
BASICS OF PROBABILITY THEORY



Outline

 Laws of probability

 Random variables

 Probability distributions

 Expectation, variance, covariance

 Maximum likelihood estimation

 Expectation maximization

 Different views on probabilities

 Bayesian inference

2



Set-theoretic view of probability theory
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 Probability space

 (Ω, 𝐸, 𝑃) with 

 Ω: sample space of elementary events

 𝐸: event space, i.e. subsets of Ω, closed under ∩, ∪, and ¬, usually 𝐸 = 2Ω

 𝑃: 𝐸 → [0, 1], probability measure 

Properties of 𝑃: 

1. 𝑃(∅) = 0 (impossible event)

2. 𝑃(Ω) = 1

3. 𝑃(𝐴) + 𝑃(¬𝐴) = 1

4. 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) – 𝑃(𝐴 ∩ 𝐵)

5. 𝑃( 𝑖 𝐴𝑖) =  𝑖 𝑃(𝐴𝑖) for pairwise disjoint 𝐴𝑖

“As far as the propositions of mathematics refer to reality, they

are not certain; and as far as they are certain, they do not refer

to reality.”

Albert Einstein, 1921



Sample space and events: Examples

 Rolling a die

 Sample space:

 Probability of even number:

 Tossing two coins

 Sample space:

 Probability of HH or TT:

{1, 2, 3, 4, 5, 6}

looking for events 𝐴 = {2}, 𝐵 = {4}, 𝐶 = {6},
𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) = 1/6 + 1/6 + 1/6 = 0.5

{HH, HT, TH, TT}

looking for events 𝐴 = {TT}, 𝐵 = {HH}, 𝑃(𝐴 ∪ 𝐵) = 0.5

 In general, when all outcomes in Ω are equally likely, for an 𝑒 ∈ 𝐸 holds:

𝑃(e) = 
# outcomes in e

# outcomes in sample space
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Joint, marginal, and conditional probabilities

 Joint and conditional probability

 𝑃(𝐴, 𝐵) = 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵|𝐴) 𝑃(𝐴) (product rule)

 Bayes’ theorem

𝑃(𝐵|𝐴) =
𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃(𝐴)

 Total/marginal probability 

 𝑃(𝐵) = Σ𝑗 𝑃(𝐵 ∩ 𝐴𝑗) for any partitioning of Ω in 𝐴1 , … , 𝐴𝑛 (sum rule)

Thomas Bayes
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Joint, marginal, and conditional probabilities: Example

Example from C. Bishop: PRML

Suppose: P(B = r) = 2/5 

P(F = o) = P(F = o | B = r) P(B = r) + P(F = o | B = b) P(B = b) = 9/20 

P(B = b | F = o)  =
P(F = o | B = b) P(B = b)

P(F = o)
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Independent events

 Independence

 𝑃(𝐴1 , … , 𝐴𝑛) = 𝑃(𝐴1 ∩ … ∩ 𝐴𝑛) = 𝑃(𝐴1) 𝑃(𝐴2) … 𝑃(𝐴𝑛), for 
independent events 𝐴1, … , 𝐴𝑛

 Conditional Independence

 𝐴 is independent of 𝐵 given 𝐶 𝑃 𝐴 𝐵, 𝐶 = 𝑃 𝐴 𝐶

 If 𝐴1, … , 𝐴𝑛 are independent of each other given 𝐵 then

𝑃 𝐴1 ∩ … ∩ 𝐴𝑛 |𝐵 =  𝑖 𝑃 𝐴𝑖|𝐵

 If 𝐴 and 𝐵 are independent, are they also independent given 𝐶? 
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Example: Which drug works better?

Women Men

Drug x Drug y Drug x Drug y

Success 100 5 10 500

Failure 900 95 1 500

𝑆 = Drug succeeds
𝑋 = Drug x is used
𝑌 = Drug y is used
𝑊 =  Patient is woman
𝑀 = Patient is man

𝑃 𝑆|𝑋 ≈ 0.11
𝑃 𝑆|𝑌 ≈ 0.46

Drug y works better

𝑃 𝑆|𝑋,𝑊 = 0.10
𝑃 𝑆|𝑌,𝑊 = 0.05

𝑃 𝑆|𝑋,𝑀 = 0.91
𝑃 𝑆|𝑌,𝑀 = 0.5

Drug x works betterSimpson’s paradox

 Observation
 In above table being a male is a strong cause for both drug usage and recovery
 In such cases, one should evaluate the probabilities on the subgroups separately 

and report weighted averages  
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Discrete and continuous random variables

 Random variable on probability space  (Ω, 𝐸, 𝑃)

 𝑋: Ω → 𝑀 ⊆ ℝ (numerical representations of outcomes)                                  
with {𝑒|𝑋(𝑒) ≤ 𝑥} ∈ 𝐸 for all 𝑥 ∈ 𝑀

 If 𝑀 is countable 𝑋 is called discrete, otherwise continuous

 Examples
 Rolling a die: 𝑋 𝑖 = 𝑖

 The exact pair of faces when rolling two dice: 𝑋 𝑎, 𝑏 = 6 𝑎 − 1 + 𝑏

 The sum of faces for two dice: 𝑋 𝑎, 𝑏 = 𝑎 + 𝑏

 Random variables 𝑋1, … , 𝑋2 are called independent and identically 
distributed (i.i.d.) if each random variable has the same probability 
distribution as the others and all are mutually independent
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Random variables and probabilities

Example from C. Bishop: PRML

Marginal probability:

𝑃 𝑋 = 𝑥𝑖 =
𝑐𝑖
𝑁

Sum rule:

𝑃 𝑋 = 𝑥𝑖 =  
𝑗
𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗)

=
1

𝑁
 

𝑗
𝑛𝑖𝑗 =

𝑐𝑖
𝑁

Joint probability:

𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 =
𝑛𝑖𝑗

𝑁
Product rule:

𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 = 𝑃(𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖)𝑃 𝑋 = 𝑥𝑖

=
𝑛𝑖𝑗

𝑐𝑖

𝑐𝑖
𝑁

=
𝑛𝑖𝑗

𝑁
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Probability theory

 Cumulative distribution function (cdf)

 𝐹𝑋:𝑀 → [0,1] with 𝐹𝑋 𝑥 = 𝑃(𝑋 ≤ 𝑥)

 Probability density function (pdf) 

 𝑓𝑋:𝑀 → [0,1] with 𝑓𝑋 𝑥 = 𝑃 𝑋 = 𝑥 := 𝑃 𝑥 ≤ 𝑋 ≤ 𝑥 + 𝛿𝑥 , 𝛿𝑥 → 0

 Quantile function

 𝐹−1 𝑞 = inf{𝑥|𝐹𝑋 𝑥 > 𝑞},  𝑞 ∈ [0,1] (for 𝑞 = 0.5, 𝐹−1 𝑞 is called median)

𝑓𝑋 𝐹𝑋

From C. Bishop: Pattern Recognition 
and Machine Learning
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Useful discrete distributions (1)

 Uniform distribution over {1, 2, …, m}: 𝑃 𝑋 = 𝑘 = 𝑓𝑋(𝑘) =
1

𝑚

 Bernoulli distribution with parameter 𝑝: 𝑃 𝑋 = 𝑥 = 𝑓𝑋 𝑥 = 𝑝𝑥(1 − 𝑝)1−𝑥

 Binomial distribution with parameter 𝑝,𝑚: 𝑃 𝑋 = 𝑘 = 𝑓𝑋 𝑘 =
𝑚
𝑘

𝑝𝑘 1 − 𝑝 𝑚−𝑘
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𝑘 𝑘 𝑘

𝑃 𝑋 = 𝑘 𝑃 𝑋 = 𝑘 𝑃 𝑋 = 𝑘
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𝑃 𝑋 = 𝑥

𝑥

1 −



Useful discrete distributions (2)

 Geometric distribution with parameter 𝑝: 𝑃 𝑋 = 𝑘 = 𝑓𝑋 𝑘 = (1 − 𝑝) 𝑘𝑝

 Poisson distribution: 𝑃 𝑋 = 𝑘 = 𝑓𝑋(𝑘) = 𝑒−𝜆 𝜆𝑘

𝑘!

13

0.5

0.25

𝑃 𝑋 = 𝑘

𝑘
0 2 4

𝑘

𝑘

𝑘

𝑘

𝑃 𝑋 = 𝑘𝑃 𝑋 = 𝑘

𝑃 𝑋 = 𝑘 𝑃 𝑋 = 𝑘

𝜆 𝜆

𝜆
𝜆

Poisson process
 Counting process
 𝑃 𝑋 = 𝑘 : probability 

that there will be 𝑘
increments per time unit 

 Parameter 𝜆: expected 
number of increments 
per time unit



Useful continuous distributions (1)

 Uniform distribution over [a, b] ∶ 𝑃 𝑋 = 𝑥 = 𝑓𝑋(𝑥) =
1

𝑏−𝑎
for  𝑎 ≤ 𝑥 ≤ 𝑏

 Exponential distribution: 𝑃 𝑋 = 𝑥 = 𝑓𝑋 𝑥 = 𝜆𝑒−𝜆𝑥 for  𝑥 > 0
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 Describes process in which 
events occur continuously and 
independently at constant 
average rate λ

 Can be used to model
 Time between two phone calls
 Modeling of radioactive

decay
 Durability of electronic devices

𝜆 = 2

𝜆 = 0.5

𝜆 = 1

Ex
p

(x
)



Useful continuous distributions (2)

 Pareto distribution with parameters 𝑎, 𝑏: 

𝑃 𝑋 = 𝑥 = 𝑓𝑋 𝑥 =
𝑎

𝑏

𝑏

𝑥

𝑎+1

, 𝑥 > 𝑏
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 Examples of power-law distributions
 Distribution of populations 

over cities
 Distribution of wealth
 Citations distribution over

research papers 
 Degree distribution in web 

graph (or social graphs)

 Power law distribution

 Pareto principle
 80% of the effects come 

from 20% of the causes



Useful continuous distributions (3)

 Logistic distribution: 𝑃(𝑋 ≤ 𝑥) = 𝐹𝑋 𝑥 =
1

1+𝑒−𝑥

16

x

L(x)

 Applications
 Classification, e.g., with

logistic regression
 Inference in neural networks
 In Psychometrics, e.g., 

modeling the probability 
of tasks being solved correctly
in IQ questionnaires (e.g., 
in Item-Response Theory)



Useful continuous distributions (4)

 Normal distribution (Gaussian)

 𝑋~ 𝑁 𝜇, 𝜎2 ⟺ 𝑓𝑋 𝑥 =
1

2𝜋𝜎2
𝑒

−(𝑥−𝜇)2

2𝜎2

𝜇:𝑚𝑒𝑎𝑛, 𝜎: 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

 Cumulative distribution of 𝑁 0,1 : Φ 𝑧 =  −∞

𝑧 1

2𝜋
𝑒

𝑥2

2 𝑑𝑥
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𝜇 = −2, 𝜎2 = 0.25

𝜇 = 0, 𝜎2 = 1

𝜇 = 0, 𝜎2 = 4

pdf cdf

x

http://de.wikipedia.org/w/index.php?title=Datei:Carl_Friedrich_Gauss.jpg&filetimestamp=20051219170533
http://de.wikipedia.org/w/index.php?title=Datei:Carl_Friedrich_Gauss.jpg&filetimestamp=20051219170533


Multivariate distributions

 Let 𝑋1, … , 𝑋𝑚 be random variables over the same probability space with   

domains 𝑑𝑜𝑚 𝑋1 , … , 𝑑𝑜𝑚 𝑋𝑚

 The joint distribution of 𝑋1, … , 𝑋𝑚 has a pdf 𝑓𝑋1,…,𝑋𝑚
𝑥1, … , 𝑥𝑚 with

 𝑥1∈𝑑𝑜𝑚(𝑋1)
… 𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)𝑓𝑋1,…,𝑋𝑚

𝑥1, … , 𝑥𝑚 = 1

 𝑥1∈𝑑𝑜𝑚(𝑋1)
… 𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)

𝑓𝑋1,…,𝑋𝑚
𝑥1, … , 𝑥𝑚 𝑑𝑥1 … 𝑑𝑥𝑚 = 1

 The marginal distribution of 𝑋𝑖 is 𝐹𝑋1,…,𝑋𝑚
𝑥𝑖 =

 𝑥1∈𝑑𝑜𝑚(𝑋1)
… 𝑥𝑖−1∈𝑑𝑜𝑚(𝑋𝑖−1)

 𝑥𝑖+1∈𝑑𝑜𝑚(𝑋𝑖+1)
… 𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚) 𝑓𝑋1,…,𝑋𝑚

𝑥1, … , 𝑥𝑚

 𝑥1∈𝑑𝑜𝑚(𝑋1)
… 𝑥𝑖−1∈𝑑𝑜𝑚(𝑋𝑖−1)

 𝑥𝑖+1∈𝑑𝑜𝑚(𝑋𝑖+1)
… 𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)

𝑓𝑋1,…,𝑋𝑚
𝑥1, … , 𝑥𝑚 𝑑𝑥1

… 𝑑𝑥𝑚
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Useful multivariate distributions

 Multinomial distribution with parameters 𝑛,𝑚 (rolling 𝑛 𝑚-sided dice) 

𝑃 𝑋1 = 𝑘1 …𝑋𝑚 = 𝑘𝑚 = 𝑓𝑋1,…,𝑋𝑚
𝑘1, … , 𝑘𝑚 =

𝑛!

𝑘1! … 𝑘𝑚!
𝑝1

𝑘1 …𝑝𝑚
𝑘𝑚

with 𝑘1+⋯+ 𝑘𝑚 = 𝑛 and 𝑝1 + …+ 𝑝𝑚 = 1

 Multivariate Gaussian with parameters  𝜇, Σ where Σ𝑖𝑗: = 𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)

𝑓𝑋1,…,𝑋𝑚
 𝑥 =

1

(2𝜋)𝑚|Σ|
𝑒−

1
2(

 𝑥−𝜇)𝑇Σ−1(  𝑥−𝜇)
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Expectation of random variables

 For discrete variable 𝑋: 𝐸 𝑋 =  𝑥 𝑥 𝑓𝑋(𝑥) is the expectation of 𝑋

 For continuous variable 𝑋: 𝐸 𝑋 =  −∞

∞
𝑥 𝑓𝑋 𝑥 𝑑𝑥

 Properties 

 𝐸 𝑋𝑖 + 𝑋𝑗 = 𝐸 𝑋𝑖 + 𝐸(𝑋𝑗)

 𝐸 𝑋𝑖 𝑋𝑗 = 𝐸 𝑋𝑖 𝐸(𝑋𝑗) for independent, identically distributed (i.i.d.) variables 

𝑋𝑖, 𝑋𝑗

 𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏 for constants 𝑎, 𝑏
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Variance, standard deviation, and covariance

 Variance

 𝑉𝑎𝑟 𝑋 = 𝐸[ 𝑋 − 𝐸[𝑋])2 = 𝐸 𝑋2 − 𝐸[𝑋]2

 Properties

 𝑉𝑎𝑟 𝑋𝑖 + 𝑋𝑗 = 𝑉𝑎𝑟 𝑋𝑖 + 𝑉𝑎𝑟(𝑋𝑗) for i.i.d. variables 𝑋𝑖, 𝑋𝑗

 𝑉𝑎𝑟 𝑎𝑋 + 𝑏 = 𝑎2𝑉𝑎𝑟 𝑥 for constants 𝑎, 𝑏

 Standard deviation

 𝑆𝑡𝐷𝑒𝑣 𝑋 = 𝑉𝑎𝑟(𝑋)

 Covariance

 𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = 𝐸[(𝑋𝑖 − 𝐸 𝑋𝑖 ) (𝑋𝑗 − 𝐸[𝑋𝑗])]

 𝑉𝑎𝑟 𝑋 = 𝐶𝑜𝑣(𝑋, 𝑋)

 In general: 𝑉𝑎𝑟 𝑋 + 𝑌 = 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟 𝑌 + 𝐶𝑜𝑣 𝑋, 𝑌
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Maximum likelihood estimation (MLE)

 Suppose that after tossing a coin 𝑛 times, we have seen 𝑘 times head

 Let 𝑝 be the unknown probability of the coin showing head

 Is it possible to estimate 𝑝?

 We know that observation corresponds to Binomial distribution, hence: 

𝐿 𝑝; 𝑘, 𝑛 = 𝑃 𝑘, 𝑛|𝑝 =
𝑛

𝑘
𝑝𝑘(1 − 𝑝)𝑛−𝑘

 Maximizing 𝐿 𝑝; 𝑘, 𝑛 is equivalent to maximizing log 𝐿 𝑝; 𝑘, 𝑛

 log 𝐿 𝑝; 𝑘, 𝑛 is called log-likelihood function

log 𝐿 𝑝; 𝑘, 𝑛 = log
𝑛

𝑘
+ 𝑘 log 𝑝 + 𝑛 − 𝑘 log (1 − 𝑝)

∂ log 𝐿

∂ 𝑝
=

𝑘

𝑝
−

(𝑛 − 𝑘)

(1 − 𝑝)
= 0 ⇒ 𝑝 =

𝑘

𝑛
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MLE example

 Assume 𝑥1, … , 𝑥𝑛 originate from a Gaussian with unknown 𝜇 and 𝜎2

𝐿 𝜇, 𝜎; 𝑥1, … , 𝑥𝑛 =
1

2𝜋𝜎

𝑛

 

𝑖=1

𝑛

𝑒
−

(𝑥𝑖−𝜇)
2𝜎2

2

≃ 𝑛 ⋅ 𝑙𝑛
1

2𝜋𝜎
+  

𝑖
−

(𝑥𝑖 − 𝜇)

2𝜎2

2

∂ log 𝐿

∂ 𝜇
=

1

2𝜎2
 

𝑖=1

𝑛

2(𝑥𝑖 − 𝜇) = 0

∂ log 𝐿

∂ 𝜎
= −

𝑛

𝜎
+

1

𝜎3
 

𝑖=1

𝑛

𝑥𝑖 − 𝜇 2 = 0

⇒  𝜇 =
1

𝑛
 𝑖=1

𝑛 𝑥𝑖

 𝜎2 =
1

𝑛
 𝑖=1

𝑛 (𝑥𝑖 − 𝜇)2
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MLE generalization

 Let 𝑥1, … , 𝑥𝑛 be a random sample from a distribution 𝑓 𝜽, 𝑥

 𝑥1, … , 𝑥𝑛 can be viewed as the values of i.i.d. random variables 𝑋1, … , 𝑋𝑛

 𝐿 𝜽; 𝑥1, … , 𝑥𝑛 = 𝑃[𝑥1, … , 𝑥𝑛 originate from 𝑓(𝜽, 𝑥)]

 Maximizing 𝐿(𝜽; 𝑥1, … , 𝑥𝑛) is equivalent to maximizing log 𝐿(𝜽; 𝑥1, … , 𝑥𝑛),

i.e., the log-likelihood function: log 𝑃(𝑥1, … , 𝑥𝑛|𝜽). 

 If 
∂ log 𝐿

∂ 𝑝
is analytically intractable, use iterative numerical methods, e.g. 

Expectation Maximization (EM)
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 Example: Gaussian Mixture Model (GMM)

Suppose 𝑥1, … , 𝑥𝑛are random samples from a mixture of Gaussians     

𝑀(𝐴, 𝐵) with  𝐴(𝜇𝐴, 𝜎𝐴
2) and 𝐵(𝜇𝐵, 𝜎𝐵

2), with unknown means and

variances (e.g., weights of women and men) 

𝐿 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 , 𝑝𝐴, 𝑝𝐵; 𝑥1, … , 𝑥𝑛 =  

𝑖

𝑝𝐴 𝑃 𝑥𝑖 𝐴 + 𝑝𝐵 𝑃 𝑥𝑖 𝐵

with 𝑝𝐴 + 𝑝𝐵 = 1 and 𝑃 𝑥𝑖 𝐴 = 𝐴 𝜇𝐴, 𝜎𝐴
2, 𝑥𝑖 =

1

2𝜋𝜎𝐴
2
𝑒
(𝑥𝑖−𝜇𝐴)2

2𝜎𝐴
2

Mixture models
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𝐴 𝐵

Expectation maximization (EM)

𝐿 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 , 𝑝𝐴, 𝑝𝐵; 𝑥1, … , 𝑥𝑛 =  

𝑖

𝑝𝐴 𝑃 𝑥𝑖 𝐴 + 𝑝𝐵 𝑃 𝑥𝑖 𝐵

1. Expectation step: Estimate the expected membership value of each point 
𝑥𝑖 given the current estimations of 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵, 𝑝𝐴 , 𝑝𝐵

2. Maximization step: Use the expected membership values to re-estimate 
the parameters, and continue with Step 1 until convergence of 
log 𝐿 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 , 𝑝𝐴, 𝑝𝐵; 𝑥1, … , 𝑥𝑛
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EM algorithm for mixture models

𝐿 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 , 𝑝𝐴, 𝑝𝐵; 𝑥1, … , 𝑥𝑛 =  

𝑖

𝑝𝐴 𝑃 𝑥𝑖 𝐴 + 𝑝𝐵 𝑃 𝑥𝑖 𝐵

1. Initialize the parameters 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵, 𝑝𝐴, 𝑝𝐵 to some random values 
(constraint: 𝑝𝐴 + 𝑝𝐵 = 1)

2. E-step: For each 𝑥𝑖 compute expected membership values 𝑃 𝐴 𝑥𝑖 , 𝑃(𝐵|𝑥𝑖)

3. M-step: Re-estimate the parameters 

4. Iterate steps 2 and 3 until convergence (i.e., until changes of log likelihood 
are negligible)
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Exact EM calculations for the GMM example

𝐿 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 , 𝑝𝐴, 𝑝𝐵; 𝑥1, … , 𝑥𝑛 =  

𝑖

𝑝𝐴 𝑃 𝑥𝑖 𝐴 + 𝑝𝐵 𝑃 𝑥𝑖 𝐵

 Start with random parameters

 Maximize log-likelihood (i.e., target function) by iterating following steps:

1. Compute membership weights 

𝑤𝐴𝑖 = 𝑃 𝐴 𝑥𝑖 =
𝑃 𝑥𝑖 𝐴 𝑃(𝐴)

𝑃 𝑥𝑖 𝐴 𝑃 𝐴 + 𝑃 𝑥𝑖 𝐵 𝑃(𝐵)
=

𝑃 𝑥𝑖 𝐴 𝑝𝐴

𝑃 𝑥𝑖 𝐴 𝑝𝐴 + 𝑃 𝑥𝑖 𝐵 𝑝𝐵

2. Compute parameters 

𝑝𝐴 =
1

𝑛
 𝑖 𝑤𝐴𝑖

𝜇𝐴 =
𝑤𝐴1𝑥1+ …+𝑤𝐴𝑛𝑥𝑛

𝑤𝐴1+ …+𝑤𝐴𝑛

𝜎𝐴
2 =

𝑤𝐴1(𝑥1−𝜇𝐴)2+ …+𝑤𝐴𝑛(𝑥𝑛−𝜇𝐴)2

𝑤𝐴1+ …+𝑤𝐴𝑛
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𝑝𝐵 =
1

𝑛
 𝑖 𝑤𝐵𝑖

𝜇𝐵 =
𝑤𝐵1𝑥1+ …+𝑤𝐵𝑛𝑥𝑛

𝑤𝐵1+ …+𝑤𝐵𝑛

𝜎𝐵
2 =

𝑤𝐵1(𝑥1−𝜇𝐵)2+ …+𝑤𝐵𝑛(𝑥𝑛−𝜇𝐵)2

𝑤𝐵1+ …+𝑤𝐵𝑛



EM generalization

 For observed data points 𝑥1, … , 𝑥𝑛 and hidden values 𝑧1, … , 𝑧𝑚 and model 
parameters 𝛉, estimate the maximum likelihood of

𝐿(𝛉; 𝐱 )=  𝐳𝑃(𝐱, 𝐳| 𝛉)

Expectation step:

– Estimate the expected value of 𝐳 under the current parameters 𝛉(𝑡)

and the observed data points 𝐱

– Estimate the expected value of log 𝑃(𝐱, 𝐳|𝛉 𝑡 ) with the current 
value of 𝐳

Maximization step:

– Use the just computed estimation of 𝐳 to find 𝛉(𝑡+1) that maximizes 

log𝑃(𝐱, 𝐳|𝛉 𝑡+1 )

 Note: EM monotonically approaches local maximum
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Different views: The frequentists’ view

 Probability of an event should be assessed objectively 
 I.e.,  measure the probability of the event as the relative occurrence frequency 

of that event based on a large number of trials 

 Examples

 Fraction of heads when tossing a coin 𝑛 times

 Relative frequency with which the face 6 shows up when rolling a die 𝑛 times

 Relative frequency with which a drug shows certain adverse reaction when 
tested on 𝑛 subjects 

 Shortcomings
 Can be only applied to frequently repeatable events

 The higher the frequency of an event, the more “meaningful” the probability 
estimate
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Different views: The Bayesian view 

 Prior beliefs / probabilities are used to quantify the uncertainty about the 
occurrence of events

 I.e., prior beliefs are used to quantify the uncertainty of parameters of a 
statistical model 

 Prior beliefs are updated based on new observations and allow the 
adaptation of the parameters to the new data

 With increasing number of observations, prior beliefs become less and 
less relevant (i.e., uncertainty is reduced)

 Drawback: Reasoning and inference has to include the prior beliefs



Bayesian inference

 By applying Bayes’ theorem: 𝑃 𝜽 𝑥1, … , 𝑥𝑛 =
𝑃(𝑥1,… , 𝑥𝑛|𝜽) 𝑃(𝜽)

𝑃(𝑥1,… , 𝑥𝑛 )

𝑃 𝜽 𝑥1, … , 𝑥𝑛 ∝ 𝑃(𝑥1, … , 𝑥𝑛|𝜽) 𝑃(𝜽)

Prior probability
distribution for 
parameters

Likelihood of
parameters in
light of data

Posterior
distribution of
parameters

Evidence

Typically with exponential family distributions with pdfs of the form:

𝑃 𝒙; 𝜽 = ℎ 𝒙 𝑔 𝜽 exp{𝜽𝑇𝒖(𝒙)}

Important property: closure under multiplication

Iterative substitution as more and 
more data points are observed
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Bayesian inference: Example

 𝑃 𝜽 𝑥1, … , 𝑥𝑛 ∝ 𝑃(𝑥1, … , 𝑥𝑛|𝜽) 𝑃(𝜽)

 Why exponential family distributions?

 For algebraic convenience!

 Example 

Suppose 𝑃(𝑘1, 𝑘2 𝜃 = 𝑘1+𝑘2
𝑘1

𝜃𝑘1(1 − 𝜃)𝑘2 (binomially distributed data)  

Assume 𝑃 𝜃 =
𝜃𝑎−1 1−𝜃 𝑏−1

𝐵 𝑎,𝑏
(𝜃 is Beta distributed with hyper-parameters 𝑎, 𝑏: 

counts reflecting belief formation)

𝑃 𝜃|𝑘1, 𝑘2 =

𝑘1+𝑘2
𝑘1

𝜃𝑘1+𝑎−1(1 − 𝜃)𝑘2+𝑏−1 1
𝐵 𝑎, 𝑏

 𝜃=0

1 𝑘1+𝑥2
𝑘1

𝜃𝑘1+𝑎−1(1 − 𝜃)𝑘2+𝑏−1 1
𝐵 𝑎, 𝑏

𝑑𝜃

=
𝜃𝑘1+𝑎−1(1 − 𝜃)𝑘2+𝑏−1

𝐵 𝑘1 + 𝑎, 𝑘2 + 𝑏 Posterior of parameters has same 
form as the prior 
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Bayesian inference: Conjugate priors

 𝑃 𝜽 is called a conjugate prior of 𝑃(𝑥1, … , 𝑥𝑛|𝜽) if the posterior, 
𝑃 𝜽 𝑥1, … , 𝑥𝑛 , is in the same pdf family as the prior.

 Examples

Likelihood function Conjugate prior

Bernoulli Beta

Binomial Beta

Poisson Gamma

Multinomial Dirichlet

Gaussian Gaussian
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Cox’s theorem

 Any belief system satisfying the following conditions can be described by 
the laws of probability

 The belief in the occurrence of an event is dependent on information about the 
event (dependency)

 The belief in the occurrence of an event can be represented by a real number 
(numerical comparability) 

 The belief in the occurrence of an event changes sensibly with observations 
(common sense)

 If the belief in the occurrence of an event can be derived in many ways, all the 
results must be equal (consistency)
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