
Distributed Data Management

Distributed Query Optimization
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

Distributed DBMSs

Overview

1. Distributed Query Execution

2. Distributed Join Execution

3. Bloom filter Optimized Joins

4. Multi-Relation Joins

Distributed Query Execution

A Distributed Query

Slide 3

Thorsten Papenbrock

Given

 Relations R, S, T, U each on a different host (= site)

 Query Q issued by an arbitrary sink node

Task

 Calculate the answer

for Q on R,S,T,U

in an efficient way.

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

Q

Distributed Query Execution

Set Operations

Slide 4

Thorsten Papenbrock

Easy Operations

 Union:

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

R ᴜ S ᴜ T ᴜ U

Distributed Query Execution

Set Operations

Slide 5

Thorsten Papenbrock

Easy Operations

 Union: Send entire relations.

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

R ᴜ S ᴜ T ᴜ U

Distributed Query Execution

Set Operations

Slide 6

Thorsten Papenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect:

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

R ∩ S ∩ T / U

Distributed Query Execution

Set Operations

Slide 7

Thorsten Papenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

R ∩ S ∩ T / U

In case:
R ∩ S ∩ T < U

Distributed Query Execution

Set Operations

Slide 8

Thorsten Papenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

R ∩ S ∩ T / U

In case:
R ∩ S ∩ T > U

Distributed Query Execution

Projections and Selections

Slide 9

Thorsten Papenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections:

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

NameR ᴜ σName=‘Nick’S

Distributed Query Execution

Projections and Selections

Slide 10

Thorsten Papenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

R ᴜ S

NameR σName=‘Nick’S

Distributed Query Execution

Groupings

Slide 11

Thorsten Papenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

 Grouping:

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

γName,sum(Salary)R ᴜ S

Distributed Query Execution

Groupings

Slide 12

Thorsten Papenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

 Grouping: Push operation

down (if possible) and

send the results

to the sink.

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

ᴜ S

γName,sum(Salary)R

Distributed Query Execution

Groupings

Slide 13

Thorsten Papenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

 Grouping: Push operation

down (if possible) and

send the results

to the sink.

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

γName,sum(Salary)(R ᴜ S)

Distributed Query Execution

Groupings

Slide 14

Thorsten Papenbrock

Easy Operations

 Union: Send entire relations.

 Except and Intersect: Send the smaller relation to the larger and the result to the sink.

 Projections and Selections: Push operation down (if possible) and send the results to the sink.

 Grouping: Push operation

down (if possible) and

send the results

to the sink.

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

γName,sum(Salary)(R ᴜ S)

Name,SalaryR Name,SalaryS

A general optimization:

Insert and push-down projections
to decrease the amount of send data.

Distributed Query Execution

Joins

Slide 15

Thorsten Papenbrock

Join Operations

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

R⋈S⋈T⋈U

Distributed Query Execution

Joins

Slide 16

Thorsten Papenbrock

Join Operations

 Naïve approach: “Ship whole”

 Send all relations

 Few but large messages

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2 Site 3 Site 4

Sink

R S T U

R⋈S⋈T⋈U

We can do much better:
Calculate the join on only the join attributes

and then fetch the data afterwards.

Distributed DBMSs

Overview

1. Distributed Query Execution

2. Distributed Join Execution

3. Bloom filter Optimized Joins

4. Multi-Relation Joins

Distributed Join Execution

Naïve Join

Slide 20

Thorsten Papenbrock

 A join R⋈S over two relations R and S with

 There are |R| and |S| many attributes in R and S, respectively.

 There are #R and #S many values in R and S, respectively.

 Each attribute value in R and S has a size of a.

 Both R and S are stored on different hosts.

 Assume that one side can be the sink node.

 Two kinds of attributes:

a. join-attributes

(denoted as R.ID and S.ID

but can have arbitrary names)

b. data-attributes

(denoted as R\ID and S\ID;

= information that should be joined)

 Naïve join on third node

 Costs: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2

Site 3

R S

⋈

receive receive

send send

Distributed Join Execution

Site Join

Slide 21

Thorsten Papenbrock

 Naïve join on third node

 Costs: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2

Site 3

R S

⋈

receive receive

send send

 Site join on one of the data nodes

 Costs: |R| ∙ #R ∙ a

|S| ∙ #S ∙ a |R| ∙ #R ∙ a

Site 1

R

send

Site 2
⋈

receive
S

|R| ∙ #R ∙ a

Distributed Join Execution

Projection Join

Slide 22

Thorsten Papenbrock

 Site join on one of the data nodes

 Costs: |R| ∙ #R ∙ a

Distributed Query
Optimization

Distributed Data
Management

 Projection join based on join attributes

 Costs: |ID| ∙ #R ∙ a + |ID| ∙ #(R⋈S) ∙ a + |R| ∙ #(R⋈S) ∙ a

 = |ID| ∙ #R ∙ a + (|ID| + |R|) ∙ #(R⋈S) ∙ a

Site 1

R

send

Site 2

⋈

receive

S

send

ID

receive

⋈

ID

send

receive

⋈

|ID| ∙ #R ∙ a

|ID| ∙ #(R⋈S) ∙ a

|R| ∙ #(R⋈S) ∙ a

ID

Site 1

R

send

Site 2
⋈

receive
S

|R| ∙ #R ∙ a

Distributed Join Execution

Comparison

Slide 23

Thorsten Papenbrock

 Naïve join: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

 Site join: |R| ∙ #R ∙ a

 Projection join: |ID| ∙ #R ∙ a + (|ID| + |R|) ∙ #(R⋈S) ∙ a

 When is the side join better than the projection join?

 |R| ∙ #R ∙ a > |ID| ∙ #R ∙ a + (|ID| + |R|) ∙ #(R⋈S) ∙ a | Attribute size does not matter

 <=> |R| ∙ #R > |ID| ∙ #R + (|ID| + |R|) ∙ #(R⋈S)

 If #R >> #(R⋈S) „If the join selectivity is high“

 If |R| >> |ID| „If many data-attributes exist“
Distributed Query
Optimization

Distributed Data
Management

Distributed Join Execution

Projection Join (2)

Slide 24

Thorsten Papenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 1

R

send

Site 2

⋈

receive

S

send

ID

receive

⋈

ID

send

receive

⋈

ID

Site 2

S

send

Site 1

⋈

receive R

send

ID

receive

⋈

|ID| ∙ #S ∙ a

|R| ∙ #(R⋈S) ∙ a

 (1): |ID| ∙ #R ∙ a + |ID| ∙ #(R⋈S) ∙ a + |R| ∙ #(R⋈S) ∙ a

 (2): |ID| ∙ #S ∙ a + |R| ∙ #(R⋈S) ∙ a

 If #R << #S, then (1) is likely better; otherwise (2)

(with S being the relation on the site that should answer Q).

 If we can choose the site for Q, then choose the smaller

relation and strategy (2).

(2)

(1)

Distributed Join Execution

Three Sites

Slide 25

Thorsten Papenbrock

 Best solution so far:

 Projection join (2): |ID| ∙ #S ∙ a + |R| ∙ #(R⋈S) ∙ a

 Costs if the result is needed on some third site:

 |ID| ∙ #S ∙ a + |R| ∙ #(R⋈S) ∙ a + (|R| + |S|) ∙ #(R⋈S) ∙ a

 Which can be worse than the Naïve join on a third node if #(R⋈S) is large

(i.e. if the join selectivity is small).

 Naïve join: |R| ∙ #R ∙ a + |S| ∙ #S ∙ a

Distributed Query
Optimization

Distributed Data
Management

Site 2

S

send

Site 1

⋈

receive R

send

ID

receive

⋈

Site 3

receive

send

Distributed Join Execution

Three Site Join

Slide 26

Thorsten Papenbrock

Distributed Query
Optimization

Distributed Data
Management Site 1 Site 2

Site 3

R S

⋈

receive receive

send send

|S| ∙ #S ∙ a |R| ∙ #R ∙ a

Site 0

R

send

Site 2

⋊

receive
S

send

ID

receive

⋉

Site 1
⋈

receive receive

ID

send

send

|ID| ∙ #R ∙ a

|ID| ∙ #(R⋈S) ∙ a

|R| ∙ #(R⋈S) ∙ a |S| ∙ #(R⋈S) ∙ a Again: If #(R⋈S) is much smaller

than #R and #S, the pre-filtering
improves the query performance.

Distributed Join Execution

Semi-Join

Slide 27

Thorsten Papenbrock

Definition:
 Given relation R with attribute set A and relation S with attribute set B.
 The Semi-Join R ⋉ S is definied as

 R ⋉ S := A(R⋈ABS)
 = A(R) ⋈AB AB(S)
 = R⋈AB AB(S)

 Remarks

 The join is a natural join (over common attributes AB).

 For theta joins between R.X and S.Y it is: R ⋉ S := R⋈X=Y Y (S)

 S functions as a filter on R‘s tuples.

 The semi-join is asymmetric.

Distributed Query
Optimization

Distributed Data
Management

Distributed Join Execution

Semi-Join

Slide 28

Thorsten Papenbrock

 Semi-joins function as filters.

 They can be used like selections and projections to minimize
intermediate results before these are send to other sites.

 Rules:

 R⋈FS =

 (R ⋉F S) ⋈F S

 Filter R, then join with S

 R⋈F (S ⋉F R)

 Filter S, then join with R

 (R ⋉F S) ⋈F (S ⋉F R)

 Filter R and S, then join both results

Distributed Query
Optimization

Distributed Data
Management

Distributed DBMSs

Overview

1. Distributed Query Execution

2. Distributed Join Execution

3. Bloom filter Optimized Joins

4. Multi-Relation Joins

Bloom filter Optimized Joins

From a Database Exercise

Slide 30

Thorsten Papenbrock

 “Find all titles and directors of films that are younger than 1980.”

 SELECT F1.Titel, F2.Regie

 FROM Movie1.Filme1 F1, Movie2.Filme2 F2

 WHERE F1.Titel = F2.Titel

 AND F1.Jahr > 1980

 Task: Minimize the number of transmitted bytes.

 Tricks:

 Transfer only necessary bytes: Rtrim()

 Use better join order: Filme2 is smaller

 Insert projections where possible

 Use compression: Eliminate duplicates

 DISTINCTs after semi-joins and projections

 Bloom filter

Distributed Query
Optimization

Distributed Data
Management

0

2000000

4000000

6000000

8000000

10000000

12000000

14000000

16000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Naive solution

Best solution

A Bloom filter is a probabilistic data structure that answers set containment

questions in constant time and with constant memory consumption.

 “Does element X appear in the set?”

 Answer “no” is guaranteed to be correct.

 Answer “yes” has a certain probability to be wrong (hence, “maybe”).

 But then the concrete look-up will just fail.

 Very nice property that allows the use of Bloom filters in exact systems.

 Structure

 Bitset of fixed size (typically a long array)

 One (or more) hash functions

Fast Storage and Retrieval

Bloom filter (Recap)

Burton H. Bloom, "Space/Time Trade-offs in Hash Coding with Allowable Errors",
Communications of the ACM, volume 13, number 7, pages 422-426, 1970

maybe no

Slide 31

Thorsten Papenbrock

Distributed Query
Optimization

Distributed Data
Management

> 6,000 citations

Bloom filter Optimized Joins

Bloom filter

Slide 32

Thorsten Papenbrock

 Problem: Is f an element of column A?

 Column A is large – must be stored on disk

 Idea: Store small representation of A in main memory

 Bloom filter H

 Use H to probabilistically mark whether an element f is in A.

 Test can fail, but only in one direction:

 If k∈T, we cannot be sure whether k∈A.

 If k∉T, we know that k∉A.

 Use H for a probabilistic semi-join implementation!
Distributed Query
Optimization

Distributed Data
Management

Bloom filter Optimized Joins

Bloom filter for Semi-Joins

Slide 33

Thorsten Papenbrock

Bloom filter-based (semi-)joins

 Also called hash-filter-joins

 Use Bloom filter to calculate R⋉FS:

1. Hash all values in R.F with funktion h into (small) hash tabelle H

2. Transmit only H to S

3. fS.F with H(h(f))=0: f does not have a join partner in R; ignore local record.

4. fS.F with H(h(f))=1: f does probably have a join-partner in R; send local record.

 The higher the join selectivity…

 the lower the risk of false positives.

 the smaller we can make H.

Distributed Query
Optimization

Distributed Data
Management

Bloom filter Optimized Joins

Bloom filter for
Semi-Joins

Example

1
1
1
1
0
0

1
1
1
1
0
0

6 Bit

Quelle: VL-Folien, Alfons Kemper, TU München

⋈C

Hashfunktion:
mod 6

Falsch

Positiv

Bloom filter Optimized Joins

Bloom filters as universal Trick

Slide 40

Thorsten Papenbrock

 Always use Bloom filters if …

 sets of values need to be compared and

 only a few hits are expected and

 data transfer is expensive.

 Examples:

 „Normal“ hash joins

 Star joins in data warehouses

 Intersect and minus set operations

Distributed Query
Optimization

Distributed Data
Management

Distributed DBMSs

Overview

1. Distributed Query Execution

2. Distributed Join Execution

3. Bloom filter Optimized Joins

4. Multi-Relation Joins

Multi-Relation Joins

The Semi-Join Trick for Multi-Relation Joins

Slide 42

Thorsten Papenbrock

Task

 Calculate the join across arbitrary many relations.

 Example with three relations:

 R ⋈F S ⋈G T =

 (R ⋉F S) ⋈F (S ⋉G T) ⋈G T =

 (R ⋉F (S ⋉G T)) ⋈F (S ⋉G T) ⋈G T =

 …

Approach

 Use semi-joins on any relation that needs to be transmitted.

 Semi-joins reduce the relations to only necessary tuples.

 Hence, they are called “reducer”.

 A relation is called “reduced” if it does not contain any tuple

that is not needed for the final result.

 Global property, because also remote relations reduce needed tuples.

Distributed Query
Optimization

Distributed Data
Management

Multi-Relation Joins

Full Reducer

Slide 43

Thorsten Papenbrock

Semi-Join Program

 Given the realtions R1,…,Rn, a semi-join program is a sequence of semi-joins

 Ri:=Ri⋉Rj

 Comments:

 We omit join attributes, because they result from the join query.

 The effect of the semi-join is a reduction of the tuples in Ri.

Full Reducer

 Given a query Q=R1⋈…⋈Rn, a reducer for Ri in Q is a semi-join programm that removes

all tuples from Ri that are not needed to calculate result(Q).

 A full reducer for Q is a semi-join programm that is a reducer for all Ri in Q.

 Comments:

 The Ri do not need t be different (self-joins)

 Intuition: reducer for relations – full reducer for queries

Distributed Query
Optimization

Distributed Data
Management

Multi-Relation Joins

Full Reducer

Slide 44

Thorsten Papenbrock

 R ⋈F S ⋈G T =
 (R ⋉F (S ⋉G T)) ⋈F (S ⋉G T) ⋈G T

 Is this a full reducer?

 No, because S and T are not „reduced“.

 But it is enough to minimize network traffic, i.e., R is minimized before sending to S

and S is minimized after its join with T before sending to T, right?

 Yes, but only if the join ⋈F is calculated on S’s node and ⋈G on T’s node.

 If the join is evaluated elsewhere, we transmit (S ⋉G T) and T.

 Calculate full reducer first!

Distributed Query
Optimization

Distributed Data
Management

Multi-Relation Joins

Full Reducer for linear Joins

Slide 45

Thorsten Papenbrock

 Given: Q = R1 ⋈A R2 ⋈B ... ⋈Y R(n-1) ⋈Z Rn

 Task: Find a full reducer for Q that reduces all Ri.

 Two-Phase Approach:

 Forward:

 R2‘ = R2 ⋉ R1

 R3‘ = R3 ⋉ R2‘ = R3 ⋉ (R2 ⋉ R1)

 ...

 Rn‘ = Rn ⋉ R(n-1)‘ = ...

 Backward:

 R(n-1)‘‘ = R(n-1)‘⋉ Rn‘

 R(n-2)‘‘ = R(n-2)‘⋉ R(n-1)‘

 ...

 R1‘‘ = R1 ⋉ R2‘‘

Distributed Query
Optimization

Distributed Data
Management Reducer für Rn

Reducer für R(n-1)

Reducer für R1

Full
Reducer

for Q

Multi-Relation Joins

Full Reducer for linear Joins

Slide 46

Thorsten Papenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

A

B C

⋊
⋊ ⋊

⋉
⋉ ⋉

C

B A

Semi-Join/

Reducer

Forward

R2‘ = R2 ⋉ R1

R3‘ = R3 ⋉ R2‘

R4‘ = R4 ⋉ R3‘

Backward

R3‘‘ = R3‘ ⋉ R4‘

R2‘‘ = R2‘ ⋉

R3‘‘

R1‘‘ = R1 ⋉ R2‘‘

Site 3

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 47

Thorsten Papenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

B C

3 1

1 0

7 2

7 1

5 3

6 0

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 48

Thorsten Papenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

B C

3 1

1 0

7 2

7 1

5 3

6 0

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7)

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 49

Thorsten Papenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

B C

3 1

1 0

7 2

7 1

5 3

6 0

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7) (3,5,7)

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 50

Thorsten Papenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

B C

3 1

1 0

7 2

7 1

5 3

6 0

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7) (3,5,7) (1,2,3)

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 51

Thorsten Papenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

B C

3 1

1 0

7 2

7 1

5 3

6 0

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7) (3,5,7) (1,2,3)

(2,3)

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 52

Thorsten Papenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

A B

9 3

5 5

7 7

5 3

0 7

3 2

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7) (3,5,7) (1,2,3)

(2,3) (5,7)

B C

3 1

1 0

7 2

7 1

5 3

6 0

Multi-Relation Joins

Full Reducer for linear Joins – Example

Slide 53

Thorsten Papenbrock

Distributed Query
Optimization

Distributed Data
Management

Site 0 Site 1 Site 2 Site 3

R1 R2 R3 R4

X A

1 7

2 1

3 6

4 7

5 5

6 7

C Z

2 1

3 2

4 5

5 6

6 7

7 8

R1 ⋈A R2 ⋈B R3 ⋈C R4

(1,5,6,7) (3,5,7) (1,2,3)

(2,3) (5,7) (5,7)

B C

3 1

1 0

7 2

7 1

5 3

6 0

A B

9 3

5 5

7 7

5 3

0 7

3 2

Multi-Relation Joins

Reducer for non-linear Joins

Slide 54

Thorsten Papenbrock

 Given: A non-linear but

acyclic join

 Task: Find a reducer

for each relation.

 Approach:

 Select the relation that needs to be reduced as root node.

 Reduce the relations bottom-up level-wise to the root node.

 Add semi-joins from nodes to their parent. Distributed Query
Optimization

Distributed Data
Management

R1

R2 R3

R4 R5

⋈ ⋈

⋈ ⋈

R1

R2 R3

R4 R5

Multi-Relation Joins

Reducer – Final Notes

Slide 55

Thorsten Papenbrock

 Finding a full reducer for cyclic joins is a problem.

 In many cases, this full reducer simply does not exist.

 Optimizing reducer calculation in practice is challenging:

 Semi-joins also need to send around data.

 Does the minimization even pay off?

 Minimizing intermediate results is challenging.

 Which relation is the best root node?

 Not all nodes may be able to perform query calculation.

 What is the best reduce order?

 Where do we calculate the semi-joins?

 Do we need to calculate a full reducer?

Distributed Query
Optimization

Distributed Data
Management

