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A Distributed Query  
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Given 

 Relations R, S, T, U each on a different host (= site) 

 Query Q issued by an arbitrary sink node 

 

Task 

 Calculate the answer  

for Q on R,S,T,U 

in an efficient way. 

Distributed Query 
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Management Site 1 Site 2 Site 3 Site 4 

Sink 

R S T U 

Q 
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Easy Operations 

 Union: 

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 Site 3 Site 4 

Sink 

R S T U 

R ᴜ S ᴜ T ᴜ U 
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Easy Operations 

 Union: Send entire relations. 

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 Site 3 Site 4 

Sink 

R S T U 

R ᴜ S ᴜ T ᴜ U 
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Easy Operations 

 Union: Send entire relations. 

 Except and Intersect:  
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R S T U 

R ∩ S ∩ T / U 
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Easy Operations 

 Union: Send entire relations. 

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.  

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 Site 3 Site 4 

Sink 

R S T U 

R ∩ S ∩ T / U 

In case: 
R ∩ S ∩ T < U 
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Easy Operations 

 Union: Send entire relations. 

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.  

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 Site 3 Site 4 

Sink 

R S T U 

R ∩ S ∩ T / U 

In case: 
R ∩ S ∩ T > U 
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Easy Operations 

 Union: Send entire relations. 

 Except and Intersect: Send the smaller relation to the larger and the result to the sink. 

 Projections and Selections: 

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 Site 3 Site 4 

Sink 

R S T U 

NameR ᴜ σName=‘Nick’S 
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Easy Operations 

 Union: Send entire relations. 

 Except and Intersect: Send the smaller relation to the larger and the result to the sink. 

 Projections and Selections: Push operation down (if possible) and send the results to the sink. 
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Distributed Data 
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R S T U 

R ᴜ S 

NameR σName=‘Nick’S 
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Easy Operations 

 Union: Send entire relations. 

 Except and Intersect: Send the smaller relation to the larger and the result to the sink. 

 Projections and Selections: Push operation down (if possible) and send the results to the sink. 

 Grouping: 

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 Site 3 Site 4 

Sink 

R S T U 

γName,sum(Salary)R ᴜ S 
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Easy Operations 

 Union: Send entire relations. 

 Except and Intersect: Send the smaller relation to the larger and the result to the sink. 

 Projections and Selections: Push operation down (if possible) and send the results to the sink. 

 Grouping: Push operation  

down (if possible) and  

send the results  

to the sink. 

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 Site 3 Site 4 

Sink 

R S T U 

ᴜ S 

γName,sum(Salary)R 
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Easy Operations 

 Union: Send entire relations. 

 Except and Intersect: Send the smaller relation to the larger and the result to the sink. 

 Projections and Selections: Push operation down (if possible) and send the results to the sink. 

 Grouping: Push operation  

down (if possible) and  

send the results  

to the sink. 

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 Site 3 Site 4 

Sink 

R S T U 

γName,sum(Salary)(R ᴜ S) 
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Easy Operations 

 Union: Send entire relations. 

 Except and Intersect: Send the smaller relation to the larger and the result to the sink. 

 Projections and Selections: Push operation down (if possible) and send the results to the sink. 

 Grouping: Push operation  

down (if possible) and  

send the results  

to the sink. 

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 Site 3 Site 4 

Sink 

R S T U 

γName,sum(Salary)(R ᴜ S) 

Name,SalaryR Name,SalaryS 

A general optimization: 

Insert and push-down projections  
to decrease the amount of send data. 
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Join Operations 

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 Site 3 Site 4 

Sink 

R S T U 

R⋈S⋈T⋈U 
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Join Operations 

 Naïve approach: “Ship whole” 

 Send all relations 

 Few but large messages 

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 Site 3 Site 4 

Sink 

R S T U 

R⋈S⋈T⋈U 

We can do much better: 
Calculate the join on only the join attributes 

and then fetch the data afterwards. 
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 A join R⋈S over two relations R and S with  

 There are |R| and |S| many attributes in R and S, respectively. 

 There are #R and #S many values in R and S, respectively. 

 Each attribute value in R and S has a size of a. 

 Both R and S are stored on different hosts. 

 Assume that one side can be the sink node. 

 Two kinds of attributes: 

a. join-attributes  

(denoted as R.ID and S.ID  

but can have arbitrary names) 

b. data-attributes  

(denoted as R\ID and S\ID;  

= information that should be joined) 

 Naïve join on third node 

 Costs: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a 

 

Distributed Query 
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Management Site 1 Site 2 

Site 3 

R S 
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receive receive 

send send 
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 Naïve join on third node 

 Costs: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a 

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 

Site 3 

R S 

⋈ 

receive receive 

send send 

 Site join on one of the data nodes 

 Costs: |R| ∙ #R ∙ a 

 

|S| ∙ #S ∙ a |R| ∙ #R ∙ a 

Site 1 

R 

send 

Site 2 
⋈ 

receive 
S 

|R| ∙ #R ∙ a 
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 Site join on one of the data nodes 

 Costs: |R| ∙ #R ∙ a 

Distributed Query 
Optimization 

Distributed Data 
Management 

 Projection join based on join attributes 

 Costs: |ID| ∙ #R ∙ a + |ID| ∙ #(R⋈S) ∙ a + |R| ∙ #(R⋈S) ∙ a 

       = |ID| ∙ #R ∙ a + (|ID| + |R|) ∙ #(R⋈S) ∙ a 

 

 

Site 1 

R 

send 

Site 2 

⋈ 

receive 

S 

send 

ID 

receive 

⋈ 

ID 

send 

receive 

⋈ 

|ID| ∙ #R ∙ a 

|ID| ∙ #(R⋈S) ∙ a 

|R| ∙ #(R⋈S) ∙ a 

ID 

Site 1 

R 

send 

Site 2 
⋈ 

receive 
S 

|R| ∙ #R ∙ a 



Distributed Join Execution 

Comparison  

Slide 23 

Thorsten Papenbrock 

 Naïve join: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a 

 Site join: |R| ∙ #R ∙ a 

 Projection join: |ID| ∙ #R ∙ a + (|ID| + |R|) ∙ #(R⋈S) ∙ a 

 

 When is the side join better than the projection join? 

 

 |R| ∙ #R ∙ a > |ID| ∙ #R ∙ a + (|ID| + |R|) ∙ #(R⋈S) ∙ a    | Attribute size does not matter 

   <=>  |R| ∙ #R     > |ID| ∙ #R      + (|ID| + |R|) ∙ #(R⋈S) 

 

 If #R >> #(R⋈S) „If the join selectivity is high“ 

 If |R| >> |ID| „If many data-attributes exist“ 
Distributed Query 
Optimization 

Distributed Data 
Management 
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Distributed Query 
Optimization 

Distributed Data 
Management 

Site 1 

R 

send 

Site 2 

⋈ 

receive 

S 

send 

ID 

receive 

⋈ 

ID 

send 

receive 

⋈ 

ID 

Site 2 

S 

send 

Site 1 

⋈ 

receive R 

send 

ID 

receive 

⋈ 

|ID| ∙ #S ∙ a 

|R| ∙ #(R⋈S) ∙ a 

 (1): |ID| ∙ #R ∙ a + |ID| ∙ #(R⋈S) ∙ a + |R| ∙ #(R⋈S) ∙ a 

 (2): |ID| ∙ #S ∙ a +                              |R| ∙ #(R⋈S) ∙ a 
 

 If #R << #S, then (1) is likely better; otherwise (2) 

(with S being the relation on the site that should answer Q). 

 If we can choose the site for Q, then choose the smaller 

relation and strategy (2). 

 

(2) 

(1) 
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Three Sites  
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 Best solution so far: 

 Projection join (2): |ID| ∙ #S ∙ a + |R| ∙ #(R⋈S) ∙ a 

 Costs if the result is needed on some third site: 

   |ID| ∙ #S ∙ a + |R| ∙ #(R⋈S) ∙ a + (|R| + |S|) ∙ #(R⋈S) ∙ a  

 Which can be worse than the Naïve join on a third node if #(R⋈S) is large  

(i.e. if the join selectivity is small). 

 Naïve join:   |R| ∙ #R ∙ a + |S| ∙ #S ∙ a 

 

Distributed Query 
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Site 2 

S 

send 

Site 1 

⋈ 

receive R 

send 

ID 

receive 

⋈ 

Site 3 

receive 

send 



Distributed Join Execution 

Three Site Join  

Slide 26 

Thorsten Papenbrock 

Distributed Query 
Optimization 

Distributed Data 
Management Site 1 Site 2 

Site 3 

R S 

⋈ 

receive receive 

send send 

|S| ∙ #S ∙ a |R| ∙ #R ∙ a 

Site 0 

R 

send 

Site 2 

⋊ 

receive 
S 

send 

ID 

receive 

⋉ 

Site 1 
⋈ 

receive receive 

ID 

send 

send 

|ID| ∙ #R ∙ a 

|ID| ∙ #(R⋈S) ∙ a 

|R| ∙ #(R⋈S) ∙ a |S| ∙ #(R⋈S) ∙ a Again: If #(R⋈S) is much smaller 

than #R and #S, the pre-filtering 
improves the query performance. 
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Definition: 
      Given relation R with attribute set A and relation S with attribute set B.  
      The Semi-Join R ⋉ S is definied as 
  

                R ⋉ S  :=  A(R⋈ABS) 
                =  A(R) ⋈AB AB(S) 
                =  R⋈AB  AB(S) 

  

 Remarks 

 The join is a natural join (over common attributes AB). 

 For theta joins between R.X and S.Y it is: R ⋉ S := R⋈X=Y  Y (S) 

 S functions as a filter on R‘s tuples. 

 The semi-join is asymmetric. 

Distributed Query 
Optimization 

Distributed Data 
Management 
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 Semi-joins function as filters. 

 They can be used like selections and projections to minimize 
intermediate results before these are send to other sites. 

 Rules: 
 
         R⋈FS =  

 (R ⋉F S) ⋈F S 

 Filter R, then join with S 

 R⋈F (S ⋉F R) 

 Filter S, then join with R 

 (R ⋉F S) ⋈F (S ⋉F R) 

 Filter R and S, then join both results 

 

Distributed Query 
Optimization 

Distributed Data 
Management 



Distributed DBMSs 

Overview  

1. Distributed Query Execution 
 

2. Distributed Join Execution 
 

3. Bloom filter Optimized Joins 
 

4. Multi-Relation Joins 
 



Bloom filter Optimized Joins 

From a Database Exercise  

Slide 30 

Thorsten Papenbrock 

 “Find all titles and directors of films that are younger than 1980.” 

 SELECT F1.Titel, F2.Regie 

 FROM  Movie1.Filme1 F1, Movie2.Filme2 F2 

 WHERE  F1.Titel = F2.Titel 

 AND  F1.Jahr > 1980  

 Task: Minimize the number of transmitted bytes. 

 Tricks: 

 Transfer only necessary bytes: Rtrim() 

 Use better join order: Filme2 is smaller 

 Insert projections where possible 

 Use compression: Eliminate duplicates 

 DISTINCTs after semi-joins and projections 

 Bloom filter 

Distributed Query 
Optimization 

Distributed Data 
Management 
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Naive solution 

Best solution 



A Bloom filter is a probabilistic data structure that answers set containment 

questions in constant time and with constant memory consumption. 

 “Does element X appear in the set?” 

 Answer “no” is guaranteed to be correct. 

 Answer “yes” has a certain probability to be wrong (hence, “maybe”). 

 But then the concrete look-up will just fail. 

 Very nice property that allows the use of Bloom filters in exact systems. 

 Structure 

 Bitset of fixed size (typically a long array) 

 One (or more) hash functions 

Fast Storage and Retrieval 

Bloom filter (Recap) 

Burton H. Bloom, "Space/Time Trade-offs in Hash Coding with Allowable Errors", 
Communications of the ACM, volume 13, number 7, pages 422-426, 1970 

maybe no 
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Distributed Query 
Optimization 
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> 6,000 citations 
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Bloom filter  
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 Problem: Is f an element of column A? 

 Column A is large – must be stored on disk 

 Idea: Store small representation of A in main memory 

 Bloom filter H 

 Use H to probabilistically mark whether an element f is in A. 

 Test can fail, but only in one direction: 

 If k∈T, we cannot be sure whether k∈A. 

 If k∉T, we know that k∉A. 

 Use H for a probabilistic semi-join implementation! 
Distributed Query 
Optimization 

Distributed Data 
Management 
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Bloom filter for Semi-Joins 
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Bloom filter-based (semi-)joins 

 Also called hash-filter-joins 

 Use Bloom filter to calculate R⋉FS: 

1. Hash all values in R.F with funktion h into (small) hash tabelle H 

2. Transmit only H to S 

3.  fS.F with H(h(f))=0: f does not have a join partner in R; ignore local record. 

4.  fS.F with H(h(f))=1: f does probably have a join-partner in R; send local record. 

 

 The higher the join selectivity… 

 the lower the risk of false positives. 

 the smaller we can make H. 

 

Distributed Query 
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Distributed Data 
Management 



Bloom filter Optimized Joins 

Bloom filter for  
Semi-Joins 

Example 

 

1 
1 
1 
1 
0 
0 

1 
1 
1 
1 
0 
0 

6 Bit 

Quelle: VL-Folien, Alfons Kemper, TU München 

⋈C 

Hashfunktion: 
mod 6 

Falsch 

Positiv 
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Bloom filters as universal Trick 
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 Always use Bloom filters if … 

 sets of values need to be compared and 

 only a few hits are expected and 

 data transfer is expensive. 

 

 Examples: 

 „Normal“ hash joins 

 Star joins in data warehouses 

 Intersect and minus set operations 

Distributed Query 
Optimization 

Distributed Data 
Management 
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The Semi-Join Trick for Multi-Relation Joins  
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Task 

 Calculate the join across arbitrary many relations. 

 Example with three relations: 

  R  ⋈F   S  ⋈G T = 

 (R ⋉F S)             ⋈F (S ⋉G T)  ⋈G T = 

 (R ⋉F (S ⋉G T))  ⋈F (S ⋉G T)  ⋈G T =  

  … 

Approach 

 Use semi-joins on any relation that needs to be transmitted. 

 Semi-joins reduce the relations to only necessary tuples. 

 Hence, they are called “reducer”. 

 A relation is called “reduced” if it does not contain any tuple  

that is not needed for the final result. 

 Global property, because also remote relations reduce needed tuples. 

Distributed Query 
Optimization 

Distributed Data 
Management 
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Semi-Join Program 

 Given the realtions R1,…,Rn, a semi-join program is a sequence of semi-joins  

   Ri:=Ri⋉Rj  

 Comments: 

 We omit join attributes, because they result from the join query. 

 The effect of the semi-join is a reduction of the tuples in Ri. 

 

Full Reducer 

 Given a query Q=R1⋈…⋈Rn, a reducer for Ri in Q is a semi-join programm that removes 

all tuples from Ri that are not needed to calculate result(Q). 

 A full reducer for Q is a semi-join programm that is a reducer for all Ri in Q. 

 Comments: 

 The Ri do not need t be different (self-joins) 

 Intuition: reducer for relations – full reducer for queries 

 

Distributed Query 
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Multi-Relation Joins 

Full Reducer  

Slide 44 

Thorsten Papenbrock 

 

 
  R  ⋈F   S  ⋈G T = 
 (R ⋉F (S ⋉G T))  ⋈F (S ⋉G T) ⋈G T 

 

 

 Is this a full reducer? 

 No, because S and T are not „reduced“. 

 But it is enough to minimize network traffic, i.e., R is minimized before sending to S 

and S is minimized after its join with T before sending to T, right? 

 Yes, but only if the join ⋈F is calculated on S’s node and ⋈G on T’s node. 

 If the join is evaluated elsewhere, we transmit (S ⋉G T) and T. 

 Calculate full reducer first! 

 

Distributed Query 
Optimization 

Distributed Data 
Management 
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Full Reducer for linear Joins  
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 Given:       Q = R1 ⋈A R2 ⋈B ... ⋈Y R(n-1) ⋈Z Rn 

 Task:       Find a full reducer for Q that reduces all Ri. 

 

 Two-Phase Approach: 

 Forward: 

 R2‘ = R2 ⋉ R1 

 R3‘ = R3 ⋉ R2‘ = R3 ⋉ (R2 ⋉ R1) 

 ... 

 Rn‘ = Rn ⋉ R(n-1)‘ = ... 

 Backward: 

 R(n-1)‘‘ = R(n-1)‘⋉ Rn‘ 

 R(n-2)‘‘ = R(n-2)‘⋉ R(n-1)‘ 

 ... 

 R1‘‘ = R1 ⋉ R2‘‘ 

 

 

Distributed Query 
Optimization 

Distributed Data 
Management Reducer für Rn 

Reducer für R(n-1) 

Reducer für R1 

Full 
Reducer 

for Q 
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Site 0 Site 1 Site 2 Site 3 

R1 R2 R3 R4 

A 

B C 

⋊ 
⋊ ⋊ 

⋉ 
⋉ ⋉ 

C 

B A 

Semi-Join/  

Reducer 

Forward 

R2‘ = R2 ⋉ R1 

R3‘ = R3 ⋉ R2‘ 

R4‘ = R4 ⋉ R3‘ 

Backward 

R3‘‘ = R3‘ ⋉ R4‘  

R2‘‘ = R2‘ ⋉ 

R3‘‘  

R1‘‘ = R1 ⋉ R2‘‘ 



Site 3 

Multi-Relation Joins 

Full Reducer for linear Joins – Example  
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(1,5,6,7) 
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 Given: A non-linear but 

acyclic join 

 

 

 Task: Find a reducer  

for each relation. 

 

 Approach: 

 Select the relation that needs to be reduced as root node. 

 Reduce the relations bottom-up level-wise to the root node. 

 Add semi-joins from nodes to their parent. Distributed Query 
Optimization 

Distributed Data 
Management 

R1 

R2 R3 

R4 R5 

⋈ ⋈ 

⋈ ⋈ 

R1 

R2 R3 

R4 R5 
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 Finding a full reducer for cyclic joins is a problem. 

 In many cases, this full reducer simply does not exist. 

 

 Optimizing reducer calculation in practice is challenging: 

 Semi-joins also need to send around data. 

 Does the minimization even pay off? 

 Minimizing intermediate results is challenging. 

 Which relation is the best root node? 

 Not all nodes may be able to perform query calculation. 

 What is the best reduce order? 

 Where do we calculate the semi-joins? 

 Do we need to calculate a full reducer? 
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