
Distributed Data Management

Exercise 1 Evaluation
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

“I wait for green”

“Attention, I break!”

“You are not in my path!”

“Road ahead is free!”

“I wait for crossing traffic”

“I accelerate!”

MasterActorSystem

WorkerActorSystem

Homework

ddm-exercise

Slide 4

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Master Worker

Cluster
Listener

Metrics
Listener

Reaper

Collector

Reader

Cluster
Listener

Metrics
Listener

Reaper

Worker
Worker

Worker

File Start

Task 1: Akka Setup

Task 3: Password Cracking

Task 2: LargeMessageProxy

MasterActorSystem

WorkerActorSystem

Homework

ddm-exercise

Slide 5

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Master Worker

Cluster
Listener

Metrics
Listener

Reaper

Collector

Reader

Cluster
Listener

Metrics
Listener

Reaper

Worker
Worker

Worker

File Start

Task 3: Password Cracking

Task 2: LargeMessageProxy

Task 1: Akka Setup

Homework

Task 1 – Akka Setup

Slide 6

Thorsten Papenbrock

1. Form teams of two students.

2. Create a public GitHub repository.

3. Copy or fork the ddm-exercise project from the exercise repository

https://github.com/HPI-Information-Systems/akka-tutorial

into your repository.

4. Build, understand and test the ddm-exercise project.

5. Optional: Check out and play with the akka-tutorial and octopus projects.

6. Send your first and last names, a group name and the link of your repository

via email to: thorsten.papenbrock@hpi.de

Akka Actor
Programming

Distributed Data
Management

https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
https://github.com/HPI-Information-Systems/akka-tutorial
mailto:thorsten.papenbrock@hpi.de

Homework

Task 1 – Teams

Slide 7

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Team Task 2 passed? Task 3 passed?

supreme-broccoli Yes Yes

w00t? Yes Yes

Code Monkeys Yes Yes

ddm_team_42 Yes Yes

Duftes Daten Mischen (DDM) Yes Yes

Dally Yes Yes

Distributed Wealth Yes Yes

the_reapers Yes Yes

Chewbakka Yes Yes

BlockchainOnAkka Yes Yes

Unknown Pleasures Yes Yes

Taube_Nuesschen Yes Yes

So Called Engineers Yes Yes

Alpha Yes Yes

Euphorische Elefanten Yes Yes

mAKKAronis Yes Yes

MeMyselfAndI Yes Yes

Multiprocessing Moguls Yes Yes

AlpAkka Yes Yes

DeadlyThread Yes Yes

Homework

Task 1 – Teams

Slide 8

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Team Task 2 passed? Task 3 passed?

supreme-broccoli Yes Yes

w00t? Yes Yes

Code Monkeys Yes Yes

ddm_team_42 Yes Yes

Duftes Daten Mischen (DDM) Yes Yes

Dally Yes Yes

Distributed Wealth Yes Yes

the_reapers Yes Yes

Chewbakka Yes Yes

BlockchainOnAkka Yes Yes

Unknown Pleasures Yes Yes

Taube_Nuesschen Yes Yes

So Called Engineers Yes Yes

Alpha Yes Yes

Euphorische Elefanten Yes Yes

mAKKAronis Yes Yes

MeMyselfAndI Yes Yes

Multiprocessing Moguls Yes Yes

AlpAkka Yes Yes

DeadlyThread Yes Yes

MasterActorSystem

WorkerActorSystem

Homework

ddm-exercise

Slide 9

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Master Worker

Cluster
Listener

Metrics
Listener

Reaper

Collector

Reader

Cluster
Listener

Metrics
Listener

Reaper

Worker
Worker

Worker

File Start

Task 1: Akka Setup

Task 3: Password Cracking

Task 2: LargeMessageProxy

Homework

Task 2 – LargeMessageProxy

Slide 10

Thorsten Papenbrock

Task

 Implement the LargeMessageProxy actor!

Akka Actor
Programming

Distributed Data
Management

System2 System1

Master Worker

Large
Message

Proxy

Large
Message

Proxy

LargeMessage<T> {
 T message;
 ActorRef receiver;
}
with sender = Master

T message
with sender = Master ??????

Homework

Assignment 2 – LargeMessageProxy

Slide 11

Thorsten Papenbrock

 Implement the LargeMessageProxy actor!

Akka Actor
Programming

Distributed Data
Management

Homework

Approach

Master/Worker
pull-protocol?

Akka
Streams?

Akka
Client-Server?

Alternative
approach?

Homework

Approach – Point-to-Point Pattern

Slide 13

Thorsten Papenbrock

The Point-to-Point pattern has support for automatically splitting up large

messages and assemble them again on the consumer side. This feature

is useful for avoiding head of line blocking from serialization and transfer of

large messages.

Akka Actor
Programming

Distributed Data
Management

https://doc.akka.io/docs/akka/current/typed/reliable-delivery.html

https://doc.akka.io/docs/akka/current/typed/reliable-delivery.html
https://doc.akka.io/docs/akka/current/typed/reliable-delivery.html
https://doc.akka.io/docs/akka/current/typed/reliable-delivery.html

Homework

Task 2 – LargeMessageProxy

Slide 14

Thorsten Papenbrock

Rules

 Do not mess with the time measurement:

It should start with the registration time and

it should end when receiving the data.

 Do not change the command line interface

or app name; otherwise, the automatic test

scripts will fail.

 Do not change the LargeMessage class;

the LargeMessageProxy should be able to send messages of any type T.

 Use maven to import additional libraries if you need some.

 Do not use the disk.

 Feel free to change everything inside the LargeMessageProxy!

Akka Actor
Programming

Distributed Data
Management

Homework

Evaluation – Odin/Thor Cluster

Slide 15

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

20 Cores, 30 GB

Homework

Task 2 – Test

Slide 16

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Team Executes? Works?

supreme-broccoli Yes No

w00t? Yes Yes

Code Monkeys Yes Yes

ddm_team_42 Yes Yes

Duftes Daten Mischen (DDM) Yes Yes

Dally Yes Yes

Distributed Wealth Yes Yes

the_reapers Yes Yes

Chewbakka Yes Yes

BlockchainOnAkka Yes Yes

Unknown Pleasures Yes Yes

Taube_Nuesschen Yes Yes

So Called Engineers Yes Yes

Alpha Yes Yes

Euphorische Elefanten Yes Yes

mAKKAronis Yes Yes

MeMyselfAndI Yes Yes

Multiprocessing Moguls Yes Yes

AlpAkka Yes Yes

DeadlyThread Yes Yes

Homework

Task 2 – Test

Slide 17

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Team Executes? Works?

supreme-broccoli Yes No

w00t? Yes Yes

Code Monkeys Yes Yes

ddm_team_42 Yes Yes

Duftes Daten Mischen (DDM) Yes Yes

Dally Yes Yes

Distributed Wealth Yes Yes

the_reapers Yes Yes

Chewbakka Yes Yes

BlockchainOnAkka Yes Yes

Unknown Pleasures Yes Yes

Taube_Nuesschen Yes Yes

So Called Engineers Yes Yes

Alpha Yes Yes

Euphorische Elefanten Yes Yes

mAKKAronis Yes Yes

MeMyselfAndI Yes Yes

Multiprocessing Moguls Yes Yes

AlpAkka Yes Yes

DeadlyThread Yes Yes

com.esotericsoftware.kryo.KryoException:

Class cannot be created

(missing no-arg constructor):

akka.stream.impl.streamref.SourceRefImpl

Solution:
SourceRefImpl cannot be serialized with Kryo.
Change the serialization for SourceRefImpl to
Java Serializable in the config file and specify
kryo for other messages that can actually be

serialized with it.

Speaker, Job
Description, Date if
needed

Presentation Title

Chart 18

Homework

Task 1 – Test

Slide 19

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Team Executes? Works?

supreme-broccoli Yes No

w00t? Yes Yes

Code Monkeys Yes Yes

ddm_team_42 Yes Yes

Duftes Daten Mischen (DDM) Yes Yes

Dally Yes Yes

Distributed Wealth Yes Yes

the_reapers Yes Yes

Chewbakka Yes Yes

BlockchainOnAkka Yes Yes

Unknown Pleasures Yes Yes

Taube_Nuesschen Yes Yes

So Called Engineers Yes Yes

Alpha Yes Yes

Euphorische Elefanten Yes Yes

mAKKAronis Yes Yes

MeMyselfAndI Yes Yes

Multiprocessing Moguls Yes Yes

AlpAkka Yes Yes

DeadlyThread Yes Yes

Submitted jar file did not work, but I later
figured out that the code worked; unfortunately
the cluster time was up, so I could not produce

further experimental results.

Assignment 2

1 master, 1 worker à 1 worker, WMS 10MB

0

2

4

6

8

10

12

14

16

18

T
im

e
 [

s
e
c
]

Assignment 2

1 master, 1 worker à 10 worker, WMS 10MB

0

1

2

3

4

5

6

7

8

9

T
im

e
 [

s
e
c
]

com.esotericsoftware.kryo.KryoException:

Encountered unregistered class ID
Assumption:

Messages got mixed up?

Assignment 2

1 master, 1 worker à 10 worker, WMS 10MB

0

1

2

3

4

5

6

7

8

9

T
im

e
 [

s
e
c
]

com.esotericsoftware.kryo.KryoException:

Encountered unregistered class ID
Assumption:

Messages got mixed up?

Assignment 2

1 master, 1 worker à 10 worker, WMS 10MB

0

1

2

3

4

5

6

7

8

9

T
im

e
 [

s
e
c
]
 java.lang.NullPointerException: null

Assumption:
Messages got mixed up?

Assignment 2

1 master, 1 worker à 10 worker, WMS 10MB

0

1

2

3

4

5

6

7

8

9

T
im

e
 [

s
e
c
]
 java.lang.NullPointerException: null

Assumption:
Messages got mixed up?

Assignment 2

1 master, 11 worker à 1 worker, WMS 10MB

0

1

2

3

4

5

6

7

8

9

T
im

e
 [

s
e
c
]

Assignment 2

1 master, 11 worker à 10 worker, WMS 10MB

0

5

10

15

20

25

30

T
im

e
 [

s
e
c
]

Sends the welcome messages
sequentially, i.e., one after another

Assignment 2

1 master, 11 worker à 10 worker, WMS 10MB

0

5

10

15

20

25

30

T
im

e
 [

s
e
c
]

Sends the welcome messages
sequentially, i.e., one after another

Assignment 2

1 master, 11 worker à 10 worker, WMS 10MB

0

5

10

15

20

25

30

T
im

e
 [

s
e
c
]

~19 MB/sec

Assignment 2

1 master, 11 worker à 10 worker, WMS 10MB

0

5

10

15

20

25

30

T
im

e
 [

s
e
c
]

~19 MB/sec

Assignment 2

1 master, 1 worker à 1 worker, WMS 100MB

0

10

20

30

40

50

60

70

80

90

100

T
im

e
 [

s
e
c
]

Assignment 2

1 master, 1 worker à 1 worker, WMS 100MB

0

1

2

3

4

5

6

7

8

9

10

T
im

e
 [

s
e
c
]

Assignment 2

1 master, 1 worker à 1 worker, WMS 200MB

0

1

2

3

4

5

6

7

Distributed Wealth mAKKAronis Taube_Nuesschen

T
im

e
 [

s
e
c
]
 ~46 MB/sec

Assignment 2

1 master, 1 worker à 1 worker, WMS 200MB

0

1

2

3

4

5

6

7

Distributed Wealth mAKKAronis Taube_Nuesschen

T
im

e
 [

s
e
c
]
 ~46 MB/sec

Assignment 2

1 master, 1 worker à 1 worker, WMS 200MB

0

1

2

3

4

5

6

7

Distributed Wealth mAKKAronis Taube_Nuesschen

T
im

e
 [

s
e
c
]
 ~46 MB/sec Akka Streams

Master-Worker

Master-Worker

Assignment 2

1 master, 1 worker à 1 worker, WMS 200MB

0

1

2

3

4

5

6

7

Distributed Wealth mAKKAronis Taube_Nuesschen

T
im

e
 [

s
e
c
]

MasterActorSystem

SlaveActorSystem

Homework

Tasks / Assignments

Slide 36

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Master Worker

Cluster
Listener

Metrics
Listener

Reaper

Collector

Reader

Cluster
Listener

Metrics
Listener

Reaper

Worker
Worker

Worker

File Start

Task 1: Akka Setup

Task 2: LargeMessageProxy

Task 3: Password Cracking

Homework

Task 3 – Password Cracking

Slide 37

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Passwords to be cracked

All characters that may
appear in the password

Number of characters
in the password

These two fields have
always the same value

for all records.

Hints:
 Every hint contains all PasswordChars besides

one char, i.e., |Hint|=|PasswordChars|-1
 The missing char is the hint, because it does

not appear in the password.
 The number of hints can change!
 The more hints we have, the easier it is to find

the password.

Homework

Task 3 – Password Cracking

Slide 38

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Both password and hints are SHA-256 encrypted.

Encryption cracking via brute force approach:
1. Generate sequence.
2. Encrypt sequence with SHA-256.
3. Compare current SHA-256 with existing one:

if equal, encryption is broken.

Hint cracking is much easier than password cracking.

Homework

Task 3 – Password Cracking

Slide 39

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Hints

 The passwords and hints are encrypted with the following function:

 Useful code snippets for combination generation:

 https://www.geeksforgeeks.org/print-all-combinations-of-given-length/

 https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/

private String hash(String password) {

 MessageDigest digest = MessageDigest.getInstance("SHA-256");

 byte[] hashedBytes = digest.digest(line.getBytes("UTF-8"));

 StringBuffer stringBuffer = new StringBuffer();

 for (int i = 0; i < hashedBytes.length; i++)

 stringBuffer.append(Integer.toString((hashedBytes[i] & 0xff) + 0x100, 16).substring(1));

 return stringBuffer.toString();

}

https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/print-all-combinations-of-given-length/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/
https://www.geeksforgeeks.org/heaps-algorithm-for-generating-permutations/

Homework

Task 3 – Password Cracking

Slide 40

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Hints

 Think agile:

 How can I maximize the parallelization?

(e.g. the number parallel tasks should in the best case not depend on the input data)

 How can I propagate intermediate results to other actors whenever needed?

(e.g. proxies, schedulers, master-worker, …)

 How can I re-use intermediate results to dynamically prune tasks?

(e.g. if I know that X is a solution, then I might be able to infer

without testing that Y is also a solution)

 How can I implement task parallelism?

(e.g. parts of subtask 2 might already be able to start with partial

results of subtask 1)

 How can I achieve elasticity in the number of cluster nodes?

(nodes may join or leave the cluster at runtime)

Homework

Task 3 – Password Cracking

Slide 41

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Notes

 Parameters that may change:

 password length

 password chars

 number of hints (= width of file)

 number of passwords (= length of file)

 number of cluster nodes

(do not wait for x nodes to join the cluster; you do not know their

number; implement elasticity, i.e., allow joining nodes at runtime)

 Parameters that may not change:

 encryption function SHA-256

 all passwords are of same length and have same character universe

Homework

Task 3 – Password Cracking

Slide 42

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Rules

 Do not mess with the time measurement:

It should start with the StartMessage and it should end when the PoisonPills are sent.

 Do not change the command line interface or app name;

otherwise, the automatic test scripts will fail.

 Use maven to import additional libraries if you need some.

 Do not use the disk.

 Feel free to change everything (besides interface and time measurement);

you probably need a new shutdown protocol, you need a proper

communication protocol for your Master/Worker actors and you

probably need additional actors.

 Write the cracked passwords with the Collector to the console;

the current printouts from the master should be deleted.

Assignment 3

Solution Approaches

Slide 43

Thorsten Papenbrock

Approach 1: “Straight-forward cracking”

 1 user = 1 task

 Partition passwords by users.

 Distribute all users and crack the passwords in parallel.

 Crack the hints first, then crack the password.

 Optimization: Crack the hints in parallel by spawning child actors.

Approach 2: “No redundant hashing”

 1 hint letter = 1 task

 Replicate the hints (and passwords) to all workers.

 Partition the hint space (e.g. 1 hint letter = 1 task).

 Each worker creates all hash-representations for its hint and checks which passwords use it.

 Optimization: More fine-grained hint space partitioning, e.g., by using

the hint letter as primary partitioning criterion and

the letter permutation prefix as secondary partitioning criterion.

For both, start cracking the overall password as early
as possible:
 as soon as all its hints are cracked
 or even earlier by guessing the password letters

Assignment 3

General Feedback

Slide 45

Thorsten Papenbrock

“The non-reactive workers”

 If workers are tasked to crack many passwords,

they are unresponsive for some time.

 This can lead to non clean shutdowns.

 Keep tasks small and/or actively

check inboxes once in a while.

Connection-, Future- and Stream-Errors

 Let all Actors carefully close their

resources before you terminate them!

“The tedious-hashing workers”

 Idea: Create permutations/combinations on master and send hashing tasks.

 Master needs to send too much data (network becomes the bottleneck)

 Hashing tasks are too small (too much scheduling for too short tasks)

Akka Actor
Programming

Distributed Data
Management

Homework

Task 3 – Test

Slide 46

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Team Executes? Terminates? Distributes?

supreme-broccoli Yes Yes No

w00t? Yes Yes Yes

Code Monkeys Yes Yes Yes

ddm_team_42 Yes Yes No

Duftes Daten Mischen (DDM) Yes Yes Yes

Dally Yes Sometimes Yes

Distributed Wealth Yes Yes Yes

the_reapers Yes Yes Yes

Chewbakka Yes Yes Yes

BlockchainOnAkka Yes Yes Yes

Unknown Pleasures Yes Yes Yes

Taube_Nuesschen Yes Yes Yes

So Called Engineers Yes Yes Yes

Alpha Yes No Yes

Euphorische Elefanten Yes Yes Yes

mAKKAronis Yes Yes Yes

MeMyselfAndI Yes No Yes

Multiprocessing Moguls Yes Yes Yes

AlpAkka Yes Yes Yes

DeadlyThread Yes Yes Yes

Homework

Task 3 – Test

Slide 47

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Team Executes? Terminates? Distributes?

supreme-broccoli Yes Yes No

w00t? Yes Yes Yes

Code Monkeys Yes Yes Yes

ddm_team_42 Yes Yes No

Duftes Daten Mischen (DDM) Yes Yes Yes

Dally Yes Sometimes Yes

Distributed Wealth Yes Yes Yes

the_reapers Yes Yes Yes

Chewbakka Yes Yes Yes

BlockchainOnAkka Yes Yes Yes

Unknown Pleasures Yes Yes Yes

Taube_Nuesschen Yes Yes Yes

So Called Engineers Yes Yes Yes

Alpha Yes No Yes

Euphorische Elefanten Yes Yes Yes

mAKKAronis Yes Yes Yes

MeMyselfAndI Yes No Yes

Multiprocessing Moguls Yes Yes Yes

AlpAkka Yes Yes Yes

DeadlyThread Yes Yes Yes

Observation:
Sometimes action stops with no error message.

Assumption:
Algorithm parallelizes to a higher degree than provided
number of workers; maybe that causes lost messages?

KNOWN BUGS
 workers sometimes don’t solve for all hints after first

password and therefore don’t necessarily crack all
passwords

 output of collector or timing for password cracking task
sometimes doesn't appear

Observations;
 system stops without a result at some point:

akka://ddm/deadLetters

 akka://ddm/user/master/largeMessageProxy| null:

java.lang.NullPointerException: null

Homework

Task 3 – Test

Slide 48

Thorsten Papenbrock

Akka Actor
Programming

Distributed Data
Management

Team Executes? Terminates? Distributes?

supreme-broccoli Yes Yes No

w00t? Yes Yes Yes

Code Monkeys Yes Yes Yes

ddm_team_42 Yes Yes No

Duftes Daten Mischen (DDM) Yes Yes Yes

Dally Yes Sometimes Yes

Distributed Wealth Yes Yes Yes

the_reapers Yes Yes Yes

Chewbakka Yes Yes Yes

BlockchainOnAkka Yes Yes Yes

Unknown Pleasures Yes Yes Yes

Taube_Nuesschen Yes Yes Yes

So Called Engineers Yes Yes Yes

Alpha Yes No Yes

Euphorische Elefanten Yes Yes Yes

mAKKAronis Yes Yes Yes

MeMyselfAndI Yes No Yes

Multiprocessing Moguls Yes Yes Yes

AlpAkka Yes Yes Yes

DeadlyThread Yes Yes Yes

Assumption:
Still due to the Kryo vs.

SourceRefImpl serialization issue.

Observation:
akka://ddm/user/master/largeMessageProxy| null

- java.lang.NullPointerException prevents the

worker nodes from helping the master node.

Task 3 – students.csv

100 names; 10 length; 11 chars; 9 hints; 10 worker/node

0

200

400

600

800

1000

1200

T
im

e
 [

s
e
c
]

Task 3 – students.csv

100 names; 10 length; 11 chars; 9 hints; 10 worker/node

0

200

400

600

800

1000

1200

T
im

e
 [

s
e
c
]

Observation:
Master looses all workers over time.

Assumption:
Master probably puts workers on too long tasks.

Task 3 – students.csv

100 names; 10 length; 11 chars; 9 hints; 10 worker/node

0

200

400

600

800

1000

1200

T
im

e
 [

s
e
c
]

Observation:
Master looses all workers over time.

Assumption:
Master probably puts workers on too long tasks.

Task 3 – students.csv

100 names; 10 length; 11 chars; 9 hints; 10 worker/node

0

200

400

600

800

1000

1200

T
im

e
 [

s
e
c
]

Observation:
akka://ddm/user/master/largeMessageProxy| null -

java.lang.NullPointerException: null on workers.

Assumption:
The null pointer exception prevents the worker nodes from

helping the master node.

Task 3 – students.csv

100 names; 10 length; 11 chars; 9 hints; 10 worker/node

0

200

400

600

800

1000

1200

T
im

e
 [

s
e
c
]

Observation:
akka://ddm/user/master/largeMessageProxy| null -

java.lang.NullPointerException: null on workers.

Assumption:
The null pointer exception prevents the worker nodes from

helping the master node.

Task 3 – students.csv

100 names; 10 length; 11 chars; 9 hints; 10 worker/node

0

200

400

600

800

1000

1200

T
im

e
 [

s
e
c
]

Task 3 – students.csv

100 names; 10 length; 11 chars; 9 hints; 10 worker/node

0

20

40

60

80

100

120

140

160

180

200

T
im

e
 [

s
e
c
]

Task 3 – students.csv

100 names; 10 length; 11 chars; 9 hints; 10 worker/node

0

1

2

3

4

5

6

7

8

9

10

T
im

e
 [

s
e
c
]

Task 3 – students_hard.csv

100 names; 12 length; 12 chars; 10 hints; 20 worker/node

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 [

s
e
c
]

>1h >1h >1h >1h

Observation:
akka://ddm/user/master/largeMessageProxy| null -

java.lang.NullPointerException: null on workers.

Assumption:
The null pointer exception prevents the worker nodes from

helping the master node.

Task 3 – students_hard.csv

100 names; 12 length; 12 chars; 10 hints; 10 worker/node

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 [

s
e
c
]

>1h >1h >1h >1h

Observation:
akka://ddm/user/master/largeMessageProxy| null -

java.lang.NullPointerException: null on workers.

Assumption:
The null pointer exception prevents the worker nodes from

helping the master node.

Task 3 – students_hard.csv

100 names; 12 length; 12 chars; 10 hints; 20 worker/node

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 [

s
e
c
]

>1h >1h >1h >1h

Observation:
Not all nodes can join the processing;

cannot kill busy processes.
Assumption:

Master probably puts workers on too long task.

Task 3 – students_hard.csv

100 names; 12 length; 12 chars; 10 hints; 10 worker/node

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 [

s
e
c
]

>1h >1h >1h >1h

Observation:
Not all nodes can join the processing;

cannot kill busy processes.
Assumption:

Master probably puts workers on too long task.

Task 3 – students_hard.csv

100 names; 12 length; 12 chars; 10 hints; 20 worker/node

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 [

s
e
c
]

>1h >1h >1h >1h

Observation:
Association to [...] is failed [...] the connection

has been aborted; master looses all workers over time;

cannot kill the busy processes.
Assumption:

Master probably puts workers on too long task.

Task 3 – students_hard.csv

100 names; 12 length; 12 chars; 10 hints; 10 worker/node

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 [

s
e
c
]

>1h >1h >1h >1h

Observation:
Association to [...] is failed [...] the connection

has been aborted; master looses all workers over time;

cannot kill the busy processes.
Assumption:

Master probably puts workers on too long task.

Task 3 – students_hard.csv

100 names; 12 length; 12 chars; 10 hints; 20 worker/node

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 [

s
e
c
]

>1h >1h >1h >1h

Observation:
Master lost all worker systems:

akka.actor.ActorNotFound: Actor not found for:

ActorSelection.

Task 3 – students_hard.csv

100 names; 12 length; 12 chars; 10 hints; 10 worker/node

0

5

10

15

20

25

30

35

40

45

50

T
im

e
 [

s
e
c
]

>1h >1h >1h >1h

Observation:
Master lost all worker systems:

akka.actor.ActorNotFound: Actor not found for:

ActorSelection.

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 20 worker/node

0

50

100

150

200

250

300

Chewbakka BlockchainOnAkka DeadlyThread

T
im

e
 [

s
e
c
]

>1h >1h

Observation:
Master looses all worker systems over time.

Assumption:
Master probably puts workers on too long task.

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 10 worker/node

0

50

100

150

200

250

300

Chewbakka BlockchainOnAkka DeadlyThread

T
im

e
 [

s
e
c
]

>1h >1h

Observation:
Master looses all worker systems over time.

Assumption:
Master probably puts workers on too long task.

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 10 worker/node

0

50

100

150

200

250

300

Chewbakka BlockchainOnAkka DeadlyThread

T
im

e
 [

s
e
c
]

>1h >1h

Observation:
Master looses all worker systems over time.

Assumption:
Master probably puts workers on too long task.

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 10 worker/node

0

50

100

150

200

250

300

Chewbakka BlockchainOnAkka DeadlyThread

T
im

e
 [

s
e
c
]

>1h >1h

Observation:
Master looses all worker systems over time.

Assumption:
Master probably puts workers on too long task.

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 20 worker/node

0

50

100

150

200

250

300

Chewbakka BlockchainOnAkka DeadlyThread

T
im

e
 [

s
e
c
]

>1h >1h

Observation:
20 workers on 20 cores use each core only to 50%.

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 10 worker/node

0

50

100

150

200

250

300

Chewbakka BlockchainOnAkka DeadlyThread

T
im

e
 [

s
e
c
]

>1h >1h

Observation:
20 workers on 20 cores use each core only to 50%.

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 20 worker/node

0

50

100

150

200

250

300

Chewbakka BlockchainOnAkka DeadlyThread

T
im

e
 [

s
e
c
]

>1h >1h

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 10 worker/node

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 10 worker/node

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 10 worker/node

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 10 worker/node

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 10 worker/node

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 10 worker/node

Task 3 – students_extreme.csv

100 names; 8 length; 14 chars; 10 hints; 20 worker/node

0

50

100

150

200

250

300

Chewbakka BlockchainOnAkka DeadlyThread

T
im

e
 [

s
e
c
]

>1h >1h

Distributed Data Management

Exercise Evaluation Assignments 1-3
Thorsten Papenbrock

F-2.04, Campus II

Hasso Plattner Institut

