Dlstrlbuted Data Managemﬁnt
" Distributed Query Optlmlzatlon

e LT F-2.04, Ca-mpus 11 '_,ﬂ;:
o B s

-~

- L% I
‘-;'{ ,w""' 2 so""’pr $r Hasso Plattner Institut .J .

Distributed DBMSs
Overview

1. Distributed Query Execution
2. Distributed Join Execution
3. Bloom filter Optimized Joins

4. Multi-Relation Joins

Distributed Query Execution

A Distributed Query

Given
= Relations R, S, T, U each on a different host (= site)
= Query Q issued by an arbitrary sink node

Task
= Calculate the answer Sink

in an efficient way.

Site 1 I~ site 2 Site 2

R

| Site 4

Hasso
Plattner
Institut

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 3

Distributed Query Execution
Set Operations

Easy Operations

= Union:

Sink

RuSuTuU

Site 1

Site 2

Site 3

Site 4

Hasso
Plattner
Institut

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 4

Distributed Query Execution
Set Operations

Easy Operations
= Union: Send entire relations.

Sink

//i F\ -

Site 1 L] site 2

Site

Site 4

Hasso
Plattner
Institut

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 5

Distributed Query Execution
Set Operations

Easy Operations
= Union: Send entire relations.

= Except and Intersect:

Sink

RNnSnT/U

Site 1 Site 2

-

Site 3

-

Site 4

Hasso
Plattner
Institut

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 6

Distributed Query Execution ﬂ Hasso
Set Operations Plattner

Institut

Easy Operations
= Union: Send entire relations.
» Except and Intersect: Send the smaller relation to the larger and the result to the sink.

Sink

In case:
RNnSnT<U

Distributed Data

Management

Distributed Query
Optimization

Site 1

ThorstenPapenbrock
Slide 7

Distributed Query Execution ﬂ Hasso
Set Operations Plattner

Institut

Easy Operations
= Union: Send entire relations.
» Except and Intersect: Send the smaller relation to the larger and the result to the sink.

Sink

In case:
RNnSnT>U

Distributed Data

Management

Distributed Query
Optimization

/S/ite4

Site 1

ThorstenPapenbrock
Slide 8

Distributed Query Execution
Projections and Selections

Easy Operations

= Union: Send entire relations.

= Except and Intersect: Send the smaller relation to the larger and the result to the sink.

= Projections and Selections:

Sink

HNameR U 0Name:’Nick’S

Site 1

Site 2

-

Site 3

-

Site 4

Hasso
Plattner
Institut

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 9

Distributed Query Execution ﬂ Hasso
Projections and Selections Inatitut

Easy Operations
= Union: Send entire relations.
» Except and Intersect: Send the smaller relation to the larger and the result to the sink.

= Projections and Selections: Push operation down (if possible) and send the results to the sink.

Sink

Distributed Data

Site 4 Management
- Distributed Query
Optimization
ThorstenPapenbrock

Slide 10

0-Name=’Nick’S

B

Distributed Query Execution

Groupings

Easy Operations

Union: Send entire relations.

Except and Intersect: Send the smaller relation to the larger and the result to the sink.

Hasso
Plattner
Institut

Projections and Selections: Push operation down (if possible) and send the results to the sink.

Grouping:

Sink

VName,sum(SaIary)R uS

Site 1

Site 2

-

Site 3

-

Site 4

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 11

Distributed Query Execution ﬂ Hasso
Groupings

Plattner
Institut

Easy Operations

Union: Send entire relations.
Except and Intersect: Send the smaller relation to the larger and the result to the sink.
Projections and Selections: Push operation down (if possible) and send the results to the sink.

Grouping: Push operation
down (if possible) and Sink
send the results

to the sink.

Distributed Data

Site 4 Management
- Distributed Query
Optimization
ThorstenPapenbrock
Slide 12

Distributed Query Execution ﬂ Hasso
Groupings

Plattner
Institut

Easy Operations

Union: Send entire relations.
Except and Intersect: Send the smaller relation to the larger and the result to the sink.
Projections and Selections: Push operation down (if possible) and send the results to the sink.

Grouping: Push operation
down (if possible) and Sink

send the results
14 (RuS)
t0 the sink.

/ / Distributed Data

Site 1 L] site 2

Site 3 Site 4 Management
- - Distributed Query
Optimization
ThorstenPapenbrock

Slide 13

Distributed Query Execution ﬂ Hasso
Groupings

Plattner
Institut

Easy Operations

Union: Send entire relations.
Except and Intersect: Send the smaller relation to the larger and the result to the sink.
Projections and Selections: Push operation down (if possible) and send the results to the sink.

Grouping: Push operation

down (if possible) and Sink A general optimization:
send the results
to the sink.

VName,sum(SaIary)(R V) Insert and push-down projections
to decrease the amount of send data.

Distributed Data

Site 1 Site 4 Management

- - Distributed Query
Optimization
ThorstenPapenbrock

Slide 14

1_[Name,SaIaryS

B

1_IName,SalaryR

B

Distributed Query Execution

Joins

Join Operations

Sink

RxSxTxU

Site 1

Site 2

-

Site 3

-

Site 4

Hasso
Plattner
Institut

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 15

Distributed Query Execution
Joins

Hasso
Plattner
Institut

Join Operations
= Naive approach: “Ship whole”
= Send all relations

= Few but large messages

We can do much better:
Calculate the join on only the join attributes
and then fetch the data afterwards.

Sink

RxaSxaTxaU
vl ™S

-

/

A\

2

Distributed Data

Site 1 L] site 2

Site 4 Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 16

Distributed DBMSs
Overview

1. Distributed Query Execution
2. Distributed Join Execution
3. Bloom filter Optimized Joins

4. Multi-Relation Joins

]
Distributed Join Execution
Nailve Join

Hasso
Plattner
Institut

* A join RxS over two relations R and S with
= There are |R| and |S| many attributes in R and S, respectively.
= There are #R and #S many valuesin R and S, respectively.

= Each attribute value in R and S has a size of a.

= Both R and S are stored on different hosts.
= Assume that one side can be the sink node.
= Two kinds of attributes:

a. join-attributes
(denoted as R.ID and S.ID
but can have arbitrary names)

b. data-attributes
(denoted as R\ID and S\ID;
= information that should be joined)

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock

= Naive join on third node
aive join o d nod Slide 20

= Costs: |IR|-#R:-a + |S| - #S - a

Distributed Join Execution
Site Join

= Naive join on third node » Site join on one of the data nodes

= Costs: |IR|-#R -a + |S| - #S - a = Costs: |R| - #R - a

Hasso
Plattner
Institut

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 21

Distributed Join Execution = Projection join based on join attributes
Projection Join = Costs: |ID| - #R - a + |ID| - #(RxS) - a + |R| - #(RxS) - a

= |ID| - #R - a + (|ID| + |R]|) - #(RxS) - a

» Site join on one of the data nodes IR| -
= Costs: |R| - #R - a

|ID| - #(RxS) - a

Distributed Data
Management

Distributed Query
Optimization

|ID| - #R - a

ThorstenPapenbrock
Slide 22

Distributed Join Execution Hasso
: Plattner
Comparison Institut
= Naive join: IR| - #R - a + |S| - #S - a
= Site join: IR|] - #R - a
* Projection join: |ID| - #R - a + (|ID| + |R]|) - #(RxS) - a
= When is the side join better than the projection join?
IR| - #R - a > |[ID| - #R - a + (|ID| + |R|) - #(RxS) - a | Attribute size does not matter
<=> |R| - #R > |ID| - #R + (|ID] + |R|) + #(RxS)
> If #R >> #(RxS) ,If the join selectivity is high" Distributed Data
_ . Management
> If |IR| >> |ID] »If many data-attributes exist Distributed Query

Optimization

ThorstenPapenbrock
Slide 23

Distributed Join Execution
Projection Join (2)

(1):
(2):

>

|ID| - #R - a + |ID| - #(R=S) - a + [R]| - #(RxS) - a
|ID| - #S - a + IR| - #(RxS) - a

If #R << #S, then (1) is likely better; otherwise (2)
(with S being the relation on the site that should answer Q).

If we can choose the site for Q, then choose the smaller
relation and strategy (2).

IR| - #(RxS) - a

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock

Slide 24

I
Distributed Join Execution

Three Sites

Hasso
Plattner
Institut

= Best solution so far:
= Projection join (2): |ID]| - #S - a + |R]| - #(RxS) - a
» Costs if the result is needed on some third site:
|ID| - #S - a + |R| - #(RxS) - a + (|R]| + |S]|) + #(RxS) - a
= Which can be worse than the Naive join on a third node if #(RxS) is large
(i.e. if the join selectivity is small).

= Naive join: IR| -#R-a + |S| - #S - a

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 25

Distributed Join Execution
Three Site Join Site 1

IR| - #(RxS) - a eceive

Site 0

Hasso
Plattner
Institut

Again: If #(RxS) is much smaller
than #R and #S, the pre-filtering
improves the query performance.

|ID| - #(RxS) - a

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 26

I
Distributed Join Execution ﬂ Hasso
Semi-Join Inatitut

Definition:
Given relation R with attribute set A and relation S with attribute set B.
The Semi-Join R x S is definied as

R x5 I1n(R>4y,.5S)
I(R) 244,85 I1,5(S)

Ry g I1y,5(S)

= Remarks

- The join is a natural join (over common attributes ANB). Distributed Data

Management
= For theta joins between R.X and S.Y itis: R x S := Rxy_y IIy (S) Distributed Query

= S functions as a filter on R's tuples. Optimization

= The semi-join is asymmetric. ThorstenPapenbrock
Slide 27

Distributed Join Execution

Semi-Join

Semi-joins function as filters.

» They can be used like selections and projections to minimize
intermediate results before these are send to other sites.

Site 1
%]
receiveglreceive,

Site 0

Rules:

RS =

(R xgS) Mg S

Filter R, then join with S

Rxp (S xg R)

(R xg S) ™ (S xg R) |

Filter S, then join with R

)

Filter R and S, then join both results

Hasso
Plattner
Institut

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 28

Distributed DBMSs
Overview

1. Distributed Query Execution
2. Distributed Join Execution
3. Bloom filter Optimized Joins

4. Multi-Relation Joins

Bloom filter Optimized Joins ﬂ Hasso
From a Database Exercise e

= "“Find all titles and directors of films that are younger than 1980.”
SELECT F1l1.Titel, F2.Regie

FROM Moviel.Filmel F1, Movie2.Filme2 F2
WHERE F1l.Titel = F2.Titel
AND Fl.Jahr > 1980 Naive solution

» Task: Minimize the number of transmitted bytes.

- Trl Cks : 16000000
= Transfer only necessary bytes: Rtrim() 14000000
» Use better join order: Filme2 is smaller 12000000 _

10000000 -

= Insert projections where possible

8000000 -

= Use compression: Eliminate duplicates

6000000 u

= DISTINCTs after semi-joins and projections

4000000 u

= Bloom filter 000000 _ i
Best solution == oo o 0000
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

»—\]'

Fast Storage and Retrieval
Bloom filter (recap)

maybe

S —
llllllllllllllll

Hasso
Plattner
Institut

A Bloom filter is a probabilistic data structure that answers set containment

guestions in constant time and with constant memory consumption.

= “Does element X appear in the set?”

= Answer “no” is guaranteed to be correct.

= Answer “yes” has a certain probability to be wrong (hence,

» But then the concrete look-up will just fail.

» Very nice property that allows the use of Bloom filters in exact systems.

= Structure
= Bitset of fixed size (typically a long array)
= One (or more) hash functions

Burton H. Bloom, "Space/Time Trade-offs in Hash Coding with Allowable Errors",
Communications of the ACM, volume 13, nhumber 7, pages 422-426, 1970

“maybe”).

> 6,000 citations

Space/Time Trade-offs in
Hash Coding with
Allowable Errors

Burtox H. Broom
Compuier Usage Company, Newton Upper Falls, Mass.

In this paper trade-offs omong certain computational factors
in hash coding are cnalyzed. The paradigm problem con-
sidered is that of testing o series of messages one-by-one
for membership in a given set of messages. Two new hashe
coding methods are examined and compared with a par-
ficular conventional hash-coding method. The computational
factors considered are the size of the hash area [space), the
time required to idenfify a message as a nonmember of the
given set (reject time), and an allowable error frequency.
The new methods ded fo reduce the amount of
space required to contain the hash-coded information from
that associated with conventional methods, The reduction in

space is i by loiting the possibility that o
small fraction of errors of commission may be tolerable in
some applications, in particular, appli in which o large

amount of data
consequently not

In such
could be improved hy ing a smaller cor
in_conjunction with the new methods

volved and a core resident hash area is

-
“cafch” the small fraction of errors associcted with the new
methods. An example is discussed which illustrates possible
areas of application for the new methods,

Analysis of the paradigm problem demonsirates that al-
lowing o small number of fest messages to be falsely identified
as members of the given set will permit o much smaller hash
area to be used without increasing reject time.

KEY WORDS AND PHRASES: hash cading, hash addressing, scaffer storage,
searching, storege layout, retrieval rade-offs, refrieval efficiency, storage
etfic

CR CATEGORIES: 3.73, 3.74, 379

Slide 31

Bloom filter Optimized Joins ﬂ Hasso
Bloom filter Inetitut

Problem: Is f an element of column A?

= Column A is large — must be stored on disk
» Idea: Store small representation of A in main memory

> Bloom filter H
= Use H to probabilistically mark whether an element f is in A.
= Test can fail, but only in one direction:

= If KeT, we cannot be sure whether keA.

= If k¢T, we know that keA. Distributed Data
Management

Distributed Query
Optimization

» Use H for a probabilistic semi-join implementation!

ThorstenPapenbrock
Slide 32

Bloom filter Optimized Joins

Hasso
Bloom filter for Semi-Joins ﬂmiﬁ?ﬁ{

Bloom filter-based (semi-)joins
= Also called hash-filter-joins
= Use Bloom filter to calculate Rx.S:

1.

Hash all values in R.F with funktion h into (small) hash tabelle H

2. Transmitonly Hto S
3. V feS.F with H(h(f))=0: f does not have a join partner in R; ignore local record.
4. V feS.F with H(h(f))=1: f does probably have a join-partner in R; send local record.
. .. .o Distributed Data
The higher the join selectivity... Management

the lower the risk of false positives. Distributed Query
Optimization

the smaller we can make H. P
ThorstenPapenbrock

Slide 33

Bloom filter Optimized Joins
Bloom filter for

Semi-Joins (5 \ere

€1

Example

aj

as
as

ay

as

ag bf; C

€6

¢ I Falsch

ary b7 C

Quelle: VL-Folien, Alfons Kemper, TU Miinchen

Positiv

Sz

Bloom filter Optimized Joins ﬂ Hasso
Bloom filters as universal Trick e

= Always use Bloom filters if ...
= sets of values need to be compared and
= only a few hits are expected and
= data transfer is expensive.

= Examples:
= ,Normal® hash joins

= Star joins in data warehouses
Distributed Data
Management

Distributed Query
Optimization

= Intersect and minus set operations

ThorstenPapenbrock
Slide 40

Distributed DBMSs
Overview

1. Distributed Query Execution
2. Distributed Join Execution
3. Bloom filter Optimized Joins

4. Multi-Relation Joins

Multi-Relation Joins

Hasso

The Semi-Join Trick for Multi-Relation Joins plattner
Task
= Calculate the join across arbitrary many relations.
= Example with three relations:

R Mg S Mg T =

(R xg S) g (S xg T) Mg T =

(R xg (S x5 T)) Mg (S g T) Mg T =
Approach
» Use semi-joins on any relation that needs to be transmitted. Distributed Data
= Semi-joins reduce the relations to only necessary tuples. Management

w ” Distributed Query
» Hence, they are called “reducer”. Optimization
= A relation is called “reduced” if it does not contain any tuple

that is not needed for the final result. ThorstenPapenbrock

» Global property, because also remote relations reduce needed tuples. Slide 42

Multi-Relation Joins
Full Reducer

Semi-Join Program
» Given the realtions R,,...,R,, a semi-join program is a sequence of semi-joins
R;:=R;xR;
= Comments:
= We omit join attributes, because they result from the join query.

» The effect of the semi-join is a reduction of the tuples in R;.

Full Reducer

» Given a query Q=R;~...xR,, a reducer for R; in Q is a semi-join programm that removes
all tuples from R; that are not needed to calculate result(Q).

» A full reducer for Q is a semi-join programm that is a reducer for all R; in Q.
= Comments:

» The R, do not need t be different (self-joins)

= Intuition: reducer for relations - full reducer for queries

Hasso
Plattner
Institut

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 43

Multi-Relation Joins Hasso
Plattner
Full Reducer Institut
R) Mg T =
(R g (S xg T)) Xe (S xg T) Mg T
= Is this a full reducer?
= No, because S and T are not ,, reduced".
= But it is enough to minimize network traffic, i.e., R is minimized before sending to S
and S is minimized after its join with T before sending to T, right? Distributed Data
* Yes, but only if the join ~ is calculated on S’s node and x on T's node. Management
Distributed Query
» If the join is evaluated elsewhere, we transmit (S x; T) and T. Optimization
» Calculate full reducer first!
ThorstenPapenbrock

Slide 44

Multi-Relation Joins

Hasso
: : Plattner
Full Reducer for linear Joins Institut
= Given: Q = R1 x, R2 ™ ... xy R(N-1) >, RN
= Task: Find a full reducer for Q that reduces all Ri.
= Two-Phase Approach:
= Forward:
= R2'=R2xR1
= R3'=R3 xR2'=R3 x (R2 xR1)
= Rn'=Rn xR(N-1)' = ...
_ N Distributed Data
= Backward: Reducer fiir Rn Eull Management
= R(n-1)" = R(n-1)'x RN' % - N EEe Distributed Query
- R(n-2)" = R(n-2)' R(n-1)' Reducer fir R(n-1)) Optimization

for Q

. L /j Reducer fiir R1) ThorstenPapenbrock

= R1“ = R1 x R2" Slide 45

Multi-Relation Joins

Full Reducer for linear Joins

.

Site 2

Forward
R2'=R2 x R1

R3'=R3 x R2’
R4‘=R4 x R3'

Backward

R3" = R3* x R4'
R2"“ = R2" x
R3*

R1“=R1 x R2"

Semi-Join/
Reducer

Hasso
Plattner
Institut

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 46

Multi-Relation Joins ﬂ Hasso
Full Reducer for linear Joins - Example e

Site 0 Site 1 Site 2 Site 3
X [A A |B B|C C|z
1 17 9|3 3 (1 2 |1
2 |1 5|5 1 (0 312
3 |6 7 |7 712 4 |5
4 |7 513 7 |1 516
5 |5 0|7 513 6 |7
6 |7 3 (2 6 (0 7 |8
Distributed Data
Management
Distributed Query
Optimization

ThorstenPapenbrock

R1 M, R2 xg R3 x R4 Slide 47

Multi-Relation Joins ﬂ Hasso
Full Reducer for linear Joins — Example e

Site 0 Site 1 Site 2 Site 3
X |A A (B B|C Cl(z
1 |7 - 311 2 |1
2 |1 515 110 3 (2
3 |6 717 7 12 4 |5
4 |7 513 7 |1 5|6
5 |5 513 6 |7
6 |7 (1,5,6,7) . 6 |0 7 |8
Distributed Data
Management
Distributed Query
Optimization

ThorstenPapenbrock

R1 M, R2 xg R3 x R4 Slide 48

Multi-Relation Joins ﬂ Hasso
Full Reducer for linear Joins - Example e

Site 0 Site 1 Site 2 Site 3
X |A A |B B|C Cl(z
1 |7 - 3 (1 2 |1
2 |1 5 |5 - 3 (2
3 |6 717 7 12 4 |5
4 |7 513 7 |1 516
5 |5 513 6 |7
6 |7 (1567) . csn | &0 7 |8
Distributed Data
Management
Distrbuted Query
Optimization

ThorstenPapenbrock
Slide 49

R1 x, R2 g R3 x- R4

Multi-Relation Joins ﬂ Hasso
Full Reducer for linear Joins - Example e

Site 0 Site 1 Site 2 Site 3
X [A A|B B|C
'HE - 3 (1
2 |1 515 -
3 |6 7 |7 712
4 |7 513 7 |1
5 |3 5|3
6 |7 (156.,7) . (35.7) - (12,3)
Distributed Data
Management
. Distributed Query
Optimization

ThorstenPapenbrock
Slide 50

R1 x, R2 x5 R3 x- R4

Multi-Relation Joins ﬂ Hasso
Full Reducer for linear Joins - Example e

Site 0 Site 1 Site 2 Site 3
X |A A |B B|C
N]
2 |1 515) (2,3)
3 |6 717
4 |7 513
5 |5
6 |7 (156,7) . (35.7) (1,2,3)
Distributed Data
Management
. Dist.rib.ute.d Query
Optimization

ThorstenPapenbrock
Slide 51

R1 x, R2 x5 R3 x- R4

Multi-Relation Joins

Full Reducer for linear Joins — Example

Site 0

X

1
2
3
4
5
6

Nlu|lN|lo|] Nl >

(1,5,6,7)

A

(5.7)

(3,5,7)

Site 2

(2,3)

R1 x, R2 x5 R3 x- R4

(1,2,3)

Site 3

Hasso
Plattner
Institut

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 52

Multi-Relation Joins ﬂ Hasso
Full Reducer for linear Joins - Example e

Site 0 Site 2 Site 3

X | A

A

(5,7) (5,7) (2,3)

(1,5,6,7) (3,5,7) (1,2,3)

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 53

R1 x, R2 x5 R3 x- R4

Multi-Relation Joins
Reducer for non-linear Joins

= Given: A non-linear but
acyclic join

= Task: Find a reducer
for each relation.

= Approach:
= Select the relation that needs to be reduced as root node.

= Reduce the relations bottom-up level-wise to the root node.

» Add semi-joins from nodes to their parent.

Hasso
Plattner
Institut

Distributed Data
Management

Distributed Query
Optimization

ThorstenPapenbrock
Slide 54

Multi-Relation Joins
Reducer — Final Notes

Hasso
Plattner
Institut

» Finding a full reducer for cyclic joins is a problem.

= In many cases, this full reducer simply does not exist.

» Optimizing reducer calculation in practice is challenging:
= Semi-joins also need to send around data.
= Does the minimization even pay off?
= Minimizing intermediate results is challenging.

= Which relation is the best root node?

= Not all nodes may be able to perform query calculation. Distributed Data
= What is the best reduce order? Management
. L. Distributed Query
Where do we calculate the semi-joins? Optimization
= Do we need to calculate a full reducer?
ThorstenPapenbrock

Slide 55

