
Distributed Data Management

Lecture Summary
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

Overview

Topics DDM

1. Introduction
2. Foundations
3. Encoding & Communication
4. Akka Actor Programming
5. Data Models & Query Languages
6. Storage & Retrieval
7. Replication
8. Partitioning
9. Distributed Systems
10. Consistency & Consensus
11. Transactions
12. Batch Processing
13. Spark Batch Processing
14. Stream Processing
15. Distributed DBMS
16. Distributed Query Optimization

Some Important Topics

1 Introduction

Slide 3

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

𝑆𝑝𝑒𝑒
𝑑

𝑢𝑝

𝑠 =
1

1 − 𝑝 +
𝑝
𝑠

Some Important Topics

2 Foundations

Slide 4

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Reliability

 = fault-tolerance:

fault/defect error failure may cause may not cause

ACID & CAP & BASE

t

t1 t2 t3 t4 t5
d1 d2 d3 d4 d5

Task-Parallelism vs. Data-Parallelism

Multi-Threading vs.

Distributed Computing

Some Important Topics

3 Encoding & Communication

Slide 5

Thorsten Papenbrock

Java Serialization

Dataflow Models

RPCs

Some Important Topics

4 Akka

Slide 6

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Actor Model

Some Important Topics

5 Data Models & Query Languages

SELECT *
FROM PC PC1, PC PC2
WHERE PC1.speed = PC2.speed
AND PC1.ram = PC2.ram
AND PC1.model < PC2.model;

SQL

SET hello “hello world”
GET hello
 “hello world”

Redis

SELECT *
FROM myTable
WHERE myField > 5000
AND myField < 100000
ALLOW FILTERING;

CQL

MongoDB API

MATCH (me {name:"T. Papenbrock "})
MATCH (expert)-[:KNOWS]->(db:Database {name:"Neo4j"})
MATCH path = shortestPath((me)-[:FRIEND*..5]-(expert))
RETURN db, expert, path

Cipher

SELECT ?locationName
WHERE {
 ?hpi :name “HPI gGmbH” .
 ?hpi :location ?locationName .
}

SPARQL

Some Important Topics

6 Storage & Retrieval

Slide 8

Thorsten Papenbrock

Segmentation

LSM-Trees with B-trees and SSTables

B-Tree

SSTable

Some Important Topics

7 Replication

Multi-Leader

Replication

Leaderless

Replication

Single-Leader

Replication

Quorum

 quorum (w,r)

Quorum Consistency

 w + r > n

Gossip & Merkle Trees

Some Important Topics

8 Partitioning

Slide 10

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Range Partitioning by Hash of Key

Rebalancing Partitions

Partition-Lookup

Consistent Hashing

Some Important Topics

9 Distributed Systems

Slide 11

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

The φ accrual failure detector

The network time protocol (NTP)

Leases

Some Important Topics

10 Consistency & Consensus

Slide 12

Thorsten Papenbrock

Consensus Total Order Broadcast Linearizability

Ordering with Lamport timestamps

Leader Election

Blockchain

Some Important Topics

11 Transactions

Slide 13

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Snapshot Isolation via MVCC

Two-Phase Commit (2PC)

Causal Ordering

Some Important Topics

12 Batch Processing

Slide 14

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

TF

UDF

TF

UDF

MapReduce

HDFS

Transformation Pipelines

Some Important Topics

13 Spark

Slide 15

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

val sum = data.as[String]

 .filter(value => value == null)

 .flatMap(value => value.split("\\s+"))

 .map(value => (value,1))

 .reduceByKey(_+_)

 .collect()

val result = flightData

 .groupBy("DESTINATION")

 .sum("FLIGHTS")

 .sort(desc("sum(FLIGHTS)"))

 .select(

 col("DESTINATION"),

 col("sum(FLIGHTS)").as("sum"))

 .collect()

Some Important Topics

14 Stream Processing

Slide 16

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Data Streams

Windowing (Tumbling, Hopping, Sliding, Session)

SELECT count(*)
FROM Requests R [PARTITION BY R.client_id
 ROWS 10 PRECEDING
 WHERE R.domain = ‘stanford.edu’]
WHERE R.url LIKE ‘http://cs.stanford.edu/%’

CQL

val env = StreamExecutionEnvironment.getExecutionEnvironment

val text = env.socketTextStream("localhost", 4242, '\n')

val windowCounts = text

 .flatMap { w => w.split("\\s") }

 .map { w => WordWithCount(w, 1) }

 .keyBy("word")

 .timeWindow(Time.seconds(5), Time.seconds(1))

 .sum("count")

windowCounts.print().setParallelism(1)

env.execute("Socket Window WordCount")

case class WordWithCount(word: String, count: Long)

Event Time vs. Processing Time

Some Important Topics

15 Distributed DBMS

Slide 17

Thorsten Papenbrock

 Global as View Local as View

Column Store Compression (see Parquet file format)

Data Cubes

Some Important Topics

16 Distributed Query Optimization

Slide 18

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Distributed Join & Full Reducer

Distributed Query Execution
 Distributed Joins

What to remove from
the exam menu?

Overview

Topics DDM++

17. Services and Containerization
18. Cloud-based Data Systems
19. Further Details
20. Distributed Algorithms
21. Mining Data Streams

Topics DDM++

17 Services and Containerization

Slide 21

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Akka Cluster (Recap)

 Connects ActorSystem nodes in a cluster into one distributed system

 Has no control over …

 resource allocation

ActorSystems use whatever JVM resources they are started with.

 node scaling

ActorSystems are automatically tied together but they are started from

the outside world.

 resource isolation

ActorSystems on the same host may compete for resources; all actors

in one ActorSystem share the same resources.

Topics DDM++

17 Services and Containerization

Slide 22

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Batch & Stream Processing Frameworks (Recap)

 Connect nodes in a cluster into one distributed system

 Perform cluster-wide resource management

 Restrict the programming to …

 non-interactive but data-driven applications

Transformation pipelines do not wait for user input or have observable

side effects for users.

 non-branching data analytics or data transformation applications

Transformation pipelines do not support complex, branching application

logic.

 non-dynamic step-by-step applications

Transformation pipelines are static sequences of standard operations.

Topics DDM++

17 Services and Containerization

Slide 23

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Kubernetes

 Connects nodes in a cluster into one distributed system

 Performs cluster-wide resource management

 Restricts the programming only slightly

 “Kubernetes (k8s) is an open-source system for automating deployment,

 scaling, and management of containerized applications.”

 https://kubernetes.io

https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/

Topics DDM++

17 Services and Containerization

Slide 24

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Kubernetes

 Can be thought of as

a) a container platform.

b) a microservices platform.

c) a portable cloud platform.

Topics DDM++

17 Services and Containerization

Slide 25

Thorsten Papenbrock

Container (Docker)

V
ir

tu
a
l

M
a
c
h

in
e

C
o
n

ta
in

e
r

Container

- share the infrastructure of their host

- are immutable: data is stored in outside volumes

- are created from container images like objects from classes

 faster, smaller, and much more light-weight than VMs

Topics DDM++

17 Services and Containerization

Slide 26

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Kubernetes

Container

- an application written in
any programming
language

- implements and
encapsulates some
functionality

- brings its own
dependencies

Topics DDM++

17 Services and Containerization

Slide 27

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Kubernetes

Pod

- a group of containers
tied to some pool of
resources

- the smallest scheduling
unit in Kubernetes

- isolated from other
pods

Topics DDM++

17 Services and Containerization

Slide 28

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Kubernetes

Service

- a set of pods that work
together to achieve a
greater task

- i.e. the orchestration of
some container
functions into one
service endpoint

- public elements that
can be looked-up in the
cluster

Topics DDM++

17 Services and Containerization

Slide 29

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Kubernetes

Volumes

- objects describing
persistent storage

- can be shared by the
containers of one pod

Topics DDM++

17 Services and Containerization

Slide 30

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Kubernetes

API Server

- REST interface for cluster configuration
(workloads and containers)

Controller Manager

- creates/deletes Pods w.r.t. some target
configuration

Scheduler

- dynamic Pod scheduling on the
available cluster nodes based on
resource-requirements and -availability

etcd

- service discovery and cluster
management (see ZooKeeper)

Kubelet

- manages and monitors all Pods on one
cluster node

Topics DDM++

17 Services and Containerization

Slide 31

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Kubernetes vs. Akka – Similarities

 Both use many same programming patterns

(scheduler, router, master-worker, proxies, singletons, …)

 Both can implement batch- and stream-processing pipelines

(map, reduce, join, filter … transformations as actors/Pods)

 Both provide means for dynamic scaling

(creating and deleting actors/Pods based on current load)

 Both support branching logic

(actors/containers decide freely: if A do this; if B do that)

 Both provide isolation for state and computation

(private data in actors/containers and private resources in

ActorSystems/Pods)

Topics DDM++

17 Services and Containerization

Slide 32

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Kubernetes vs. Akka – Differences

 Akka is more a programming framework while

Kubernetes is an orchestration framework for programs

(programming vs. configuration)

 Akka:

 light-weight, bound to the JVM

 difficult resource management

 fully asynchronous messaging

 Kubernetes:

 heavy-weight, code-agnostic due to containerization

 powerful resource management

 synchronous service calls

for distributed
applications

for distributed
systems

Topics DDM++

17 Services and Containerization

Slide 33

Thorsten Papenbrock

Akka in Kubernetes

/

user

system

Actor1 Actor2 Actor3

Actor1’ Actor1’’ Actor3’

Container

ActorSystem

Pod

Kubernetes Node

Kubernetes Master

Container

ActorSystem

Pod

Kubernetes Node

Container

ActorSystem

Pod

Kubernetes Node

Akka Cluster

Topics DDM++

17 Services and Containerization

Slide 34

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Kubernetes further reading

 Official website and documentation

https://kubernetes.io

 Wikipedia

https://en.wikipedia.org/

wiki/Kubernetes

 Book

Designing Distributed Systems

https://kubernetes.io/
https://kubernetes.io/
https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Kubernetes

Topics DDM++

18 Cloud-based Data Systems

Slide 35

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Cloud-based Data Systems

 Physical storage servers

 Partitioning: Each server persists some partitions of the data.

 Replication: Partitions are replicated to several servers.

 Dynamic: The number of storage servers may

dynamically adjust to the amount of data.

 Virtual compute servers

 Perform computations on the data (join, filter, sort, …)

 Created on-demand and possibly close to the data

 Dynamic: The number of compute servers my

dynamically adjust to the query load of the system.

Topics DDM++

18 Cloud-based Data Systems

Slide 36

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Cloud-based Data Systems

 Challenges

 Computation and data co-placement

 Multi-tenancy data in one data system

 Examples

 Amazon S3

 Oracle Cloud Storage

 Microsoft Azure Storage

 Openstack Swift

 EMC Atmos

 EMC ECS

 Hitachi Content Platform

Topics DDM++

19 Further Details on Distributed Systems

Slide 37

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

 https://vs.inf.ethz.ch/edu/WS0405/VA

https://www4.cs.fau.de/Lehre/WS03/V_VA/Skript

https://vs.inf.ethz.ch/edu/WS0405/VA
https://vs.inf.ethz.ch/edu/WS0405/VA
https://www4.cs.fau.de/Lehre/WS03/V_VA/Skript
https://www4.cs.fau.de/Lehre/WS03/V_VA/Skript
https://www4.cs.fau.de/Lehre/WS03/V_VA/Skript

Topics DDM++

20 Distributed Algorithms

Slide 38

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Sorting

(e.g. distributed merge sort)

Clustering

(e.g. distributed k-means)

Graph Traversal

(e.g. Bulk Synchronous Parallel model)

Machine Learning

(e.g. ML in Spark and Flink)

Data Mining

(e.g. distributed page rank)

Topics DDM++

21 Mining Data Streams

Slide 39

Lecture Summary

Thorsten Papenbrock

Distributed Data
Management

Sampling

(e.g. representative sampling window)

Filtering

(e.g. Bloomfilter)

Counting

(e.g. HyperLogLog)

Aggregation

(e.g. windowing)

Popular elements search

(e.g. decaying windows)

Overview

Next Semester

Seminar:
 Sustainable Machine Learning
 on Edge Device Clusters

 ​Data Preparation
 Data Cleaning
 Data Profiling
 Model Training
 On three clusters:

PI & computer & server

Open positions:
 Student Assistant

 DDM 2020 Tutor
 Project Metanome
 Project <?>

https://evaluierung.hpi.uni-potsdam.de/

https://evaluierung.hpi.uni-potsdam.de/
https://evaluierung.hpi.uni-potsdam.de/
https://evaluierung.hpi.uni-potsdam.de/
https://evaluierung.hpi.uni-potsdam.de/

