

Distributed Data Management Distributed Query Optimization Thorsten Papenbrock

Hasso Plattner Institut

Distributed DBMSs **Overview**

- **1. Distributed Query Execution**
- 2. Distributed Join Execution
- 3. Bloom filter Optimized Joins
- 4. Multi-Relation Joins

Distributed Query Execution A Distributed Query

Given

- Relations R, S, T, U each on a different host $(= site)$
- Query Q issued by an arbitrary sink node

Task

Easy Operations

Union:

Distributed Data

Distributed Query Optimization

Slide **4** ThorstenPapenbrock

Easy Operations

Union: Send entire relations.

Easy Operations

- Union: Send entire relations.
- **Except and Intersect:**

Distributed Data

Distributed Query Optimization

Slide **6** ThorstenPapenbrock

Hasso HPI Plattner Institut

- Union: Send entire relations.
- Except and Intersect: Send the smaller relation to the larger and the result to the sink.

HPI Hasso Plattner Institut

- Union: Send entire relations.
- Except and Intersect: Send the smaller relation to the larger and the result to the sink.

Distributed Query Execution Projections and Selections

Easy Operations

- Union: Send entire relations.
- Except and Intersect: Send the smaller relation to the larger and the result to the sink.
- **•** Projections and Selections:

Distributed Data

Distributed Query Optimization

Slide **9** ThorstenPapenbrock

Distributed Query Execution Projections and Selections

Easy Operations

- Union: Send entire relations.
- Except and Intersect: Send the smaller relation to the larger and the result to the sink.
- **Projections and Selections: Push operation down (if possible) and send the results to the sink.**

Hasso

Plattner Institut

HPI

Easy Operations

- Union: Send entire relations.
- Except and Intersect: Send the smaller relation to the larger and the result to the sink.
- **Projections and Selections: Push operation down (if possible) and send the results to the sink.**
- **Grouping:**

Distributed Data

Distributed Query Optimization

Slide **11** ThorstenPapenbrock

- Union: Send entire relations.
- Except and Intersect: Send the smaller relation to the larger and the result to the sink.
- **Projections and Selections: Push operation down (if possible) and send the results to the sink.**

- Union: Send entire relations.
- Except and Intersect: Send the smaller relation to the larger and the result to the sink.
- **Projections and Selections: Push operation down (if possible) and send the results to the sink.**

- Union: Send entire relations.
- Except and Intersect: Send the smaller relation to the larger and the result to the sink.
- **Projections and Selections: Push operation down (if possible) and send the results to the sink.**

Join Operations

Distributed Data

Distributed Query Optimization

Slide **15** ThorstenPapenbrock

Slide **16** ThorstenPapenbrock Join Operations • Naïve approach: "Ship whole" **Send all relations Few but large messages** Distributed Query Optimization **Distributed Data Management** Site 1 Site 2 Site 3 Site 4 Sink R III SII SII TII U **RMSMTMU** We can do much better: Calculate the join on only the join attributes and then fetch the data afterwards.

Distributed Query Execution **Joins**

Distributed DBMSs **Overview**

- 1. Distributed Query Execution
- **2. Distributed Join Execution**
- 3. Bloom filter Optimized Joins
- 4. Multi-Relation Joins

Distributed Join Execution Naïve Join

- A join $R \Join S$ over two relations R and S with
- There are $|R|$ and $|S|$ many attributes in R and S, respectively.
- There are $#R$ and $#S$ many values in R and S, respectively.
- Each attribute value in R and S has a size of a.
- Both R and S are stored on different hosts.
- Assume that one side can be the sink node.
- Two kinds of attributes:
	- a. join-attributes (denoted as R.ID and S.ID but can have arbitrary names)
	- b. data-attributes (denoted as R\ID and S\ID; = information that should be joined)
- Naïve join on third node
	- Costs: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

Distributed Join Execution Site Join

- Naïve join on third node
	- Costs: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a
- Site join on one of the data nodes
	- Costs: |R| ∙ #R ∙ a

Distributed Data

Distributed Query Optimization

Slide **21** ThorstenPapenbrock

Distributed Join Execution Projection Join

- Site join on one of the data nodes
	- Costs: |R| ∙ #R ∙ a

Site 2

⋈

Site 1

R

send

- **•** Projection join based on join attributes
	- Costs: |ID| ∙ #R ∙ a + |ID| ∙ #(R⋈S) ∙ a + |R| ∙ #(R⋈S) ∙ a $= |ID| \cdot #R \cdot a + (|ID| + |R|) \cdot #(R \bowtie S) \cdot a$

Distributed Join Execution Comparison

- Naïve join: |R| ⋅ #R ⋅ a + |S| ⋅ #S ⋅ a
- Site join: |R| ⋅ #R ⋅ a
- Projection join: $|ID| \cdot #R \cdot a + (|ID| + |R|) \cdot # (R \bowtie S) \cdot a$
- When is the side join better than the projection join?

 $|R| \cdot #R \cdot a > |ID| \cdot #R \cdot a + (|ID| + |R|) \cdot #(R \bowtie S) \cdot a$ | Attribute size does not matter $\langle 2 \rangle$ |R| ⋅ #R > |ID| ⋅ #R + (|ID| + |R|) ⋅ #(R⋈S)

 \triangleright If $\#R \gt\gt \#(R \bowtie S)$, If the join selectivity is high " \triangleright If $|R| >> |ID|$... If many data-attributes exist

Distributed Data Management

Distributed Query Optimization

Slide **23** ThorstenPapenbrock

Distributed Join Execution Projection Join (2)

$$
\bullet \quad (1): |ID| \cdot #R \cdot a + |ID| \cdot #(R \bowtie S) \cdot a + |R| \cdot #(R \bowtie S) \cdot a
$$

$$
\bullet \quad (2): |ID| \cdot #S \cdot a + |R| \cdot #(R \bowtie S) \cdot a
$$

- If $#R \ll \#S$, then (1) is likely better; otherwise (2) (with S being the relation on the site that should answer Q).
- \triangleright If we can choose the site for Q, then choose the smaller relation and strategy (2).

Distributed Data Management

Distributed Query Optimization

Slide **24** ThorstenPapenbrock

Distributed Join Execution Three Sites

- Best solution so far:
	- Projection join (2): $|ID| \cdot #S \cdot a + |R| \cdot # (R \bowtie S) \cdot a$
- Costs if the result is needed on some third site:

|ID| ∙ #S ∙ a + |R| ∙ #(R⋈S) ∙ a + (|R| + |S|) ∙ #(R⋈S) ∙ a

Which can be worse than the Naïve join on a third node if $#(R \bowtie S)$ is large (i.e. if the join selectivity is small).

Distributed Data Management

 \bowtie

Distributed Query Optimization

Slide **25** ThorstenPapenbrock

Distributed Join Execution Semi-Join

Definition:

 Given relation R with attribute set A and relation S with attribute set B. The Semi-Join $R \ltimes S$ is definied as

$$
R \times S := \Pi_A(R \rtimes_{A \cap B} S)
$$

= $\Pi_A(R) \rtimes_{A \cap B} \Pi_{A \cap B} (S)$
= $R \rtimes_{A \cap B} \Pi_{A \cap B} (S)$

- Remarks
	- The join is a natural join (over common attributes $A \cap B$).
	- For theta joins between R.X and S.Y it is: $R \ltimes S := R \Join_{X=Y} \Pi_Y(S)$
	- S functions as a filter on R's tuples.
	- The semi-join is asymmetric.

Distributed Data Management

Distributed Query Optimization

Slide **27** ThorstenPapenbrock

Distributed Join Execution Semi-Join

- Semi-joins function as filters.
	- \triangleright They can be used like selections and projections to minimize intermediate results before these are send to other sites.
- Rules:

 $R \bowtie_F S =$

- $(R K_F S) M_F S$
	- Filter R, then join with S
- $R M_F$ (S κ_F R)
	- Filter S, then join with R
- \bullet (R $\ltimes_F S$) $\ltimes_F (S \ltimes_F R)$
	- Filter R and S, then join both results

Distributed Data Management

Distributed Query Optimization

Slide **28** ThorstenPapenbrock

Distributed DBMSs **Overview**

- 1. Distributed Query Execution
- 2. Distributed Join Execution
- **3. Bloom filter Optimized Joins**
- 4. Multi-Relation Joins

Bloom filter Optimized Joins From a Database Exercise

"Find all titles and directors of films that are younger than 1980."

- Task: Minimize the number of transmitted bytes.
- Tricks:
	- **Transfer only necessary bytes: Rtrim()**
	- Use better join order: Filme2 is smaller
	- **EXECUTE:** Insert projections where possible
	- **Use compression: Eliminate duplicates**
		- **•** DISTINCTs after semi-joins and projections

Best solution

Bloom filter

Naive solution

Fast Storage and Retrieval Bloom filter (Recap)

A Bloom filter is a probabilistic data structure that answers set containment questions in constant time and with constant memory consumption.

- "Does element X appear in the set?"
- Answer "no" is guaranteed to be correct.
- Answer "yes" has a certain probability to be wrong (hence, "maybe").
	- \triangleright But then the concrete look-up will just fail.
	- \triangleright Very nice property that allows the use of Bloom filters in exact systems.
- **Structure**
	- **Bitset of fixed size (typically a long array)**
	- One (or more) hash functions

Burton H. Bloom, "Space/Time Trade-offs in Hash Coding with Allowable Errors", Communications of the ACM, volume 13, number 7, pages 422-426, 1970

> 6,000 citations

Space/Time Trade-offs in Hash Coding with **Allowable Errors**

BURTON H. BLOOM Computer Usage Company, Newton Upper Falls, Mass.

In this paper trade-offs among certain computational factors in hash coding are analyzed. The paradiam problem considered is that of testing a series of messages one-by-one for membership in a given set of messages. Two new hashcoding methods are examined and compared with a particular conventional hash-coding method. The computational factors considered are the size of the hash area (space), the time required to identify a message as a nonmember of the given set (reject time), and an allowable error frequency.

The new methods are intended to reduce the amount of space required to contain the hash-coded information from that associated with conventional methods. The reduction in space is accomplished by exploiting the possibility that a small fraction of errors of commission may be tolerable in some applications, in particular, applications in which a large amount of data is involved and a core resident hash area is consequently not feasible using conventional methods.

In such applications, it is envisaged that overall performance could be improved by using a smaller core resident hash area in conjunction with the new methods and, when necessary, by
using some secondary and perhaps time-consuming test to
"catch" the small fraction of errors associated with the new methods. An example is discussed which illustrates possible
areas of application for the new methods.

Analysis of the paradigm problem demonstrates that allowing a small number of test messages to be falsely identified
as members of the given set will permit a much smaller hash
area to be used without increasing reject time.

KEY WORDS AND PHRASES: hash coding, hash addressing, scatter storage, searching, storage layout, retrieval trade-offs, retrieval efficiency, storage efficiency CR CATEGORIES: 3.73, 3.74, 3.79

Slide **31**

areas

to be

hash

the meth perfo

Bloom filter Optimized Joins Bloom filter

- Problem: Is f an element of column A?
	- Column A is large must be stored on disk
- Idea: Store small representation of A in main memory

> Bloom filter H

- Use H to probabilistically mark whether an element f is in A.
- Test can fail, but only in one direction:
	- If k \in T, we cannot be sure whether k \in A.
	- **IF k∉T, we know that k∉A.**
- Use H for a probabilistic semi-join implementation!

Distributed Data Management

Distributed Query Optimization

Slide **32** ThorstenPapenbrock

Bloom filter Optimized Joins Bloom filter for Semi-Joins

Bloom filter-based (semi-)joins

- Also called hash-filter-joins
- Use Bloom filter to calculate $R \ltimes_F S$:
	- 1. Hash all values in R.F with funktion h into (small) hash tabelle H
	- 2. Transmit only H to S
	- 3. \forall f \in S.F with H(h(f))=0: f does not have a join partner in R; ignore local record.
	- 4. \forall f \in S.F with H(h(f))=1: f does probably have a join-partner in R; send local record.
- The higher the join selectivity…
	- . the lower the risk of false positives.
	- . the smaller we can make H.

Distributed Data Management

Distributed Query Optimization

Slide **33** ThorstenPapenbrock

Bloom filter Optimized Joins Bloom filters as universal Trick

- Always use Bloom filters if …
	- sets of values need to be compared and
	- only a few hits are expected and
	- data transfer is expensive.
- Examples:
	- . "Normal" hash joins
	- **Star joins in data warehouses**
	- **Intersect and minus set operations**

Distributed Data Management

Distributed Query Optimization

Slide **40** ThorstenPapenbrock

Distributed DBMSs **Overview**

- 1. Distributed Query Execution
- 2. Distributed Join Execution
- 3. Bloom filter Optimized Joins
- **4. Multi-Relation Joins**

Multi-Relation Joins The Semi-Join Trick for Multi-Relation Joins

Task

- Calculate the join across arbitrary many relations.
- **Example with three relations:**

…

Approach

- Use semi-joins on any relation that needs to be transmitted.
- Semi-joins reduce the relations to only necessary tuples.
	- \triangleright Hence, they are called "reducer".
- A relation is called "reduced" if it does not contain any tuple that is not needed for the final result.
	- \triangleright Global property, because also remote relations reduce needed tuples.

Distributed Data Management

Distributed Query Optimization

Slide **42** ThorstenPapenbrock

Multi-Relation Joins Full Reducer

Semi-Join Program

- *Given the realtions R¹ ,…,Rⁿ , a semi-join program is a sequence of semi-joins Ri :=Ri*[⋉]*R^j*
- Comments:
	- We omit join attributes, because they result from the join query.
	- The effect of the semi-join is a reduction of the tuples in R_i .

Full Reducer

- *Given a query Q=R1*[⋈]*…*⋈*Rⁿ , a reducer for Rⁱ in Q is a semi-join programm that removes all tuples from Rⁱ that are not needed to calculate result(Q).*
- *A full reducer for Q is a semi-join programm that is a reducer for all Rⁱ in Q.*
- Comments:
	- \blacksquare The R_i do not need t be different (self-joins)
	- Intuition: reducer for relations full reducer for queries

Distributed Data Management

Distributed Query Optimization

Slide **43** ThorstenPapenbrock

Multi-Relation Joins Full Reducer

R
\n
$$
\begin{array}{ccc}\nR & \bowtie_{F} S & \bowtie_{G} T = \\
(R \bowtie_{F} (S \bowtie_{G} T)) & \bowtie_{F} (S \bowtie_{G} T) & \bowtie_{G} T\n\end{array}
$$

- Is this a full reducer?
	- No, because S and T are not n reduced".
- But it is enough to minimize network traffic, i.e., R is minimized before sending to S and S is minimized after its join with T before sending to T, right?
	- Yes, but only if the join \bowtie_F is calculated on S's node and \bowtie_G on T's node.
	- If the join is evaluated elsewhere, we transmit $(S \ltimes_G T)$ and T.
		- \triangleright Calculate full reducer first!

Distributed Data Management

Distributed Query Optimization

Slide **44** ThorstenPapenbrock

- **Given:** $Q = R1 \Join_A R2 \Join_B ... \Join_Y R(n-1) \Join_Z Rn$
- Task: Find a full reducer for Q that reduces all Ri.
- Two-Phase Approach:
	- **Forward:**
		- $R2' = R2 \times R1$
		- R3' = R3 \times R2' = R3 \times (R2 \times R1)
		- ...

Distributed Data Management

Distributed Query Optimization

Slide **46** ThorstenPapenbrock

 $R1 \bowtie_{\text{A}} R2 \bowtie_{\text{B}} R3 \bowtie_{\text{C}} R4$

Distributed Data Management

Distributed Query Optimization

Slide **47** ThorstenPapenbrock

 $R1 \bowtie_{\text{A}} R2 \bowtie_{\text{B}} R3 \bowtie_{\text{C}} R4$

Distributed Data Management

Hasso

Plattner Institut

HPI

Distributed Query **Optimization**

Slide **48** ThorstenPapenbrock

 $R1 \bowtie_{\text{A}} R2 \bowtie_{\text{B}} R3 \bowtie_{\text{C}} R4$

Distributed Data Management

Distributed Query **Optimization**

Slide **49** ThorstenPapenbrock

Slide **50** ThorstenPapenbrock

 $R1 \bowtie_{\text{A}} R2 \bowtie_{\text{B}} R3 \bowtie_{\text{C}} R4$

Distributed Query **Management**

Optimization

Slide **51** ThorstenPapenbrock

Distributed Data Management

Hasso

Plattner Institut

HPI

Distributed Query Optimization

Slide **52** ThorstenPapenbrock

Distributed Data Management

Distributed Query **Optimization**

 $R1 \bowtie_{\text{A}} R2 \bowtie_{\text{B}} R3 \bowtie_{\text{C}} R4$

Slide **53** ThorstenPapenbrock

Multi-Relation Joins Reducer for non-linear Joins

- **Approach:**
	- Select the relation that needs to be reduced as root node.
	- **Reduce the relations bottom-up level-wise to the root node.**
		- Add semi-joins from nodes to their parent. All the contract the settlement of the parents of the contract of the Distributed Query

Distributed Data Management

Optimization

Slide **54** ThorstenPapenbrock

Multi-Relation Joins Reducer – Final Notes

- Finding a full reducer for cyclic joins is a problem.
	- In many cases, this full reducer simply does not exist.
- Optimizing reducer calculation in practice is challenging:
	- Semi-joins also need to send around data.
		- Does the minimization even pay off?
	- **Minimizing intermediate results is challenging.**
		- Which relation is the best root node?
	- Not all nodes may be able to perform query calculation.
		- **What is the best reduce order?**
		- **Where do we calculate the semi-joins?**
		- Do we need to calculate a *full* reducer?

Distributed Data Management

Distributed Query Optimization

Slide **55** ThorstenPapenbrock

