often used for

= "“Transform or aggregate a stream; continuously output current results.” optimization, but

Stream Processing

= Often uses statistical metrics and probabilistic algorithms: is not inherently

= Bloom filters (set membership) approximate!
| Bounded memory

= HyperLoglLog (cardinality estimation) consumption

= HDHistogram, t-digest, decay (percentile approximation)

—

= Implementations: Storm, Flink, Spark Streaming, Concord, Samza, ThorstenPapenbrock
Kafka Streams, Google Cloud Dataflow, Azure Stream Analytics Slide 46

Processing Streams

Hasso
Plattner
Institut

nari
Sce arios Stream = Database Usually consider
(using log compaction etc.) |4 entire stream, i.e.,
Maintaining Materialized Views R
V

= "“Serve materialized views with up-to-date data from a stream.”

= Views are also caches, search indexes, data warehouses, and any derived data system

= Implementations: Samza, Kafka Streams (but also works with Flink, Spark, and co.)
Search on Streams

= “Search for events in the stream; emit any event that matches the query.”

= Similar to CEP but the standing queries are indexed, less complex, and more in number

= Implementations: Elasticsearch

Message Passing

= "“Use the stream for event communication; actors/processes consume and produce events.”
= Requires non-blocking one-to-many communication

= Implementations: Any message broker; RPC systems with one-to-many support

SAPACHE: E

park’
Spark Streaming (Recap)

Hasso
Plattner
Institut

Batched Stream Processing
= Reasons:
= Incremental processing: start processing data that is still being written to

= Latency reduction: pipeline data to maximizing resource utilization

e

~

- File File Transformation pipeline File
[Producer N Q read Q map ;:} filter E_:> reduce E;} write Q
File / /

/(\; ________ File ||) R

Input stream
might be
volatile, i.e.,
read-once only

: Stream processing reads the data exactly once
S~~~ "] and still guarantees fault-tolerance through

check pointing and write ahead logs (WAL) ThorstenPapenbrock
Slide 48

Processing Streams

& Hasso
Examples Spark ﬂ Inatitut

Streaming input sources:

. Files text, csv, json, parquet
Spark Streaming Kafka Apache Kafka message broker

val articles = spark val articles = spark Socket UTF8 text data from a socket
read L eadstieam Rate Generated 'data for testing
text("/mnt/data/articles/*.csv") text("/mnt/data/articles/*.csv")

val words = articles.as[String].flatMap(_.split(" ")) val words = articles.as[String].flatMap(_.split(" "))

val urls = words.filter(_.startsWith("http")) val urls = words.filter(_.startsWith("http"))

val occurrences = urls.groupBy("value").count() val occurrences = urls.groupBy("value").count()

occurrences.show() ——=Val query = occurrences.writeStream

= .outputMode("complete")

format("console")
"complete” write the entire result for .start()
every result update
"append” append new results;
| old results should not change
"update” output only changed results

Streaming output sinks:

Files "parquet”, "orc", "json", "csv", etc.
guery.awaitTermination Kafka "kafka" pointing to a Kafka topic
Foreach .foreach(...)

Console "console"
Memory "memory" with .queryName("...")

Processing Streams
Examples

5 sTOrRM B .

i

Institut

Storm

» A free and open source distributed real-time computation system (stream processor)

= Competes with Apache Flink in stream processing speed

= Creates a directed acyclic graph (DAG) of “spout” and “bolt” vertices

Spout = streaming data source

Bolt = data transformation operator

= Designed for:

real-time analytics
online machine learning
continuous computation
distributed RPC

ETL

= Guarantees:

scalability
fault-tolerance

“best effort”, “at least once”, and

“exactly once” processing capabilities ;‘_erge;"ape”bmk
ae

ease to set up and operate

Processing Streams
Examples é; STORM

public class RandomSentenceSpout extends BaseRichSpout {
SpoutOutputCollector collector;

izl szl A source that streams some text lines

@0verride

public void open(Map conf, TopologyContext context, SpoutOutputCollector collector) {
_collector = collector;
~rand = new Random();

}

@0verride

public void nextTuple() { 2 Text to be streamed
Utils.sleep(100);
String[] sentences = new String[]{ "the cow jumped over the moon", "an apple a day keeps the doctor away",

"four score and seven years ago", "snow white and the seven dwarfs", "i am at two with nature" };
String sentence = sentences[rand.nextInt(sentences.length)];
_collector.emit(new Values(sentence));

}

@0verride
public void ack(Object id) {
}

@0verride
public void fail(Object id) {

’ z Output format
@0verride

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word")):

}

i@

Hasso
Plattner
Institut

http://admicloud.github.io/
www/storm.html

ThorstenPapenbrock
Slide 51

Processing Streams
Examples é; STORM

public class RandomSentenceSpout extends BaseRichSpout {
SpoutOutputCollector collector;
Random rand;

|
< Storm bolds implement UDFs

public static class SplitSentence extends BaseBasicBolt {
@0verride
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));

}

@0verride

public Map<String, Object> getComponentConfiguration() {

. return null; z A flatMap() implementation

public void execute(Tuple tuple, BasicOutputCollector basicOutputCollector) {
String sentence = tuple.getStringByField("sentence");
String words[] = sentence.split(" ");
for (String w : words) {
basicOutputCollector.emit(new Values(w));
}
}

}

@override
public void fail(Object id) {
}

@0verride
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word")):

}

i@

Hasso
Plattner
Institut

http://admicloud.github.io/
www/storm.html

ThorstenPapenbrock
Slide 52

Processing Streams
Examples é; STORM

public class RandomSentenceSpout extends BaseRichSpout {
SpoutOutputCollector collector;
Random rand;

public static class SplitSentence extends BaseBasicBolt {
@0verride
public void declareOQutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));

public static class WordCount extends BaseBasicBolt {
Map<String, Integer> counts = new HashMap<String, Integer>();

@override

public void execute(Tuple tuple, BasicOutputCollector collector) {
String word = tuple.getString(0);

Integer count = counts.get(word);
if (count == null)
count = 0;

Another flatMap() implementation

count++;

counts.put(word, count);
collector.emit(new Values(word, count));

#_____________.._J
- N Streaming output: emit every update

@O0verride

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word", "count"));

}

=T @

}
8

public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word")):

}

i@

Hasso
Plattner
Institut

http://admicloud.github.io/
www/storm.html

ThorstenPapenbrock
Slide 53

Processing Streams @
Examples = STORM

public class RandomSentenceSpout extends BaseRichSpout {

SpoutOutputCollector collector;
Random rand;

i@

Hasso
Plattner
Institut

http://admicloud.github.io/
www/storm.html

“-"Uﬂ-—

public static class SplitSentence extends BaseBasicBolt {
@0verride

More on Apache Storm @ http://storm.apache.org/

T @
~

Map<String, Integer> counts = new HashMap<String, Integer>();

public void declareOQutputFields(OutputFieldsDeclarer declarer) { /”——
declarer.declare(new Fields("word")); =K
public static class WordCount extends BaseBasicBolt { I

public static void main(String[] args) throws Exception {

Parallelism hint for spouts/bolts

TopologyBuilder builder = new TopologyBuilder();
builder.setSpout("spout", new RandomSentenceSpout(), 5);

builder.setBolt("split", new SplitSentence(), 8).shuffleGrouping("spout");
builder.setBolt("count", new WordCount(), 12).fieldsGrouping("split", new Fields("word"));

Config conf = new Config(); Define the grouping for the input of each bolt:

conf.setDebug(true);)

) - shuffle: assign randomly

if (args !'= null && args.length > @) { field: . by field |
conf.setNumWorkers(3); - niela: assign by Teia value

StormSubmitter.submitTopologyWithProgressBar(args[@], conf, builder.createTopology());
} else {

conf.setMaxTaskParallelism(3);
LocalCluster cluster = new LocalCluster(): Execute on CIUSter
cluster.submitTopology("word-count", conf, builder.createTopology());
Thread.sleep(10000) ;
cluster.shutdown();

: Execute locally
Runs until explicitly stopped

rstenPapenbrock
e 54

http://storm.apache.org/
http://storm.apache.org/

Processing Streams
Examples

) STORM

i

Hasso
Plattner
Institut

public class RandomSentenceSpout extends BaseRichSpout {
SpoutOutputCollector collector;
Random rand;

http://admicloud.github.io/
www/storm.html

public static class SplitSentence extends BaseBasicBolt {
@0verride
public void declareOQutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("word"));

public static class WordCount extends BaseBasicBolt {
Map<String, Integer> counts = new HashMap<String, Integer>(); ————

I

@override
public void execute(Tuple tuple, BasicOutputCollector collector) {
String word = tuple.getString(0);
Integer count = counts.get(word);
if (count == null)
count = 0;
count++;
counts.put(word, count);
collector.emit(new Values(word, count));

In-memory data structure
that grows indefinitely large

Fr

Implemented as a narrow flatMap()
and not as a wide groupBy()
to avoid blocking of the pipeline

}
}
@0verride
Eﬂ public void declareOutputFields(OutputFieldsDeclarer declarer) {
? declarer.declare(new Fields("word", "count"));
}
@l}
pub cluster.submitTopology("word-count™, conf, builder.createTopology());
d Thread.sleep(10000) ; rsten Papenbrock
}) cluster.shutdown(); e 55

I ————————————————————————————————————
Processing Streams

Hasso
Challenges and Limits ﬂmiﬁ?ﬁ{

Goal
= Query and analyze streaming data in real-time (i.e. as data passes by).
Challenges
» Limited memory resources (but endlessly large volumes of data)
= Only a fixed-size window of the stream is accessible at a time.
» QOld data is permanently gone (and not accessible any more)
= Only one-pass algorithms can be used.
= Endlessness contradicts certain operations Distributed Data

= E.g. sorting makes no sense, i.e., no sort-merge-joins or groupings Management

. Stream Processin
(on the entire stream!). g

= Input cannot be re-read or easily back-traced
. ThorstenPapenbrock
= Fault tolerance must be ensured differently. Slide 56

Processing Streams ﬂ Hasso
Plattner
Concepts Institut

Windows While sliding over

= A continuous segment of the stream usually implemented as a buffer the events,
successive windows

= New events oust the oldest events from the window. may or may not
= Events within the window can be accessed arbitrarily often. overlap

= Bounded in size usually using a time interval or a maximum number of events

Window

Distributed Data
Management

At the heart of processing Stream Processing
infinite streams, as they let us
make exact statements ThorstenPapenbrock

for concrete sub-sequences Slide 57

Processing Streams
Concepts

Hasso
Plattner
Institut

Standing queries

» Persisted queries that are served with volatile event data (reversed DBMS principle)
* Produce a streaming output of “complex events”

= Apply event checking, pattern matching, correlation analysis, aggregation, ...

= QOperate on windows

4 N

Window

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 58

Processing Streams
WindOWS / File-based micro-batching!

Tumbling Windows

Hasso
Plattner
Institut

= Fixed-length, non-overlapping windows
- New window starts when previous window ended (e.g. successive intervals of 3 seconds or 100 events)

Hopping Windows

= Fixed-length, overlapping windows with fix steps
- Defined by window length and hop width (e.g. intervals of 3 seconds starting every 2 seconds)

Sliding Windows

» Fixed-length, overlapping windows with event dependent steps
- Either new events oust old events or events stay for a certain amount of time

Session Windows

= Arbitrary-length, overlapping windows Distributed Data
- Fix start- and end-event (e.g. user logs in; user logs out or session times out) Management
9 6 8 4 7 3 8 4 > 1 3 > E:> Stream Processing
L J L J L J \ J
| | Y T
\ Y %—'—%'é—'—% Y J ThorstenPapenbrock
|_t'__l—=—'—'\‘#—|—r_.‘—'_;=_l Slide 59
L s %] \ I ")
L v L g v

Processing Streams Hasso
Windows and Parallelization ﬂ e

How does parallelization happen?

A We expect a repartition() here, but for streaming scenarios
and overlapping windows, this should be a stable operation in

Different windows can be accordance with event/ingestion/processing time and order.

processed in parallel, but how do Z('/i

we parallelize one window?

Window

1

One input stream of events;
not pre-partitioned by e.g. HDFS

Distributed Data

Management
Stream Processing
Process sequences of <) The framework does not
logically related events automatically know which Thorstenp rock
elements belong together and \orstenFapenbroc
which can be processed in parallel. | Slide 60

Processing Streams
Windows and Parallelization

Hasso
Plattner
Institut

Non-Keyed Windows

Partition a stream into another stream of buckets

For parallel processing, events need to be replicated

(not supported by all streaming frameworks)

» Usually no parallelization without keying

Keyed Windows

E.g. event 2 is in two windows

that would be on two different hosts
when distributing these windows.

>

s

Partition a stream into multiple other streams of buckets (one per key value)

Output streams can naturally be processed in parallel without replication

» Default stream parallelization technique

N

Also called partitioned windows

Distributed Data

o
B
1,11> | 1,6 2
A

—>

- e
2,12> | 2,7 2
A

s)) e
3,1o> | 39 A
A \,

A Management
1,2 > [11 > Stream Processing
2,4 | 23 }

, ThorstenPapenbrock
s) 35} Slide 61

Processing Streams
Windows and

Hasso
Plattner
Institut

Parallelization

Non-Keyed Windows
stream
.windowAlI(...)
[.trigger(...)]
[.evictor(...)]
[.allowedLateness(...)]

<=
<=
<=
<=

[.sideOutputLateData(...)] <-
.reduce/aggregate/fold/apply() <- required: "function"

required: "assigner"

optional: "trigger" (else default trigger)

optional: "evictor" (else no evictor)

optional: "lateness" (else zero)

optional: "output tag" (else no side output for late data)

éFlink

[.getSideOutput(...)] <- optional: "output tag"
o e E o
Keyed Windows _
stream
.keyBy(...) <- keyed versus non-keyed windows
.window(...) <- required: "assigner"
[.trigger(...)] <- optional: "trigger" (else default trigger) Distributed Data
[.evictor(...)] <- optional: "evictor" (else no evictor)
[.allowedLateness(...)] <- optional: "lateness" (else zero) I' Management
[.sideOutputLateData(...)] <- optional: "output tag"” (else no side...) | 1,11 | 1,6 | 1,2 | 1,1 Stream Processing
.reduce/aggregate/fold/apply() <- required: "function" ' \)%
[.getSideOutput(...)] <- optional: "output tag"
| [212 >| 27 | 24 | 23
') v ! ThorstenPapenbrock
https://ci.apache.org/projects/flink/flink-docs- | 3,10>| 3,9>| 318>| 3'5> Slide 62
stable/dev/stream/operators/windows.html#triggers Ul 1% A 1

https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html
https://ci.apache.org/projects/flink/flink-docs-stable/dev/stream/operators/windows.html

Processing Streams
Examples

Hasso
Plattner
Institut

Flink

'/ Get the execution environment
val env = StreamExecutionEnvironment.getExecutionEnvironmen

val text = env.socketTextStream("localhost", 4242, '\n") 2 Get input data by connecting to the socket

1

val windowCounts = text % Parse the data, map the words, and group them

flatMap { w => w.split("\\s") }
.map { w =>WordWithCount(w, 1) } Z Define a sliding window of size 5 seconds that slides every 1 second
.keyBy("word") -

timeWindow(Time.seconds(5), Time.seconds(1)) |

.sum("count") — Aggregate the counts per window
windowCounts.print().setParallelism(1)— 7
env.execute("Socket Window WordCounﬁ Print the results with a single thread, rath'er than in parallel

case class WordWithCount(word: String, count: Long) ThorstenPapenbrock

Slide 63
More on Apache Flink @ https://flink.apache.org/

https://flink.apache.org/
https://flink.apache.org/

i

Processing Streams ﬂ Hasso
Examples CQL Inetitut

Continuous Query Language
= Developed at Stanford University: http://www-db.stanford.edu/stream

= Used to define standing queries for windows of a stream

SELECT count(*)/ﬂ Z window (defined using time)
FROM Requests R [RANGE 1 Day PRECEDING]

WHERE R.domain = ‘stanford.edu’

“Count the number of requests to stanford.edu for the last 1 day.”

SELECT count(*) % partitioning (by attribute value)

FROM Requests R [PARTITION BY R.client_id
ROWS 10 PRECEDING /JI window (defined using size)
WHERE R.domain = ‘stanford.edu’]
WHERE R.url LIKE ‘http://cs.stanford.edu/%’ ThorstenPapenbrock

“"From the last 10 requests of a user to standord.edu, count all her calls to cs.” Slide 64

http://www-db.stanford.edu/stream
http://www-db.stanford.edu/stream
http://www-db.stanford.edu/stream

Processing Streams
Events and Time

Event Time

= Creation time of the event on the producer (when it occurred)

Ingestion Time

= Arrival time of the event at the stream processor (when it was received)
Processing Time

= QOperation time of the event on the stream processor (when it had an effect)

Stream processors (e.g. Flink)
let you choose which time to
use for windowing!

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 65

Processing Streams
Event Time vs. Processing Time

V1

ey,
Vigy

\

Web server Qﬂﬂﬂﬂﬂﬂﬂﬂ{]ﬂ[}{]ﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂU[}[l[Iﬂﬂﬂl]ﬂl]l]ﬂﬂﬂﬂﬂﬂﬂﬂlﬂﬂﬂﬂﬂﬂﬂﬂﬂ@ﬂﬂ[{ﬂﬂﬂﬂﬂﬂﬂDﬂﬂﬂﬂﬂ[} >

e

time

Stream processor nnuunhnﬂuuhuuuu I]IF i mﬁ{mmmnmmmmu

[

uumuw[l\]ﬂﬂﬂﬂ»

(il

Rate as measured
by processing time

10

Processing Time F ;

0

Actual request rate

) 10 w —0— —C —0 —o——&
Event Time g ; .- :

0

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 66

Processing Streams Hasso

: Plattner
Events and Time Institut
Event Time
= Creation time of the event on the producer (when it occurred)
Ingestion Time
= Arrival time of the event at the stream processor (when it was received)
Processing Time
= QOperation time of the event on the stream processor (when it had an effect)
Unpredictable Time Lag

_ Recall lecture on
= Events might be delayed due to ... “Distributed Systems” Distributed Data
Management

= congestion, queuing, faults, ...

T

Stream Processing

= Events might be out-of-order due to ...

* message loss and resend, alternative routing, ... ThorstenPapenbrock

= Event time might be measured differently due to ... Slide 67

= multiple clocks in distributed systems, clock skew and correction, ...

Processing Streams Hasso
Event Time vs. Processing Time Inatitut

Solutions % Many events (e.g. sensor or log)
= Assign timestamps as early as possible: A e e AT |

> producer > leader > time-synced worker > un-synced worker

= Assign multiple timestamps

> creation-time, send-time, receive-time, forward-time, ... % s tRR el = A=A N e

= Solve time lag programmatically:

» Exchange a fixed event frequency (e.g. frequency = 1 second) filming order % narrative order

> Reasoning over events (e.g. order(X) > pay(X) > deliver(X))
Distributed Data
Management

Stream Processing

CEPISODEIV EPISODE V EPISODE VI EPISODE 1 EPISODEI EPISODEIN EPISODE VI fi?)«éifllf ONE Thorsten Papenbrock
Slide 68

Star Wars: Episode IV - A N.. Star Wars: Episode V - The... Star Wars: Episode VI - Ret.. Star Wars: Episode | - The ... Star Wars: Episode Il - Atta.. Star Wars: Episode Il - Rev.. Star Wars: Episode VII - Th... Rogue One: A Star Wars St..

Processing Streams

Hasso
Completing a Window ﬂmiﬁ?ﬁ{

Problem

» How does a stream worker know that all events for a certain window have arrived?
(as events might be delayed > straggler events)

Solution
= Declare a window as completed if ...
a) the first event for next window arrives or
b) a timeout for this window has elapsed. o
Distributed Data
* Handle straggler events after completion of their window by ... Management
a) ignoring them (maybe counting/reporting ignored stragglers) or Stream Processing

b) publishing an update for their window or
o . ThorstenPapenbrock
c) assigning them to the next window. Slide 69

Processing Streams

ﬂ Hasso
Fault Tolerance e

cannot re-execute

Cmep | Treduce” Umep | [map | [reduce | [map | reduce |
| |
unbounded;
volatile; any size -

Issues Distributed Data

Management
= Unbounded:

» Jobs cannot wait making their output visible until their stream finishes

Stream Processing

= Volatile: ThorstenPapenbrock

> If a fault occurs, stream data cannot be re-read Slide 70

Processing Streams

ﬂ Hasso
Fault Tolerance e

Microbatching and Checkpointing
* Microbatches (see Spark):
= Tumbling windows that are treated as batches (cached, checkpointed, ...).
= Windows represent state that is written to disk and serves to recover from faults.
» Checkpoints (see Flink):
= Rolling checkpoints that are triggered periodically by barriers in the event stream.
= QOperator state is written to disk and serves to recover from faults.
= Checkpoints are not tied to particular window sizes.
= Both strategies ensure that every event is processed. z::::::f:ngata
= No event is lost until it produced some output. Stream Processing
» Still problematic:

= Actions that recover from faults might produced redundant outputs ThorstenPapenbrock
to external event sinks (databases, message brokers, HDFS, ...). Slide 71

Processing Streams

ﬂ Hasso
Fault Tolerance e

Atomic Commit (revisited)
* Avoid redundant outputs using a commit protocol in conjunction with every event sink.
= Commits are logged, which helps to check whether an output happened before.
= Single event commits are cheaper than transaction commits.
= Still a research area with only a few systems supporting it:
= Google Cloud Dataflow, VoltDB, Kafka (in development)
Idempotence
= Avoid redundant output effects using only idempotent output operations.
= Idempotent operation = operation that has the same effect regardless how often it is applied.
= Examples (multiple calls always replace the existing data with itself):
= Set key to value; Create file with name; Delete resource; Overwrite content with text
= Many non-idempotent operations can be made idempotent: ThorstenPapenbrock

= Add an offset/identifier to each output event that identifies redundancy. Slide 72

Processing Streams
Joins

Hasso
Plattner
Institut

Stream-Stream Join
= Task: Join events in stream A with events in stream B.

= Problem: Joins require all events of one side to be randomly accessible, but stream is endless.
= Solution: Window Joins

= One side of the join is kept in memory as a window
(e.g. session window of logged-in users).

= The other side of the join is probed against the events of that window
(e.g. request events to an API).

= Straggler events are dropped. Distributed Data

. Management
Stream-Table Join 9
Stream Processing

» Task: Join events in a stream with events in a database.
= Problem: Database is too large for memory and too slow for stream checks.

ThorstenPapenbrock
= Solution: Database Partitioning/Replication Slide 73

= Forward the stream to different partitions/replica that perform different parts of the join.

Processing Streams

urther Reading

The Dataflow Model: A Practical Approach to Balancing
Correctness, Latency, and Cost in Massive-Scale,
Unbounded, Out-of-Order Data Processing

Tyler Akidau, Robert Bradshaw, Craig Chambers, Slava Chernyak,
Rafael J. Ferndndez -Moctezuma, Reuven Lax, Sam McVeety, Daniel Mills,
Frances Perry, Eric Schmidt, $am Whittle
Google

[takidau, robertwb, chambers, chernyak, rfernand,
relax, sgme, millsd, fjp, cloude, samuelw);@google.com

ABSTRACT

Unbounded, unordered. global-scale datasets are inereas-
ingly comumon in day-to-day business (e.g. Web logs, mobile
usage statistics, and sensor networks). At the sume time.
consumers of these datasets have evolved sophisticated re-
quirements, such as eveni-time ordering and windowing by
features of the data hemselves, in addition to an insatisble
lunger for faster answers, Meanwhile, practicality dictates
that one can never fully optimize along all dimensions of cor-
rectness, latency, and cost for these types of input. A3 o re-

1. INTRODUCTION

Modern data. processing is a complex and e
From the scale enabled by \14mnm\v.«[u.\ﬂm ifs sucecssars
(e Hadoop [4], Pig [19]. Hive [2]. $). to the vast
body of work on stream \gwm\mmsu[. community (e
query systems [1, 14, 15 windowing [22. data streams [24]
time domains 28], semantic modds [0]), to the more recent
forays in lowlatency processing such 1s Spark Sireaming
[34]. MillWheel, and Storm [5]. modern consumers of data
sicld emasable amounis of power n shaping and tan-

sult. data processing ft with th lary
af how to reconcile the tensions between these scemingly
competing propositions. often resulting in disparate im ple-
mentations and systems.

We prapose that & fndsmental shift of approach is nec-
asary to deal with these evolwed requiranents in modem
data processing. We as a field must stop trving o groom un-
bounded datasets into finite pools of information that even-
tually become com plete, and instead live and breathe under
the assumption that we will never know if or when we have
seen all of our data, ouly that new data will arrive. old data
may be retractad, and the ouly way to make this problem
tractable is via principled abtractions that allow the prac-
titioner the choico of appropriate tradeoffs along the axes of
it erest: correctuess, latency, and cost.

In this paper, we present one such approach, the Dataflow
Model', along with a detailed examination of the semantics
it enables, an overview of the core prineiples that guided its
design, and a validation of the model itself via the real-world
cxperiences that led ta its devclopment

"We we e termn Dataflo Mol 1o dessibe the proc
s, ol of Gongle Clon Dt aflows ()] which is e
oot Eemclogy vt Flumedava 13 ,| "and AW heel (2

This work i lbemel under the Crestive Commom Atibuion-
NonCommercial-NoDerivs 3.0Unported Lice e To view a copy of this I
cemse. visit hpereativecemmons. onglic ense by -ne-ndf3 . Oin per
mission prior ko any use heyond those covensd by the lkeme. Contiet
ing infodvidhorg. Atickes from his volume
it o presen their r=\|m.\ e 415 ntemaons Coule s o
Ry Lare Dt Bomcs, Ausiet 31 - o aetnber 4 2005, Kol Coo

e of the VLB Edianens el 8, Now 12
Comehen TS VLDB Eadowmment3150 $097 1568

ing inte i t with far
greater value. Yet, existing models i e wil Bl
short in a mumber of common use cases.

Consider an initial example: a streaming vides provider
wants to monetize their corbent by displaying video ads and
billing advertisers for the amount. of advertising watched.
The platform supports online and affline views for content
and ads. The video provider wants to know how muich to bill
cach advertiser each day, as well as aggregate statstics about
the videos and ads. In addition, they want o efficiently run.
oflle experiments aer asgeswaihs of Listrical data
. providers want 1o know how cften
o b g e ion st g wsichued with which
content/ads, and by which demographic groups. They alsa
want. 1o know how much they are being charged/ paid. They
want all of this information as quickly as passible, so that
they ean adjust budgets and bids. change targeting, tweak
campaigns, and plan future directions in as close to real
time as passible. Since money is imvolval, correctness is
paramount

Though data processing systems are complex by nature,
the video provider wants a programming model that is sim-
plo and et At ey, e tho Iermet bas 5o geatly
expanded the reach of any business that can be parceled
along its backbone. they also require a system that can han-
dle the disspora of global scale dat

The information that must be caleulated for such a use
case is cxsentially the time and lengt b of each video viewing,
who viewed it, and with which ad or content it was paired
(i.e. per-user. per-video viewing sessions). Conceptually
this is straightforward . yet. existing models and systems all
fall short of meeting the stated requiremerts

Bateh systems such as MapReduce (and its Hadoop vari-
ants, including Fig and Hive). Flumelava, and Spark sulfer

T. Akidau, R. Bradshaw, C. Chambers, S. Chernyak, R. J.
Fernandez-Moctezuma, R. Lax, S. McVeety, D. Mills, F. Perry, E.
Schmidt, and S. Whittle. The dataflow model: a practical
approach to balancing correctness, latency, and cost in massive-
scale, unbounded, out-of-order data processing. Proceedings of
the VLDB Endowment 8, 12 (August 2015), 1792-1803.
DOI=http://dx.doi.org/10.14778/2824032.2824076

Flink vis

Concepts
Quickstart

Examples

Project Setup
Application Development
Deployment & Operations

Debugging & Monitoring
Internals

Javadocs
Scaladocs

Project Page

Go

Pick Docs Version v

https://ci.apache.org/projects/

Home

_ , flink/flink-docs-release-1.6/
Apache Flink Documentation

This documentation is for Apache Flink version 1.6. These pages were built at: 01/16/19, 02:01:50 AM UTC.

Apache Flink is an open source platform for distributed stream and baich data processing. Flink's core is a streaming dataflow engine
that provides data distribution, communication, and fault tolerance for distributed computations over data streams. Flink builds batch
processing on top of the streaming engine, overlaying native iteration support, managed memory, and program optimization.

First Steps

« Concepts: Start with the basic concepts of Flink's Dataflow Programming Model and Distributed Runtime Environment. This will
help you understand other parts of the documentation, including the setup and programming guides. We recommend you read
these sections first.

« Quickstarts: Run an example program on your local machine or study some examples

'+ Programming Guides: You can read our guides about basic API concepts and the DataStream API or the DataSet AP to learn
how to write your first Flink programs.

Deployment

Before putting your Flink job into production, read the Production Readiness Checklist.

Distributed Data
Management

Release Notes

Release notes cover important changes between Flink versions. Please carefully read these notes if you plan o upgrade your Flink
setup to a later version

Stream Processing

+ Release notes for Flink 1
+ Release notes for Flink 1.5.

ThorstenPapenbrock
Slide 74

External Resources

« Flink Forward: Talks from past conferences are available at the Flink Forward website and on YouTube. Robust Stream
Processing with Apache Flink is a good place to start.

« Training: The training materials from data Artisans include slides, exercises, and sample solutions.

« Blogs: The Apache Flink and data Artisans blogs publish frequent, in-depth technical articles about Flink

https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/
https://ci.apache.org/projects/flink/flink-docs-release-1.6/

Processing Streams

Further Reading

Hasso
Plattner
Institut

https://www.oreilly.com/ideas/the-
world-beyond-batch-streaming-101
\

OREILLY"

Streaming
Systems

THE WHAT, WHERE, WHEN, AND HOW
OF LARGE-SCALE DATA PROCESSING

Tyler Akidau, Slava Chernyak
& Reuven Lax

Streaming 101: The world beyond batch

A high-level tour of modern data-processing concepts.

By Tyler Akidau. August 5, 2015

The call for proposals is now open for the Strata Data Conference in London, April 29-May 2,
2019.

Editor’s note: This is the first post in a two-part series about the evolution of data processing,
with a focus on streaming systems, unbounded data sets, and the future of big data. See part
two. Also, check out "Streaming Systems,"” by Tyler Akidau, Slava Chernyak, and Reuven Lax.

Streaming data processing is a big deal in big data these days, and for

gOOd reasons. AmonQSt them: Three women wading in a stream gathering leeches
(source: Wellcome Library, London)
« Businesses crave ever more timely data, and switching to streaming is a

good way to achieve lower latency.

» The massive, unbounded data sets that are increasingly common in
modern business are more easily tamed using a system designed for
such never-ending volumes of data.

« Processing data as they arrive spreads workloads out more evenly over
time, yielding more consistent and predictable consumption of
resources.

Despite this business-driven surge of interest in streaming, the majority of
streaming systems in existence remain relatively immature compared to
their batch brethren, which has resulted in a lot of exciting, active
development in the space recently.

https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101
https://www.oreilly.com/ideas/the-world-beyond-batch-streaming-101

Processing Streams

Further Reading

G grri Mam e

Jure Leskovec
Anand Rajaraman
Jeffrey David Uliman

Mining of
Massive Datasets

SECOND ECITION

e Mee e

=

B O U

Data Mining
Large-Scale File Systems and Map-Reduce
Finding Similar Items
Mining Data Streams
= Sampling and Filtering
= Counting and Aggregation
= Estimation
» Decaying Windows
Link Analysis
Frequent Itemsets
Clustering
Advertising on the Web
Recommendation Systems

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 76

Stream Processing
Check yourself

Given is a stream of elements ey, ..., e,. The task is to select a random
sample of k elements (k <= n) from the stream, where each element of the
stream should have the same probability to be sampled. The size of the
stream is not known in advance.

Give an algorithm that solves this problem with O(k) memory and show that
each element has the same probability to be sampled.

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

Tobias Bleiful3
Slide 77

Homework

Log Data

thorsten@tody

ix-esc-ca2-07.ix.netcom.com - -

ix-esc-ca2-07.ix.netcom.com - -

kgtyk4.kj.yamagata-u.ac.jp - -
kgtyk4.kj.yamagata-u.ac.jp - -

ix-esc-ca2-07.ix.netcom.com - -

kgtyk4.kj.yamagata-u.ac.jp - -
kgtyk4.kj.yamagata-u.ac.jp - -
kgtyk4.kj.yamagata-u.ac.jp - -
kgtykd.kj.yamagata-u.ac.jp - -

ix-esc-ca2-07.ix.netcom.com - -

head -n 58 access_ log Aug95
in24.inetnebr.com - - [B1/Aug/1995:00:080:01 -8488] "GET /shuttle/missions/sts-68/news/sts-68-mcc-05.txt HTTP/1.6" 288 1839
uplherc.upl.com - - [081/Aug/1995:00:00:87 -04088] "GET / HTTP/1.8" 384 0

uplherc.upl.com - - [01/Aug/1995:808:00:088 -0408] "GET /images/ksclogo-medium.gif HTTP/1.8" 384 ©

uplherc.upl.com - - [01/Aug/1995:80:00:08 -0408] "GET /images/MOSAIC-logosmall.gif HTTP/1.0" 384 ©

uplherc.upl.com - - [081/Aug/1995:00:00:08 -0488] "GET /images/USA-logosmall.gif HTTP/1.8" 384 8

133.43.96.45 - - [01/Aug/1995:00:80:22 -0400]
133.43.96.45 - - [01/Aug/1995:00:80:23 -0400]
133.43.96.45 - - [01/Aug/1995:00:80:23 -0400]
www-c8.proxy.aol.com - - [81/Aug/1995:00:00:24 -0480] "GET /shuttle/countdown/ HTTP/1.8" 2060 4324
133.43.96.45 - - [01/Aug/1995:00:80:25 -08400] "GET /history/apollo/images/apollo-logol.gif HTTP/1.8" 200 1173
ix-esc-ca2-07.ix.netcom.com - - [@1/Aug/1995:080:00:25 -8408] "GET /shuttle/resources/orbiters/discovery-logo.gif HTTR/1.8" 200 4179
piwebady.prodigy.com - - [81/Aug/1995:00:00:32 -0400] "GET /images/NASA-logosmall.gif HTTR/1.0" 288 786
slppp6.intermind.net - - [01/Aug/1995:00:00:32 -0400] "GET /history/skylab/skylab-1.html HTTP/1.8" 280 1659

Analytics

[01/Aug/1995:80:00:09 -8400] "GET /images/launch-logo.gif HTTP/1.8" 260 1713

uplherc.upl.com - - [01/Aug/1995:80:00:18 -0400] "GET /images/WORLD-logosmall.gif HTTP/1.8" 304 ©
slppp6.intermind.net - - [81/Aug/1995:00:00:18 -0408] "GET /history/skylab/skylab.html HTTP/1.0" 280 1687
piwebady.prodigy.com - - [81/Aug/1995:00:00:10 -0400] "GET /images/launchmedium.gif HTTP/1.0" 280 11853
slppp6.intermind.net - - [01/Aug/1995:00:00:11 -0408] "GET /history/skylab/skylab-small.gif HTTP/1.08" 2600 9202
slppp6.intermind.net - - [81/Aug/1995:00:00:12 -04008] "GET /images/ksclogosmall.gif HTTP/1.8" 288 3635

[81/Aug/1995:80:00:12 -8400] "GET /history/apollo/images/apollo-logol.gif HTTR/1.08" 280 1173

slppp6.intermind.net - - [01/Aug/1995:00:00:13 -04080] "GET /history/apollo/images/apollo-logo.gif HTTP/1.0@" 280 3047
uplherc.upl.com - - [81/Aug/1995:00:00:14 -04088] "GET /images/NASA-logosmall.gif HTTR/1.8" 384 @
133.43.96.45 - - [01/Aug/1995:00:00:16 -04008] "GET /shuttle/missions/sts-69/mission-sts-69.html HTTP/1.8" 280 18566

[B1/Aug/1995:80:00:17 -8400] "GET / HTTP/1l.0" 2088 7280
[B1/Aug/1995:00:00:18 -8400] "GET /images/ksclogo-medium.gif HTTP/1.0" 280 5866

dBucré.fnal.gov - - [01/Aug/1995:88:00:19 -08408] "GET /history/apollo/apollo-16/apollo-16.html HTTP/1.8" 260 2743

[61/Aug/1995:808:00:19 -8400] "GET /shuttle/resources/orbiters/discovery.html HTTP/1.8" 200 6849

doucr6.fnal.gov - - [01/Aug/1995:00:00:20 -8480] "GET /history/apollo/apolle-16/apolle-16-patch-small.gif HTTP/1.0" 200 14897

[01/Aug/1995:80:00:21 -0400] "GET /images/NASA-logosmall.gif HTTP/1.8" 384 @
[01/Aug/1995:80:00:21 -08400] "GET /images/MOSAIC-logosmall.gif HTTP/1.0" 384 ©
[B1/Aug/1995:00:00:22 -8400] "GET /images/USA-logosmall.gif HTTP/1.0" 304 0
[B1/Aug/1995:00:00:22 -8400] "GET /images/WORLD-logosmall.gif HTTP/1.8" 384 @

"GET /images/KSC-logosmall.gif HTTP/1.0" 200 12084

"GET /shuttle/missions/sts-69/sts-69-patch-small.gif HTTP/1.8" 280 8883
"GET /images/launch-logo.gif HTTP/1.8" 280 1713

[61/Aug/1995:080:00:34 -0400] "GET /images/ksclogosmall.gif HTTP/1.8" 200 3635

in24.inetnebr.com - - [B1/Aug/1995:00:080:34 -08488] "GET /shuttle/missions/sts-68/news/sts-68-mcc-06.txt HTTP/1.6" 288 2303
slppp6.intermind.net - - [81/Aug/1995:00:080:39 -08480] "GET /history/skylab/skylab-logo.gif HTTP/1.6" 280 3274

ix-esc-ca2-07.ix.netcom.com - - [B1/Aug/1995:00:80:39 -8480] "GET /shuttle/resources/orbiters/orbiters-logo.gif HTTP/1.06" 288 1932
uplherc.upl.com - - [01/Aug/1995:80:00:43 -04008] "GET /shuttle/missions/sts-71/mission-sts-71.html HTTP/1.0" 280 13458
uplherc.upl.com - - [01/Aug/1995:80:00:44 -04008] "GET /shuttle/missions/sts-71/sts-71-patch-small.gif HTTP/1.8" 200 12854

uplherc.upl.com - - [81/Aug/1995:00:00:45 -04088] "GET fimages/KSC-logosmall.gif HTTP/1.8" 200 1284

i

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 78

Homework

Log Data Analytics

Assignment

Task

Data Exploration: Find interesting insights in a log stream, such as
= the 90t percentile response size
= average number of requests per hour
= most popular clients and resources

Don’t break the memory!

Dataset

Two month's worth of all HTTP requests to the NASA Kennedy Space
Center WWW server in Florida:
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

Parameter

“java -jar YourAlgorithmName.jar --path access_log_Aug95 --cores 4”
Default path should be “./access_log_Aug95” and default cores 4

i

Hasso
Plattner
Institut

Distributed Data
Management

Stream Processing

ThorstenPapenbrock
Slide 79

http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html
http://ita.ee.lbl.gov/html/contrib/NASA-HTTP.html

| ri

Homework Hasso
; : Plattner
Inclusion Dependency Discovery - Rules Inotitet
Assignment
» Expected output
= Write your discoveries (text + value) to the console
= Use the following style for your output:
<text> : <value>
= Example output:
90th percentile response size : 7265
average number of requests per hour : 233
most popular client : www.hpi.de .
Distributed Data
most popular resource : www.hpi.de/DDM Management

Stream Processing

ThorstenPapenbrock
Slide 80

i

Homework ﬂ Hasso
Inclusion Dependency Discovery - Rules Inatitut
Assignment

= Submission deadline
= 27.01.2019 23:59:59

Submission channel

= ftp-share that we make available via email

Submission artifacts
= Source code as zip (Maven project; Java or Scala)
= Jar file as zip (fat-jar)

= a slide with your transformation pipeline(s) zf:::::f:n't)ata

Teams Stream Processing

= Please solve the homework in teams of two students

= Provide the names of both students in your submission (= folder name) ThorstenPapenbrock
Slide 81

+ ftext=readTextFile
« flatMap over lines in text:
a. check if regex matches on line
b. return matched groups as tuple
+ .countWindowAll(100000)
a. splitinto 100k chunks
* .process
a. Turn current chunk into list
b. Perform individual analysis
i. Group by HTTP status, find count of 200 and non-200
i. ~Group by clients, find most common client
1. Group paths for this client, find most common path
ii. ~Group by path, sum sizes to find path with max traffic usage

Team: Most Metrics
(Size Window)

Daily TimeFrame

1P with highest number of
requasts ™

Mostroquestod fla =+
FequestEvent Output
Total rumber of requests —»- Summary
Object

Total number of 404 status
codes

m

Team: Output Summary
(Time Window)

Distributed Data Management
Flink Homework - Pipeline

DataStream<String> datastream - env.readlextFils (path) ;7
datastream

Event ()] String -
wsAndRatermarks (new B imestampExtractor<
Tuple<String, Timestamp, String, Long, Long, Timestamp>>(Time.seconds(10}) {

nTimest

Long,

public long extractTimestamp (Tuple6<String, Timestamp, String,
Time element) {

return element.£5.getTime() ;

!

i
~keyBy (5)
. Aversge Request Size (strlen) ; 42
-Eameiin . Average Reply Size (byte) : 18037
-allowedL onds (10)) g most requests from host : pomas.it.bton.ac.uk, 353
.apply (new ay () most requested rescurce : /images/logosmall.gif, 1543
-keyBy (0) most requested root folder : /images, 10268

countindow (28)
.apply (new TimeWindowMerriesMonth(}) i~ window Month
B iirage Bequest Size - 43 L
env.esecute ("Streaming NASA Log”); Averags msply Size | 20410 Tooes gk
i L55se Kohlmeyer

Team: Most Metrics
(Time Window)

Log Data Analytics Pipeline

mave
unwanted
chars

Data Preparation

Find max and
min in each
window

Key by client

Collect output
and compute

Display result

Flink Environment

Team: Client Analytics

(Keyed Session Window)

FastFlinkStreams: Transformation Pipeline

I 1 1

Average o
Unique Suspicious
Requests per Visitors Server Errors. Hosts
Day

Http Parse

Log Log
Aggregate Result Events

Corrupted Log
Entries

Write to Console

Team: Disc Writing
(Time Window)

Homework

filter * statusCode = 200
Log Data Analytics

map + [path, size, count=1, changes=0)

keyBy « path

reduce « path, size, sum{count), sum(changes)

Goal

filter * changes =0

Which files could be cached in
a CON to reduce the traffic on

the server and how much M8 filter * count %1000 220

traffic would be saved.

« fileType, size, count
keyBy « fileType

reduce « fileType, sum(size), sum(count)
By filter

Julian Menzler
Max Klenk

+ fileType 1= “others"

« "amount of gif file requests to cache: X (¥ MBJ"

Team: Nice Use Case
(Keyed Window)

%ﬁ?\‘ 3 a Ty Chapter 11. Stream Proce o

Y

\ —— o .\. -

= =3 %8

Lam —=
e

Dataﬂow —y

" Tae WINDOW

\@0‘\{\1&\ e |
AN\

72 N NS AR N
"-Event @M.

