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Reliability 

 = fault-tolerance: 

  

fault/defect                             error                               failure may cause may not cause 

ACID & CAP & BASE 
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Task-Parallelism vs. Data-Parallelism 

  

Multi-Threading vs. 

Distributed Computing 
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Java Serialization 

 

Dataflow Models 

 

RPCs 
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SELECT *  
FROM PC PC1, PC PC2  
WHERE PC1.speed = PC2.speed  
AND PC1.ram = PC2.ram  
AND PC1.model < PC2.model; 

SQL 

SET hello “hello world” 
GET hello 
 “hello world” 

Redis 

SELECT *  
FROM myTable  
WHERE myField > 5000  
AND myField < 100000 
ALLOW FILTERING; 

CQL 

MongoDB API 

MATCH (me {name:"T. Papenbrock "}) 
MATCH (expert)-[:KNOWS]->(db:Database {name:"Neo4j"}) 
MATCH path = shortestPath( (me)-[:FRIEND*..5]-(expert) ) 
RETURN db, expert, path 

Cipher 

SELECT ?locationName  
WHERE { 
     ?hpi :name “HPI gGmbH” . 
     ?hpi :location ?locationName . 
} 

SPARQL 
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Segmentation 

 

LSM-Trees with B-trees and SSTables 

 

B-Tree 

SSTable 
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Multi-Leader 

Replication 

Leaderless 

Replication 

Single-Leader 

Replication 

Quorum 

 quorum (w,r)  

Quorum Consistency 

 w + r > n 

Gossip & Merkle Trees 
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Range Partitioning by Hash of Key 

Rebalancing Partitions 

Partition-Lookup 

Consistent Hashing 
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The φ accrual failure detector 

 

 

The network time protocol (NTP) 

 

 

Leases 
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Consensus Total Order Broadcast Linearizability 
 

Ordering with Lamport timestamps 
 

Leader Election 

Blockchain 
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Snapshot Isolation via MVCC 

Two-Phase Commit (2PC) 

Causal Ordering 
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TF 

UDF  

TF 

UDF 

MapReduce 
 

HDFS 
 

Transformation Pipelines 
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val sum = data.as[String] 

  .filter(value => value == null) 

  .flatMap(value => value.split("\\s+")) 

  .map(value => (value,1)) 

  .reduceByKey(_+_) 

  .collect() 

 

val result = flightData 

  .groupBy("DESTINATION") 

  .sum("FLIGHTS") 

  .sort(desc("sum(FLIGHTS)")) 

  .select( 

    col("DESTINATION"), 

    col("sum(FLIGHTS)").as("sum")) 

  .collect() 
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Windowing (Tumbling, Hopping, Sliding, Session) 
 

SELECT count(*) 
FROM Requests R [PARTITION BY R.client_id  
        ROWS 10 PRECEDING 
        WHERE R.domain = ‘stanford.edu’] 
WHERE R.url LIKE ‘http://cs.stanford.edu/%’ 

CQL 

val env = StreamExecutionEnvironment.getExecutionEnvironment 

val text = env.socketTextStream("localhost", 4242, '\n') 

val windowCounts = text 

  .flatMap { w => w.split("\\s") } 

  .map { w => WordWithCount(w, 1) } 

  .keyBy("word") 

  .timeWindow(Time.seconds(5), Time.seconds(1)) 

  .sum("count")   

windowCounts.print().setParallelism(1) 

env.execute("Socket Window WordCount") 

case class WordWithCount(word: String, count: Long) 

Event Time vs. Processing Time 
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      Global as View              Local as View 

  

Column Store Compression (see Parquet file format) 

 

Data Cubes 
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Distributed Join & Full Reducer 
 

Distributed Query Execution 
 Distributed Joins 
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Akka Cluster (Recap) 

 Connects ActorSystem nodes in a cluster into one distributed system 

 Has no control over … 

 resource allocation  

ActorSystems use whatever JVM resources they are started with. 

 node scaling  

ActorSystems are automatically tied together but they are started from 

the outside world. 

 resource isolation  

ActorSystems on the same host may compete for resources; all actors 

in one ActorSystem share the same resources. 
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Batch & Stream Processing Frameworks (Recap) 

 Connect nodes in a cluster into one distributed system 

 Perform cluster-wide resource management 

 Restrict the programming to … 

 non-interactive but data-driven applications  

Transformation pipelines do not wait for user input or have observable 

side effects for users. 

 non-branching data analytics or data transformation applications  

Transformation pipelines do not support complex, branching application 

logic. 

 non-dynamic step-by-step applications  

Transformation pipelines are static sequences of standard operations. 
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Kubernetes 

 Connects nodes in a cluster into one distributed system 

 Performs cluster-wide resource management 

 Restricts the programming only slightly 

 

 

 

 “Kubernetes (k8s) is an open-source system for automating deployment, 

     scaling, and management of containerized applications.” 

          https://kubernetes.io 

https://kubernetes.io/
https://kubernetes.io/
https://kubernetes.io/
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Kubernetes 

 Can be thought of as 

a) a container platform. 

b) a microservices platform. 

c) a portable cloud platform. 
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Container 

- share the infrastructure of their host 

- are immutable: data is stored in outside volumes 

- are created from container images like objects from classes 

 faster, smaller, and much more light-weight than VMs 



Topics DDM++ 

17 Services and Containerization 

Slide 26 

Lecture Summary 
 

Thorsten Papenbrock 

Distributed Data 
Management 

Kubernetes 

 

Container 

- an application written in 
any programming 
language 

- implements and 
encapsulates some 
functionality 

- brings its own 
dependencies 
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Pod 

- a group of containers 
tied to some pool of 
resources 

- the smallest scheduling 
unit in Kubernetes 

- isolated from other 
pods 
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Service 

- a set of pods that work 
together to achieve a 
greater task 

- i.e. the orchestration of 
some container 
functions into one 
service endpoint 

- public elements that 
can be looked-up in the 
cluster 
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Kubernetes 

 

Volumes 

- objects describing 
persistent storage 

- can be shared by the 
containers of one pod 
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API Server 

- REST interface for cluster configuration 
(workloads and containers) 

Controller Manager 

- creates/deletes Pods w.r.t. some target 
configuration 

Scheduler 

- dynamic Pod scheduling on the 
available cluster nodes based on 
resource-requirements and -availability 

etcd 

- service discovery and cluster 
management (see ZooKeeper) 

Kubelet 

- manages and monitors all Pods on one 
cluster node 
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Kubernetes vs. Akka – Similarities 

 Both use many same programming patterns 

(scheduler, router, master-worker, proxies, singletons, …) 

 Both can implement batch- and stream-processing pipelines 

(map, reduce, join, filter … transformations as actors/Pods) 

 Both provide means for dynamic scaling 

(creating and deleting actors/Pods based on current load) 

 Both support branching logic 

(actors/containers decide freely: if A do this; if B do that) 

 Both provide isolation for state and computation 

(private data in actors/containers and private resources in 

ActorSystems/Pods) 
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Kubernetes vs. Akka – Differences 

 Akka is more a programming framework while  

Kubernetes is an orchestration framework for programs  

(programming vs. configuration) 

 Akka:  

 light-weight, bound to the JVM 

 difficult resource management 

 fully asynchronous messaging 

 Kubernetes:  

 heavy-weight, code-agnostic due to containerization 

 powerful resource management 

 synchronous service calls 

for distributed 
applications 

for distributed  
systems 
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/ 
 

user 
 

system 

Actor1 Actor2 Actor3 

Actor1’ Actor1’’ Actor3’ 

Container 

ActorSystem 

Pod 

Kubernetes Node 

Kubernetes Master 

Container 

ActorSystem 

Pod 

Kubernetes Node 

Container 

ActorSystem 

Pod 

Kubernetes Node 

Akka Cluster 
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Kubernetes further reading 

 Official website and documentation 

https://kubernetes.io 

 Wikipedia 

https://en.wikipedia.org/ 

wiki/Kubernetes 

 Book 

Designing Distributed Systems 

https://kubernetes.io/
https://kubernetes.io/
https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Kubernetes
https://en.wikipedia.org/wiki/Kubernetes
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Cloud-based Data Systems 

 Physical storage servers 

 Partitioning: Each server persists some partitions of the data. 

 Replication: Partitions are replicated to several servers. 

 Dynamic: The number of storage servers may  

dynamically adjust to the amount of data. 

 Virtual compute servers 

 Perform computations on the data (join, filter, sort, …) 

 Created on-demand and possibly close to the data 

 Dynamic: The number of compute servers my  

dynamically adjust to the query load of the system.  
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Cloud-based Data Systems 

 Challenges 

 Computation and data co-placement 

 Multi-tenancy data in one data system 

 

 Examples 

 Amazon S3 

 Oracle Cloud Storage 

 Microsoft Azure Storage 

 Openstack Swift 

 EMC Atmos 

 EMC ECS 

 Hitachi Content Platform 
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                                                               https://vs.inf.ethz.ch/edu/WS0405/VA 

 

 

 

 

 

https://www4.cs.fau.de/Lehre/WS03/V_VA/Skript  

https://vs.inf.ethz.ch/edu/WS0405/VA
https://vs.inf.ethz.ch/edu/WS0405/VA
https://www4.cs.fau.de/Lehre/WS03/V_VA/Skript
https://www4.cs.fau.de/Lehre/WS03/V_VA/Skript
https://www4.cs.fau.de/Lehre/WS03/V_VA/Skript
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Sorting 

(e.g. distributed merge sort) 

Clustering 

(e.g. distributed k-means) 

Graph Traversal 

(e.g. Bulk Synchronous Parallel model) 

Machine Learning 

(e.g. ML in Spark and Flink) 

Data Mining 

(e.g. distributed page rank) 
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Sampling 

(e.g. representative sampling window) 

Filtering 

(e.g. Bloomfilter) 

Counting 

(e.g. HyperLogLog) 

Aggregation 

(e.g. windowing) 

Popular elements search 

(e.g. decaying windows) 
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Next Semester 

Seminar: 
      Sustainable Machine Learning  
      on Edge Device Clusters 

 ​Data Preparation 
 Data Cleaning 
 Data Profiling 
 Model Training 
 On three clusters: 

PI & computer & server 
 

Open positions: 
      Student Assistant 

 DDM 2020 Tutor 
 Project Metanome 
 Project <?> 
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