

Dr.-Ing. Gjergji Kasneci *gjergji.kasneci@hpi.uni-potsdam.de*HPI Potsdam, winter term 2013/14

DATA MINING & PROBABILISTIC REASONING

Organization

Timetable

- Lectures
 - > Tuesdays 13:30-15:00 in Room H-E.51
 - > Every second Thursday 11:00-12:30 in Room H-2.57
- Exercises
 - > Every second Thursday 11:00-12:30 in Room H-2.57

Teaching assistant

- Maximilian Jenders (M.Sc.)
- Expertise: Recommendations, Web Mining, Opinion Mining

Exam

- Condition for admission: Oral presentation of at least two solutions during the tutorials
- Form of exam: oral exam at the end of the term

What is this lecture about?

Data Mining

- Analyzing data
- Finding patterns/structure
- Detecting outliers
- Learning predictive models
- Discovering knowledge

Probabilistic Reasoning

- Representing and quantifying uncertainty in data
- Predicting likely outcomes of random variables, i.e., occurrence of events
- Choosing the right model

Application areas

- Web mining (e.g., find documents for a given query or topic, group users by interest, recommendations, spam detection, ...)
- Medicine/Bioinformatics (e.g., analyze the effect of drugs, derive diagnose based on symptoms, analyze protein-protein interactions, discover sequence similarities, detect mutations, ...)
- Market analysis (e.g., market baskets, opinion mining, stock value prediction, influence propagation, ...)
- Physics (e.g., multivariate data analysis, modeling motion of particles, i.e., Brownian motion, event classification, noise detection, ...)
- Video games (e.g., AI game characters, matching players in online gaming, speech/shape recognition, ...)
- > ...

A Big Data perspective

"[...] every two days we create as much information as we did from the dawn of civilization up until 2003!"

Large amounts of structured and unstructured data (often incomplete and ambiguous)

- > Texts
- Lists, tables, graphs
- Images, audio, videos

- Distributed databases
- Key-value stores
- Column stores
- Document databases

Data analytics , Data Mining,
 Machine Learning, and Knowledge Discovery

Example: Part-of-speech tagging (1)

- > Task: Find the correct grammatical tag for terms in natural language text
- Difficulties arise from ambiguous grammatical meanings
- > Examples

word		tag
flies	\rightarrow	verb / noun
heat	\rightarrow	verb / noun
like	\rightarrow	verb / prep
water	\rightarrow	noun / verb
in	\rightarrow	prep / adv

NNP - Proper singular noun

NNPS - Proper plural noun

Example: Part-of-speech tagging (2)

This/DT is/VBZ only/RB a/DT simple/JJ example/NN sentence/NN for/IN the/DT sake/NN of/IN presentation/NN

- 2. They/PRP are/VBP hunting/VBG dogs/NNS
- Fruit/NNP flies/VBZ like/IN a/DT banana/NN

CC - Coordinating conjunction CD - Cardinal number DT - Determiner EX - Existential there FW - Foreign word IN - Preposition or subordinating conjunction JJ - Adjective JJR - Comparative adjective JJS - Superlative adjective LS - List Item Marker MD - Modal verb NN - Singular noun	PDT - Predeterminer POS - Possesive ending PRP - Personal pronoun PRPS - Possesive pronoun RB - Adverb RBR - Comparative adverb RBS - Superlative Adverb RP - Particle SYM - Symbol TO - to UH - Interjection VB - Verb, base form	VBP - Verb, non 3rd ps. sing. present VBZ - Verb, 3rd ps. sing. present WDT - wh-determiner WP - wh-pronoun WPS - Possesive wh-pronoun WRB - wh-adverb S - Dollar sign Sentence-break punctuation . ?! # - Pound sign - Dash sign Comma : - Colon, semi-colon
	,	
NNS - Phral noun	VBD - Verb, past tense	(- Open parenthesis)] }) - Close parenthesis)] }

From: http://smile-pos.appspot.com/

VBN - Verb, past participle

VBG - Verb, gerund/present participle

- Open quote

" - Close quote

Other important text analysis tasks

- Role labeling
- Entity recognition
- Entity disambiguation
- Relationship extraction
- Topic assignment (classification)
- Clustering

Example: Email classification

- Example classes
 - > Spam vs. non-spam
 - > Important vs. less important
 - Work-related / social / family / ads /...

Simple modelAssign email m to class

e.g., email domain e.g., indicates whether certain word appears

Features of m

Example: Click prediction

flowers

Q,

Ungefähr 153.000.000 Ergebnisse (0,19 Sekunden)

Rank ads by: P(C = 1|Q = q, A = a)

Anzeige - Warum diese Anzeige?

Flowers to USA for \$19.99 | ProFlowers.com

www.proflowers.com

Send Flowers to Your Loved Ones. Free Vase & Satisfaction Guarantee.

Birthday Flowers - Valentine's Flowers - Free Delivery - 20% Off

Flowers.de | | |

www.flowers.de/

Blumenversand-Vieles lässt sich mit Blumen leiter sagen! Deshalb bietet unser Blumenversand von Flowers.de das passende Blütenarrangement für jeden ...

Blumensträuße - Kundenlogin - Impressum - Geschenkideen

Flower - Wikipedia, the free encyclopedia

en.wikipedia.org/wiki/Flower - Diese Seite übersetzen

A flower, sometimes known as a bloom or blossom, is the reproductive in flowering plants (plants of the division Magnoliophyta, also called ...

Valentine's Day Flowers & Gifts | 1-800-FLOWERS.COM

www.1800flowers.com/ - Vereinigte Staaten - Diese Seite übersetzen

Find the perfect Valentine's Day **flowers** and gifts for your sweetheart at 1-800-FLOWERS.COM. Order roses, **flowers**, and other gifts for delivery on Valentine's ...

Birthday Flowers and Gifts - Sympathy - Roses - Sale

FTD.COM - Flowers Online | Roses, Fresh Flowers, Plants and Gift

www.ftd.com/ - Diese Seite übersetzen

22 Dec 2011 – Order flowers online for same day floral delivery. Shop for flowers, chocolates, roses, gifts and gift baskets by occasion, season or get beautiful ...

Anzeigen - Warum diese Anzeigen?

Blumen - Heute auf morgen

www.blumengruss.de

Inserent ist mit ★★★★★ bewertet Bis 14 Uhr bestellt und am nächsten Tag bundesweit geliefert. Frisch!

Fleurop - echte Blumen

www.fleurop.de/blumenversand fleurop.de ist mit **** bewertet von ECHTEN Floristen! Auf die Qualität kommt es an.

UK Flower Delivery

www.arenaflowers.com/UK

Inserent ist mit **** bewertet
Free Delivery & Fantastic Prices!
Send Beautiful flowers to the UK

Send Flowers Online

www.euroflorist.de/_Send_flowers

Hand delivered fresh flowers.

Order by 3pm for same day service!

Fleurop Switzerland

www.fleurop.ch

Flowers within hours all over the world - Satisfaction guaranteed.

Example: Image categorization

IM♣GENET Large Scale Visual Recognition Challenge 2013 (ILSVRC2013)

Introduction

This challenge evaluates algorithms for object detection and image classification at large scale. This year there will be three competitions:

- 1. A PASCAL-style detection challenge on fully labeled data for 200 categories of objects, NEW
- 2. An image classification challenge with 1000 categories, and
- 3. An image classification plus object localization challenge with 1000 categories.

Animal, animate being, beast, brute, creature, fauna

A living organism characterized by voluntary movement

1571 pictures 87.449 Popularity Percentile

Source: http://image-net.org/

Example: Object recognition and vision support

From: http://www.cognitivesystems.org

From: Tafaj et al.: ICANN'12

Example: Shape and speech recognition

Source: http://www.computerweekly.com

Example: Clustering astrophysical objects

From: http://ssg.astro.washington.edu/research.shtml?research/galaxies

Example: Recommendation

More to Explore

You looked at

You might also consider

Amazon recommendations

Dynamics of Markets: Econophysics and... Hardcover by Joseph L. McCauley \$77.92

Patterns of Speculation: A Study in... Paperback by Bertrand M. Roehner \$39.99 \$35.99

Origin of Wealth: Evolution... Paperback by Eric D. Beinhocker \$16.00 \$10.88

Introduction to Econophysics... A... Hardcover by Jim Paperback by Rosario N. Gatheral, Nassim... Mantegna, H... \$32.99

The Volatility Surface: \$60.00 \$37.80

Collaborative filtering

Bob

... see also the **Netflix Challenge**

Example: Movie recommendation

M1: The Shawshank Redemption

M2: The Usual Suspects

M3: The Godfather

M4: The Big Lebowski

Matrix factorization

Example from: Machine Learning by P. Flach

Example: Learning from crowds

Derive a (globally) optimal labelling

T Systems Engineering Universitat Potsdam Example: Community detection in social networks

Source: S. Fortunato, Physics Reports 2010

Example: Knowledge discovery

Important terms (1)

➤ Predictive model / hypothesis: Formalization of relationships between input and output variables with the goal of prediction

Examples

- $\triangleright w_i = a + b * h_i + \epsilon$, e.g., weight is linearly dependent on height
- $\triangleright y \sim N(x, \sigma^2)$, i.e., y is normally distributed with mean x and variance σ^2
- $P(l_1,\ldots,l_n,x_1,\ldots,x_n) = P(x_1)P(x_1|l_1)\prod_{i\geq 2}P(x_i|x_{i-1})P(x_i|l_i)$ grammatical n consecutive labels words
- ➤ Parameterized statistical model: Set of parameters and corresponding distributions that govern the data of interest
- Learning: Improvement on a task (measured by a target function) with growing experience

Important terms (2)

- Training: Sequence of observations from which experience can be gained
- Target function: Formal definition for the goal that has to be achieved

Possible goals

- Identify the "best next" item to label in active learning
- Maximize the joint probability of two or more observations (given some parameters)
- Predict the "best next" move in a chess game

Often, only an approximation of the "ideal" target function is considered

Example of a target function

 \succ Task: Predict the number of retweets $V(\mathbf{t}_i)$ for a tweet \mathbf{t}_i

Number of possible readers

- Choosing an approximation algorithm
 - ► Learn a function \hat{V} that predicts R_i based on \mathbf{t}_i from training examples of the form $(\mathbf{t}_1 = (37,0,...,1)^T, R_1 = 0),..., (\mathbf{t}_n = (23879,3,...,0)^T, R_n = 214)$
 - $\triangleright \hat{V}$ should minimize the training error $\frac{1}{2}\sum_{i=1}^{n}(R_i-V(\mathbf{t}_i))^2$

Inductive learning hypothesis and Occam's razor

- Suppose a learning algorithm performs well on the training examples
- How do we know that it will perform well on other unobserved examples?
- Lacking any further information, we assume the following hypothesis holds
 - Any algorithm approximating the target function well over a sufficiently large set of training examples will also approximate it well over unseen examples (Inductive Learning Hypothesis).
- ➤ But there may be many different algorithms that approximate the target function similarly well ... Which one should be chosen?
 - Other things being equal, prefer the simplest hypothesis (Occam's Razor)

Interesting questions related to learning algorithms

- How to (formally) represent training examples?
- How many examples are sufficient?
- What algorithms can be used for a given target function?
- ➤ How complex is a given learning algorithm?
- How can a learning algorithm quickly adept to new observations?

Learning with labeled data

- Which algorithm works best for Confusion Set Disambiguation (Banko & Brill ACL'01)?
 - Problem: Choose the correct use of a word, given a set of words with which it is commonly confused

Often, what matters is data!

Inductive bias is fine, there's no free lunch!

Inductive bias of a learning algorithm: Set of assumptions that allow the algorithm to predict well on unseen examples

Examples of inductive bias

- ➤ (Conditional) independence assumption
- Item belongs to same class as its neighbors
- > Select features that are highly correlated with the class (but uncorrelated with each other)
- > Choose the model that worked best on test data according to some measure
- No Free Lunch Theorem (D. H. Wolpert & W. G. Macready 1997)

 For any leaning algorithm, any elevated performance over one class of problems is offset by the performance over another class

Areas of learning theory

Supervised Learning

- Classification problems
- Input: feature vector
- Output: one of a finite number of discrete categories

Unsupervised Learning

- Clustering, dimensionality reduction, density estimation
- Input: feature vectors
- Output: similar groups of vectors, reduced vectors, or distribution of data from the input space

Regression

➤ Like classification but output is continuous

Reinforcement Learning

- Find suitable actions to maximize reward
- Trade-off between exploration (trying out new actions) and exploitation (choose action with maximal reward)

Topics of this lecture

- Basics from probability theory, statistics, information theory
- Evaluation measures
- Hierarchical classifiers
- Linear classifiers
- Artificial neural networks
- Regression
- Clustering and topic models
- Graphical models (directed vs. undirected models)
- Factor graphs and inference
- Reinforcement learning

Related literature

Literature

- ▶ I. H. Witten, E. Frank, M. A. Hall: <u>Data Mining Practical Machine Learning</u> <u>Tools and Techniques</u> (Chapters 1 – 6)
- ➤ C. Bishop: Pattern Recognition and Machine Learning (Chapters 1 4, 8, 9)
- ➤ T. M. Mitchell: Machine Learning (Chapters 3 6, 8, 10)
- P. Flach: Machine Learning The Art and Science of Algorithms that make Sense of Data (Chapters 1 − 3, 5 − 11)
- ▶ D. J. C. MacKay: <u>Information Theory, Inference and Learning</u> <u>Algorithms</u> (Chapters 1 – 6)

Important conferences

> KDD, WSDM, ICDM, WWW, CIKM, ICML, ECML, ACL, EMNLP, NIPS, ...

> Tools

- The Weka Toolkit (http://www.cs.waikato.ac.nz/ml/weka/)
- ➤ The R Project for Statistical Computing (http://www.r-project.org/)