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» Laws of probability

» Random variables

» Probability distributions

» Expectation, variance, covariance
» Maximum likelihood estimation
» Expectation maximization

» Different views on probabilities

» Bayesian inference
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Set-theoretic view of probability theory

“As far as the propositions of mathematics refer to reality, they
are not certain; and as far as they are certain, they do not refer
to reality.”

Albert Einstein, 1921

» Probability space

» (Q, E, P) with

> (): sample space of elementary events

» E: event space, i.e. subsets of (), closed under N, U, and —, usually E = 2{
» P: E — [0,1], probability measure

Properties of P:
1. P(@) = 0 (impossible event)
2.P()) =1

3.P(A) + P(mA) =1
4.P(AU B) = P(A) + P(B)- P(A n B)
5.P(U;4;) = ); P(4;) for pairwise disjoint 4;
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Sample space and events: Examples

» Rolling a die
» Sample space: {1, 2,3,4,5, 6}

» Probability of even number: looking for events A = {2}, B = {4}, C = {6},
PAvuBUC(C)= 1/6+1/6+1/6 = 0.5

» Tossing two coins
» Sample space: {HH, HT, TH, TT}
» Probability of HH or TT: looking for events A ={TT}, B = {HH}, P(AU B) = 0.5

» |In general, when all outcomes in € are equally likely, for an e € E holds:

# outcomesine

P(e) = .
# outcomes in sample space
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Joint, marginal, and conditional probabilities

» Joint and conditional probability
» P(A,B) = P(A n B) = P(B|A) P(A) (product rule)

» Bayes’ theorem
P(A|B)P(B)

P(BIA) = =5

Thomas Bayes

» Total/marginal probability
» P(B) = Zj P(B N A;) forany partitioning of Qin 4,, ..., 4, (sum rule)
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Suppose: P(B=r)=2/5
Apples and Oranges

Fruit is orange, what is probability that box was blue?

P(F=0| B=b)P(B=b)
P(F = o)

PF=0)=P(F=0|B=r)P(B=r)+P(F=0| B=b)P(B=b)=9/20

PB=b|F=0) =

Example from C. Bishop: PRML
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Independent events

» Independence
» P(A,..,A) = P(A, N ..N A) = P(A) P(4,) .. P(4,), for

independent events A4, ..., 4,

» Conditional Independence
» Aisindependent of B given C < P(A|B,C) = P(A|C)

» If A4, ..., A, are independent of each other given B then
P(A; n ..n A,|B) =[I; P(4;|B)

» If A and B are independent, are they also independent given C?
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S = Drug succeeds
X =Drug x is used
Y =Drugy is used
W = Patient is woman
M = Patient is man

Simpson’s paradox —

» Observation

Example: Which drug works better?

Women Men
Drugx | Drugy Drug x | Drugy
Success 100 5 10 500
Failure 900 95 1 500

and report weighted averages

P(S|X,W) = 0.10
P(S|Y,W) = 0.05

P(S|X,M) = 0.91
P(S|Y,

M) = 0.5

Drug x works better

P(S|X) ~ 0.11
P(S|Y) ~ 0.46

} Drug y works better

> In above table being a male is a strong cause for both drug usage and recovery
» In such cases, one should evaluate the probabilities on the subgroups separately
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Discrete and continuous random variables

» Random variable on probability space (Q,E,P)

» X: Q0 > M <€ R (numerical representations of outcomes)
with {e|X(e) < x} € Eforallx e M

» If M is countable X is called discrete, otherwise continuous

» Examples
» Rolling adie: X(i) =i
» The exact pair of faces when rolling two dice: X(a,b) = 6(a—1) + b
» The sum of faces for two dice: X(a,b) = a+ b

» Random variables X3, ..., X, are called independent and identically
distributed (i.i.d.) if each random variable has the same probability
distribution as the others and all are mutually independent
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Random variables and probabilities

&
—~
Marginal probability:
Ci
P(X =x;) =—
X =x) =7
Yy T } T Sum rule:
J

1 z C;

T4 N J YN

Example from C. Bishop: PRML

Joint probability:
n. .
P(X=x,Y =y,) =ﬁ
Product rule:
P(X =x;,Y =y;) = P(Y = y;|X = x)P(X = x;)

_nij ﬁ_nij

10
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Probability theory

» Cumulative distribution function (cdf)

» Probability density function (pdf)
> fx:M - [0,1] with fy(x) =P(X =x):=Px <X <x+8x),6x >0

3

fX FX

ox x

From C. Bishop: Pattern Recognition
and Machine Learning

» Quantile function

> F~1(q) = inf{x|Fx(x) > q}, q € [0,1] (for g = 0.5, F~1(q) is called median)

11
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Useful discrete distributions (1)

» Uniform distribution over {1, 2, ..., m}: P(X = k) = fx(k) = %

» Bernoulli distribution with parameter p: P(X = x) = fx(x) = p*(1 —p)1™*

P(X =x)
p_
1- p-
| | X
0 1
m
» Binomial distribution with parameter p, m: P(X = k) = fyx (k) = (k)pk(l — p)m-k
P(X =k) P(X =k) P(X =k)
p=0.25 p=0.5 p=0.75
0.3 0.3 0.3
0.1 ‘ 0.1- | | 0.1 ‘
||r [!irrilk Tfllliil!ik I[]Tflli i!k
0 2 4 6 8 10 0 2 4 6 8 10 0 2 4 6 8 10

12
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Useful discrete distributions (2)

» Geometric distribution with parameter p: P(X = k) = fx(k) = (1 —p) kp

P(X = k)
0.5
0.25¢
| 4,
o 2 4 k
. C . . ] Ak
» Poisson distribution: P(X = k) = fx(k) = e 7 Poisson process
P(X = k) P(X =k) » Counting process
osf A =05 os RS » P(X = k): probability
pon 04t that there will be k
sof sl increments per time unit
1y il k » Parameter A: expected
0 2 4 k 02 4 6 .
number of increments
P(X =k) ., P(X =k) 1 =10 per time unit
0.2 w5 o1t
AL k n e
0 2 4 6 8 1012 14 16 0 2 4 6 8 1012 14 16 18 20

13
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Useful continuous distributions (1)

» Uniform distribution over [a,b] : P(X = x) = fx(x) = bflafor a<x<bh

» Exponential distribution: P(X = x) = fx(x) = le™** for x > 0

. 1=2 » Describes process in which

0 events occur continuously and
2 - A=1 independently at constant
g 1=05 average rate A

° » Can be used to model

o | | | — » Time between two phone calls

0 ’ 5 3 4 » Modeling of radioactive
decay

» Durability of electronic devices

14



‘ Hasso
Plattner
Institut

T Systems Engineering | Universitit Potsdam

Useful continuous distributions (2)

» Pareto distribution with parameters a, b:

a+1
a(b
P(X=x)=fX(x)=E(;> , x>Db

20 » Pareto principle
> 80% of the effects come
from 20% of the causes

» Power law distribution
Par(x)

» Examples of power-law distributions
» Distribution of populations
over cities
» Distribution of wealth
X » Citations distribution over
research papers
» Degree distribution in web
graph (or social graphs)

15
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Useful continuous distributions (3)

1
1+e~ X

» Logistic distribution: P(X < x) = Fy(x) =

1.0

» Applications
» Classification, e.g., with
logistic regression
— » Inference in neural networks
» In Psychometrics, e.g.,
modeling the probability
of tasks being solved correctly
in IQ questionnaires (e.g.,
- in Item-Response Theory)

L(x)

00 02 04 06 08

-10 -3 0 2 10

16
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Useful continuous distributions (4)

» Normal distribution (Gaussian)

—(x—p)?
e 202

> X~ Ny o?) & fy(x) =

2102
W:mean, o:standard deviation

2

» Cumulative distribution of N(0,1): ®(z) = f er 2 dx
pdf _ cdf
S 7 u=-2,0%=0.25 =
g h u = 0,0'2 =1 g N
=0,0°=4 =
5 - p o
g 7 I I I I I g - [ | [ [ [
4 2 0 2 4 4 2 0 2 4
X X

17
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Multivariate distributions

» Let Xy, ..., X;,, be random variables over the same probability space with
domains dom(X;), ..., dom(X,,)

> The joint distribution of X4, ..., X,y hasa pdf fy  x (x4, ..., X;) with
z:9C1EdO1’n(X1) meedom(Xm) le,...,Xm (xl; T xm) =1

fxledom(Xl) - fxmedom(xm) le,...,Xm(xll ) xm) dxl eee d.xm = 1

> The marginal distribution of X; is Fy  x (x;) =
leedom(Xl) in_ledom(Xi_l) in+1edom(Xi+1) meedom(xm) le,...,Xm (x1; R xm)

fxledom(Xl) fxi_ledom(Xi_l) fxi_,_ledom(XiH) fxmedom(Xm) le,...,Xm (xl’ e xm) dxl

dx,y,

18
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Useful multivariate distributions

» Multinomial distribution with parameters n, m (rolling n m-sided dice)

n!
P(Xy =ky..Xm =kpm) = le,...,Xm(kb v k) = ————
k.. k!

k1. p,,em

P1

with k;+-+k, =nandp; + ..+ p,, =1

» Multivariate Gaussian with parameters ji, X where X;;: = Cov(X;, X;)

fo () = e e E T D
1ridm

J@m)m x|

19
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Expectation of random variables

> For discrete variable X: E(X) = )., x fx(x) is the expectation of X

» For continuous variable X: E(X) = f_oooo x fy(x) dx
» Properties
> E(X;+ X)) =EX) +EX)
> E(X; Xj) = E(X;)E(X;) for independent, identically distributed (i.i.d.) variables
X;, X;
» E(aX+b) = aE(X) + b for constants a, b

20
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Variance, standard deviation, and covariance

» Variance
> Var(X) = E[(X — E[X])?] = E[X?] — E[X]?
» Properties
> Var(X; + Xj) = Var(X;) + Var(X;) for i.i.d. variables X;, X;
> Var(aX + b) = a*Var(x) for constants a, b

» Standard deviation

» StDev(X) = /Var(X)

» Covariance
> Cov(X;,X;) = E[(X; — E[X;]) (X; — E[X;])]
» Var(X) = Cov(X,X)
» Ingeneral: Var(X +Y) =Var(X) + Var(Y) + Cov(X,Y)

21
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Maximum likelihood estimation (MLE)

A\

Suppose that after tossing a coin n times, we have seen k times head

A\

Let p be the unknown probability of the coin showing head

A\

s it possible to estimate p?

» We know that observation corresponds to Binomial distribution, hence:

L(p;k,n) = P(k,n|p) = (Z) pk(1 — p)n-Fk

A\

Maximizing L(p; k, n) is equivalent to maximizing log L(p; k, n)

A\

log L(p; k,n) is called log-likelihood function

n

k)+klogp+(n—k)log(1—p)

log L(p; k,n) = log(

dlogl k n—=k k
gL ( )=O:p=5

op p (1-p)

22
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MLE example

» Assume x4, ..., X, originate from a Gaussian with unknown u and o2

1 \' ey imw)?
L(u,0;%xq, ., Xp) = (ﬁa) ne 202
i=1

B 1 (x; — W)°
o~ n-ln(ma) +zi— o7

dlogl 1 -
- zzz(xi_.u):o
=1

ou 20
dlogL 1%
o __I _z 02 —
60_ - O-+O-3_ (xl .Ll) -
i=1
. 1lan
= K= o Li=1Xi
A 1
6% = — YL (g — w?

n
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MLE generalization

YV VYV

vV VYV

Let x4, ..., X,, be a random sample from a distribution £ (8, x)
X1, -+, Xy €Can be viewed as the values of i.i.d. random variables X3, ..., X,

L(O;xq, ..., x,) = P[xq,...,x, originate from f (8, x)]
Maximizing L(0; x4, ..., X5,) is equivalent to maximizing log L(0; x4, ..., X;,),
i.e., the log-likelihood function: log P(x4, ..., x,|0).

OloglL . : . : : :
If aog is analytically intractable, use iterative numerical methods, e.g.

Expectation Maximization (EM)

24



Hasso

Plattner

Institut
T Syst | Universitat Potsdam

s Engineering

Mixture models

» Example: Gaussian Mixture Model (GMM)
Suppose X1, ..., Xpare random samples from a mixture of Gaussians
M(A, B) with A(ua, 04%) and B(up, 05?), with unknown means and
variances (e.g., weights of women and men)

0.04

p
002 003
| |

S
vy

0.01
|

0.00
\

20 40 60 80 100 120 140

L(ta, 04, g, OB, Pas DB X1, o) Xn) = H(PA P(x;|A) + pp P(x;|B))
i

with p, +pp = 1and P(x;|A) = A(ua, 04°%,x;) = ———=e 294

25
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Expectation maximization (EM)

0.03 004
\ |

p

0.02
o

vy

0.01
|

0.00
|

T T T T T
20 40 60 80 100 120 140

L(ta, 04, g, OB, Pas DB X1) o) Xn) = H(PA P(x;|A) + pp P(x;|B))
i

1. Expectation step: Estimate the expected membership value of each point
X; given the current estimations of uy,, 04, Ug, 05, P4, Pp

2. Maximization step: Use the expected membership values to re-estimate
the parameters, and continue with Step 1 until convergence of

lOg L(.UA' 0a)UBy OB, PArPB) X1) +++) xn)
26
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EM algorithm for mixture models
L(MA' 04, HUB,OB,Pa»PB; X1, "'rxn) = H(pA P(XllA) + PB P(xllB))
[

Initialize the parameters uy, 04, Ug, 05, P4, Pg t0 SOome random values
(constraint: py + pg = 1)

E-step: For each x; compute expected membership values P(A|x;), P(B|x;)
M-step: Re-estimate the parameters

Iterate steps 2 and 3 until convergence (i.e., until changes of log likelihood
are negligible)

27
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Exact EM calculations for the GMM example

L4, 0 5, O, Pas D5 ¥, %) = | | (a PCx114) + p P(iB)
i

» Start with random parameters
» Maximize log-likelihood (i.e., target function) by iterating following steps:

1. Compute membership weights
P(x;|A) P(A) P(x;|A) pa

P(x;|A) P(A) + P(x;|B) P(B)  P(x;|A) pa + P(x;|B) pg

wai = P(Alx;) =

2. Compute parameters

L 1
pA - ;Zl WAi pB — ;Zl WBi
— WarXat A WanXn WB1X1+ ..tWpnXn
Ha = Hp =
WA1+ ...+WAn WB1+ ".+WBn
2 2
w X1— + ..+w X —

04° = Wg1+ AW
A Wart wAWan B1 Bn

28
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EM generalization

» For observed data points x4, ..., x,, and hidden values 74, ..., z,,, and model
parameters 0, estimate the maximum likelihood of

L(B;X ): ZZP(X,Zl 9)

Expectation step:
—  Estimate the expected value of z under the current parameters ()
and the observed data points X

—  Estimate the expected value of log P(x,z|8()) with the current
value of z

Maximization step:
—  Use the just computed estimation of z to find 0+ 1) that maximizes
log P(x,z|0(+1)

» Note: EM monotonically approaches local maximum
29
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Different views: The frequentists’ view

» Probability of an event should be assessed objectively

» l.e., measure the probability of the event as the relative occurrence frequency
of that event based on a large number of trials

» Examples
» Fraction of heads when tossing a coin n times

» Relative frequency with which the face 6 shows up when rolling a die n times

» Relative frequency with which a drug shows certain adverse reaction when
tested on n subjects

» Shortcomings
» Can be only applied to frequently repeatable events

» The higher the frequency of an event, the more “meaningfu
estimate

I”

the probability

30
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Different views: The Bayesian view

» Prior beliefs / probabilities are used to quantify the uncertainty about the
occurrence of events

» l.e., prior beliefs are used to quantify the uncertainty of parameters of a
statistical model

» Prior beliefs are updated based on new observations and allow the
adaptation of the parameters to the new data

» With increasing number of observations, prior beliefs become less and
less relevant (i.e., uncertainty is reduced)

» Drawback: Reasoning and inference has to include the prior beliefs



Hasso

Plattner
Institut
| Universitat Potsdam

IT Systems Engineering

Bayesian inference

P(x4,..,xn|0) P(0)

> By applying Bayes’ theorem: P(8|x4, ..., x;;) =

P(X1,.:» Xn)

P(O|xq,...,x,) X P(xq,..,x,|0) P(O

(011, -, %n) X P(x1, ., %,|0) P(6) e
Posterior Likelihood of Prior probability
distribution of parameters in distribution for

parameters light of data parameters

\ //'

Iterative substitution as more and
more data points are observed

Typically with exponential family distributions with pdfs of the form:

P(x; 8) = h(x)g(0)exp{8Tu(x)}

Important property: closure under multiplication

32
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Bayesian inference: Example

> P(B|xq,...,x,) X P(xq,...,x,]|0) P(0)

» Why exponential family distributions?
» For algebraic convenience!

» Example
Suppose P(ky, k,|0) = (kl;lkz) 6%1(1 — 6)*2 (binomially distributed data)
6%~ 1(1-g)b-1 L :
Assume P(0) = (6 is Beta distributed with hyper-parameters a, b:

B(a,b)
counts reflecting belief formation)

Ki+k2\ pki+a—171 _ a\kp+b—1__ 1
(e) grrte1(1 - gyka B(a,b)

1 1
fezo ((Iq;-le) Qk1+a—1(1 — 0)k2+b_1B(a, b)) do

0k1+a—1(1 _ 0)k2+b—1
= Bk, +ak, + b) Posterior of parameters has same
1 2 form as the prior

P(9|k1; kz) —

33
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Bayesian inference: Conjugate priors

» P(0) is called a conjugate prior of P(x4, ..., Xx,,|0) if the posterior,
P(0O|xq, ..., xy), is in the same pdf family as the prior.

» Examples
Bernoulli Beta
Binomial Beta
Poisson Gamma
Multinomial Dirichlet
Gaussian Gaussian

34
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Cox’s theorem

» Any belief system satisfying the following conditions can be described by
the laws of probability

» The belief in the occurrence of an event is dependent on information about the
event (dependency)

» The belief in the occurrence of an event can be represented by a real number
(numerical comparability)

» The belief in the occurrence of an event changes sensibly with observations
(common sense)

» If the belief in the occurrence of an event can be derived in many ways, all the
results must be equal (consistency)

35



