
BASICS OF PROBABILITY THEORY



Outline

 Laws of probability

 Random variables

 Probability distributions

 Expectation, variance, covariance

 Maximum likelihood estimation

 Expectation maximization

 Different views on probabilities

 Bayesian inference
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Set-theoretic view of probability theory
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 Probability space

 (Ω, 𝐸, 𝑃) with 

 Ω: sample space of elementary events

 𝐸: event space, i.e. subsets of Ω, closed under ∩, ∪, and ¬, usually 𝐸 = 2Ω

 𝑃: 𝐸 → [0, 1], probability measure 

Properties of 𝑃: 

1. 𝑃(∅) = 0 (impossible event)

2. 𝑃(Ω) = 1

3. 𝑃(𝐴) + 𝑃(¬𝐴) = 1

4. 𝑃(𝐴 ∪ 𝐵) = 𝑃(𝐴) + 𝑃(𝐵) – 𝑃(𝐴 ∩ 𝐵)

5. 𝑃( 𝑖 𝐴𝑖) =  𝑖 𝑃(𝐴𝑖) for pairwise disjoint 𝐴𝑖

“As far as the propositions of mathematics refer to reality, they

are not certain; and as far as they are certain, they do not refer

to reality.”

Albert Einstein, 1921



Sample space and events: Examples

 Rolling a die

 Sample space:

 Probability of even number:

 Tossing two coins

 Sample space:

 Probability of HH or TT:

{1, 2, 3, 4, 5, 6}

looking for events 𝐴 = {2}, 𝐵 = {4}, 𝐶 = {6},
𝑃(𝐴 ∪ 𝐵 ∪ 𝐶) = 1/6 + 1/6 + 1/6 = 0.5

{HH, HT, TH, TT}

looking for events 𝐴 = {TT}, 𝐵 = {HH}, 𝑃(𝐴 ∪ 𝐵) = 0.5

 In general, when all outcomes in Ω are equally likely, for an 𝑒 ∈ 𝐸 holds:

𝑃(e) = 
# outcomes in e

# outcomes in sample space
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Joint, marginal, and conditional probabilities

 Joint and conditional probability

 𝑃(𝐴, 𝐵) = 𝑃(𝐴 ∩ 𝐵) = 𝑃(𝐵|𝐴) 𝑃(𝐴) (product rule)

 Bayes’ theorem

𝑃(𝐵|𝐴) =
𝑃 𝐴 𝐵 𝑃(𝐵)

𝑃(𝐴)

 Total/marginal probability 

 𝑃(𝐵) = Σ𝑗 𝑃(𝐵 ∩ 𝐴𝑗) for any partitioning of Ω in 𝐴1 , … , 𝐴𝑛 (sum rule)

Thomas Bayes
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Joint, marginal, and conditional probabilities: Example

Example from C. Bishop: PRML

Suppose: P(B = r) = 2/5 

P(F = o) = P(F = o | B = r) P(B = r) + P(F = o | B = b) P(B = b) = 9/20 

P(B = b | F = o)  =
P(F = o | B = b) P(B = b)

P(F = o)
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Independent events

 Independence

 𝑃(𝐴1 , … , 𝐴𝑛) = 𝑃(𝐴1 ∩ … ∩ 𝐴𝑛) = 𝑃(𝐴1) 𝑃(𝐴2) … 𝑃(𝐴𝑛), for 
independent events 𝐴1, … , 𝐴𝑛

 Conditional Independence

 𝐴 is independent of 𝐵 given 𝐶 𝑃 𝐴 𝐵, 𝐶 = 𝑃 𝐴 𝐶

 If 𝐴1, … , 𝐴𝑛 are independent of each other given 𝐵 then

𝑃 𝐴1 ∩ … ∩ 𝐴𝑛 |𝐵 =  𝑖 𝑃 𝐴𝑖|𝐵

 If 𝐴 and 𝐵 are independent, are they also independent given 𝐶? 
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Example: Which drug works better?

Women Men

Drug x Drug y Drug x Drug y

Success 100 5 10 500

Failure 900 95 1 500

𝑆 = Drug succeeds
𝑋 = Drug x is used
𝑌 = Drug y is used
𝑊 =  Patient is woman
𝑀 = Patient is man

𝑃 𝑆|𝑋 ≈ 0.11
𝑃 𝑆|𝑌 ≈ 0.46

Drug y works better

𝑃 𝑆|𝑋,𝑊 = 0.10
𝑃 𝑆|𝑌,𝑊 = 0.05

𝑃 𝑆|𝑋,𝑀 = 0.91
𝑃 𝑆|𝑌,𝑀 = 0.5

Drug x works betterSimpson’s paradox

 Observation
 In above table being a male is a strong cause for both drug usage and recovery
 In such cases, one should evaluate the probabilities on the subgroups separately 

and report weighted averages  
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Discrete and continuous random variables

 Random variable on probability space  (Ω, 𝐸, 𝑃)

 𝑋: Ω → 𝑀 ⊆ ℝ (numerical representations of outcomes)                                  
with {𝑒|𝑋(𝑒) ≤ 𝑥} ∈ 𝐸 for all 𝑥 ∈ 𝑀

 If 𝑀 is countable 𝑋 is called discrete, otherwise continuous

 Examples
 Rolling a die: 𝑋 𝑖 = 𝑖

 The exact pair of faces when rolling two dice: 𝑋 𝑎, 𝑏 = 6 𝑎 − 1 + 𝑏

 The sum of faces for two dice: 𝑋 𝑎, 𝑏 = 𝑎 + 𝑏

 Random variables 𝑋1, … , 𝑋2 are called independent and identically 
distributed (i.i.d.) if each random variable has the same probability 
distribution as the others and all are mutually independent
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Random variables and probabilities

Example from C. Bishop: PRML

Marginal probability:

𝑃 𝑋 = 𝑥𝑖 =
𝑐𝑖
𝑁

Sum rule:

𝑃 𝑋 = 𝑥𝑖 =  
𝑗
𝑃(𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗)

=
1

𝑁
 

𝑗
𝑛𝑖𝑗 =

𝑐𝑖
𝑁

Joint probability:

𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 =
𝑛𝑖𝑗

𝑁
Product rule:

𝑃 𝑋 = 𝑥𝑖 , 𝑌 = 𝑦𝑗 = 𝑃(𝑌 = 𝑦𝑗|𝑋 = 𝑥𝑖)𝑃 𝑋 = 𝑥𝑖

=
𝑛𝑖𝑗

𝑐𝑖

𝑐𝑖
𝑁

=
𝑛𝑖𝑗

𝑁
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Probability theory

 Cumulative distribution function (cdf)

 𝐹𝑋:𝑀 → [0,1] with 𝐹𝑋 𝑥 = 𝑃(𝑋 ≤ 𝑥)

 Probability density function (pdf) 

 𝑓𝑋:𝑀 → [0,1] with 𝑓𝑋 𝑥 = 𝑃 𝑋 = 𝑥 := 𝑃 𝑥 ≤ 𝑋 ≤ 𝑥 + 𝛿𝑥 , 𝛿𝑥 → 0

 Quantile function

 𝐹−1 𝑞 = inf{𝑥|𝐹𝑋 𝑥 > 𝑞},  𝑞 ∈ [0,1] (for 𝑞 = 0.5, 𝐹−1 𝑞 is called median)

𝑓𝑋 𝐹𝑋

From C. Bishop: Pattern Recognition 
and Machine Learning

11



Useful discrete distributions (1)

 Uniform distribution over {1, 2, …, m}: 𝑃 𝑋 = 𝑘 = 𝑓𝑋(𝑘) =
1

𝑚

 Bernoulli distribution with parameter 𝑝: 𝑃 𝑋 = 𝑥 = 𝑓𝑋 𝑥 = 𝑝𝑥(1 − 𝑝)1−𝑥

 Binomial distribution with parameter 𝑝,𝑚: 𝑃 𝑋 = 𝑘 = 𝑓𝑋 𝑘 =
𝑚
𝑘

𝑝𝑘 1 − 𝑝 𝑚−𝑘
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𝑘 𝑘 𝑘

𝑃 𝑋 = 𝑘 𝑃 𝑋 = 𝑘 𝑃 𝑋 = 𝑘
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𝑃 𝑋 = 𝑥

𝑥

1 −



Useful discrete distributions (2)

 Geometric distribution with parameter 𝑝: 𝑃 𝑋 = 𝑘 = 𝑓𝑋 𝑘 = (1 − 𝑝) 𝑘𝑝

 Poisson distribution: 𝑃 𝑋 = 𝑘 = 𝑓𝑋(𝑘) = 𝑒−𝜆 𝜆𝑘

𝑘!
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0.5
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𝑃 𝑋 = 𝑘

𝑘
0 2 4

𝑘

𝑘

𝑘

𝑘

𝑃 𝑋 = 𝑘𝑃 𝑋 = 𝑘

𝑃 𝑋 = 𝑘 𝑃 𝑋 = 𝑘

𝜆 𝜆

𝜆
𝜆

Poisson process
 Counting process
 𝑃 𝑋 = 𝑘 : probability 

that there will be 𝑘
increments per time unit 

 Parameter 𝜆: expected 
number of increments 
per time unit



Useful continuous distributions (1)

 Uniform distribution over [a, b] ∶ 𝑃 𝑋 = 𝑥 = 𝑓𝑋(𝑥) =
1

𝑏−𝑎
for  𝑎 ≤ 𝑥 ≤ 𝑏

 Exponential distribution: 𝑃 𝑋 = 𝑥 = 𝑓𝑋 𝑥 = 𝜆𝑒−𝜆𝑥 for  𝑥 > 0
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 Describes process in which 
events occur continuously and 
independently at constant 
average rate λ

 Can be used to model
 Time between two phone calls
 Modeling of radioactive

decay
 Durability of electronic devices

𝜆 = 2

𝜆 = 0.5

𝜆 = 1

Ex
p

(x
)



Useful continuous distributions (2)

 Pareto distribution with parameters 𝑎, 𝑏: 

𝑃 𝑋 = 𝑥 = 𝑓𝑋 𝑥 =
𝑎

𝑏

𝑏

𝑥

𝑎+1

, 𝑥 > 𝑏
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 Examples of power-law distributions
 Distribution of populations 

over cities
 Distribution of wealth
 Citations distribution over

research papers 
 Degree distribution in web 

graph (or social graphs)

 Power law distribution

 Pareto principle
 80% of the effects come 

from 20% of the causes



Useful continuous distributions (3)

 Logistic distribution: 𝑃(𝑋 ≤ 𝑥) = 𝐹𝑋 𝑥 =
1

1+𝑒−𝑥
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x

L(x)

 Applications
 Classification, e.g., with

logistic regression
 Inference in neural networks
 In Psychometrics, e.g., 

modeling the probability 
of tasks being solved correctly
in IQ questionnaires (e.g., 
in Item-Response Theory)



Useful continuous distributions (4)

 Normal distribution (Gaussian)

 𝑋~ 𝑁 𝜇, 𝜎2 ⟺ 𝑓𝑋 𝑥 =
1

2𝜋𝜎2
𝑒

−(𝑥−𝜇)2

2𝜎2

𝜇:𝑚𝑒𝑎𝑛, 𝜎: 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

 Cumulative distribution of 𝑁 0,1 : Φ 𝑧 =  −∞

𝑧 1

2𝜋
𝑒

𝑥2

2 𝑑𝑥
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𝜇 = −2, 𝜎2 = 0.25

𝜇 = 0, 𝜎2 = 1

𝜇 = 0, 𝜎2 = 4

pdf cdf

x

http://de.wikipedia.org/w/index.php?title=Datei:Carl_Friedrich_Gauss.jpg&filetimestamp=20051219170533
http://de.wikipedia.org/w/index.php?title=Datei:Carl_Friedrich_Gauss.jpg&filetimestamp=20051219170533


Multivariate distributions

 Let 𝑋1, … , 𝑋𝑚 be random variables over the same probability space with   

domains 𝑑𝑜𝑚 𝑋1 , … , 𝑑𝑜𝑚 𝑋𝑚

 The joint distribution of 𝑋1, … , 𝑋𝑚 has a pdf 𝑓𝑋1,…,𝑋𝑚
𝑥1, … , 𝑥𝑚 with

 𝑥1∈𝑑𝑜𝑚(𝑋1)
… 𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)𝑓𝑋1,…,𝑋𝑚

𝑥1, … , 𝑥𝑚 = 1

 𝑥1∈𝑑𝑜𝑚(𝑋1)
… 𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)

𝑓𝑋1,…,𝑋𝑚
𝑥1, … , 𝑥𝑚 𝑑𝑥1 … 𝑑𝑥𝑚 = 1

 The marginal distribution of 𝑋𝑖 is 𝐹𝑋1,…,𝑋𝑚
𝑥𝑖 =

 𝑥1∈𝑑𝑜𝑚(𝑋1)
… 𝑥𝑖−1∈𝑑𝑜𝑚(𝑋𝑖−1)

 𝑥𝑖+1∈𝑑𝑜𝑚(𝑋𝑖+1)
… 𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚) 𝑓𝑋1,…,𝑋𝑚

𝑥1, … , 𝑥𝑚

 𝑥1∈𝑑𝑜𝑚(𝑋1)
… 𝑥𝑖−1∈𝑑𝑜𝑚(𝑋𝑖−1)

 𝑥𝑖+1∈𝑑𝑜𝑚(𝑋𝑖+1)
… 𝑥𝑚∈𝑑𝑜𝑚(𝑋𝑚)

𝑓𝑋1,…,𝑋𝑚
𝑥1, … , 𝑥𝑚 𝑑𝑥1

… 𝑑𝑥𝑚
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Useful multivariate distributions

 Multinomial distribution with parameters 𝑛,𝑚 (rolling 𝑛 𝑚-sided dice) 

𝑃 𝑋1 = 𝑘1 …𝑋𝑚 = 𝑘𝑚 = 𝑓𝑋1,…,𝑋𝑚
𝑘1, … , 𝑘𝑚 =

𝑛!

𝑘1! … 𝑘𝑚!
𝑝1

𝑘1 …𝑝𝑚
𝑘𝑚

with 𝑘1+⋯+ 𝑘𝑚 = 𝑛 and 𝑝1 + …+ 𝑝𝑚 = 1

 Multivariate Gaussian with parameters  𝜇, Σ where Σ𝑖𝑗: = 𝐶𝑜𝑣(𝑋𝑖 , 𝑋𝑗)

𝑓𝑋1,…,𝑋𝑚
 𝑥 =

1

(2𝜋)𝑚|Σ|
𝑒−

1
2(

 𝑥−𝜇)𝑇Σ−1(  𝑥−𝜇)
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Expectation of random variables

 For discrete variable 𝑋: 𝐸 𝑋 =  𝑥 𝑥 𝑓𝑋(𝑥) is the expectation of 𝑋

 For continuous variable 𝑋: 𝐸 𝑋 =  −∞

∞
𝑥 𝑓𝑋 𝑥 𝑑𝑥

 Properties 

 𝐸 𝑋𝑖 + 𝑋𝑗 = 𝐸 𝑋𝑖 + 𝐸(𝑋𝑗)

 𝐸 𝑋𝑖 𝑋𝑗 = 𝐸 𝑋𝑖 𝐸(𝑋𝑗) for independent, identically distributed (i.i.d.) variables 

𝑋𝑖, 𝑋𝑗

 𝐸 𝑎𝑋 + 𝑏 = 𝑎𝐸 𝑋 + 𝑏 for constants 𝑎, 𝑏
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Variance, standard deviation, and covariance

 Variance

 𝑉𝑎𝑟 𝑋 = 𝐸[ 𝑋 − 𝐸[𝑋])2 = 𝐸 𝑋2 − 𝐸[𝑋]2

 Properties

 𝑉𝑎𝑟 𝑋𝑖 + 𝑋𝑗 = 𝑉𝑎𝑟 𝑋𝑖 + 𝑉𝑎𝑟(𝑋𝑗) for i.i.d. variables 𝑋𝑖, 𝑋𝑗

 𝑉𝑎𝑟 𝑎𝑋 + 𝑏 = 𝑎2𝑉𝑎𝑟 𝑥 for constants 𝑎, 𝑏

 Standard deviation

 𝑆𝑡𝐷𝑒𝑣 𝑋 = 𝑉𝑎𝑟(𝑋)

 Covariance

 𝐶𝑜𝑣 𝑋𝑖 , 𝑋𝑗 = 𝐸[(𝑋𝑖 − 𝐸 𝑋𝑖 ) (𝑋𝑗 − 𝐸[𝑋𝑗])]

 𝑉𝑎𝑟 𝑋 = 𝐶𝑜𝑣(𝑋, 𝑋)

 In general: 𝑉𝑎𝑟 𝑋 + 𝑌 = 𝑉𝑎𝑟 𝑋 + 𝑉𝑎𝑟 𝑌 + 𝐶𝑜𝑣 𝑋, 𝑌
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Maximum likelihood estimation (MLE)

 Suppose that after tossing a coin 𝑛 times, we have seen 𝑘 times head

 Let 𝑝 be the unknown probability of the coin showing head

 Is it possible to estimate 𝑝?

 We know that observation corresponds to Binomial distribution, hence: 

𝐿 𝑝; 𝑘, 𝑛 = 𝑃 𝑘, 𝑛|𝑝 =
𝑛

𝑘
𝑝𝑘(1 − 𝑝)𝑛−𝑘

 Maximizing 𝐿 𝑝; 𝑘, 𝑛 is equivalent to maximizing log 𝐿 𝑝; 𝑘, 𝑛

 log 𝐿 𝑝; 𝑘, 𝑛 is called log-likelihood function

log 𝐿 𝑝; 𝑘, 𝑛 = log
𝑛

𝑘
+ 𝑘 log 𝑝 + 𝑛 − 𝑘 log (1 − 𝑝)

∂ log 𝐿

∂ 𝑝
=

𝑘

𝑝
−

(𝑛 − 𝑘)

(1 − 𝑝)
= 0 ⇒ 𝑝 =

𝑘

𝑛
22



MLE example

 Assume 𝑥1, … , 𝑥𝑛 originate from a Gaussian with unknown 𝜇 and 𝜎2

𝐿 𝜇, 𝜎; 𝑥1, … , 𝑥𝑛 =
1

2𝜋𝜎

𝑛

 

𝑖=1

𝑛

𝑒
−

(𝑥𝑖−𝜇)
2𝜎2

2

≃ 𝑛 ⋅ 𝑙𝑛
1

2𝜋𝜎
+  

𝑖
−

(𝑥𝑖 − 𝜇)

2𝜎2

2

∂ log 𝐿

∂ 𝜇
=

1

2𝜎2
 

𝑖=1

𝑛

2(𝑥𝑖 − 𝜇) = 0

∂ log 𝐿

∂ 𝜎
= −

𝑛

𝜎
+

1

𝜎3
 

𝑖=1

𝑛

𝑥𝑖 − 𝜇 2 = 0

⇒  𝜇 =
1

𝑛
 𝑖=1

𝑛 𝑥𝑖

 𝜎2 =
1

𝑛
 𝑖=1

𝑛 (𝑥𝑖 − 𝜇)2
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MLE generalization

 Let 𝑥1, … , 𝑥𝑛 be a random sample from a distribution 𝑓 𝜽, 𝑥

 𝑥1, … , 𝑥𝑛 can be viewed as the values of i.i.d. random variables 𝑋1, … , 𝑋𝑛

 𝐿 𝜽; 𝑥1, … , 𝑥𝑛 = 𝑃[𝑥1, … , 𝑥𝑛 originate from 𝑓(𝜽, 𝑥)]

 Maximizing 𝐿(𝜽; 𝑥1, … , 𝑥𝑛) is equivalent to maximizing log 𝐿(𝜽; 𝑥1, … , 𝑥𝑛),

i.e., the log-likelihood function: log 𝑃(𝑥1, … , 𝑥𝑛|𝜽). 

 If 
∂ log 𝐿

∂ 𝑝
is analytically intractable, use iterative numerical methods, e.g. 

Expectation Maximization (EM)
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 Example: Gaussian Mixture Model (GMM)

Suppose 𝑥1, … , 𝑥𝑛are random samples from a mixture of Gaussians     

𝑀(𝐴, 𝐵) with  𝐴(𝜇𝐴, 𝜎𝐴
2) and 𝐵(𝜇𝐵, 𝜎𝐵

2), with unknown means and

variances (e.g., weights of women and men) 

𝐿 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 , 𝑝𝐴, 𝑝𝐵; 𝑥1, … , 𝑥𝑛 =  

𝑖

𝑝𝐴 𝑃 𝑥𝑖 𝐴 + 𝑝𝐵 𝑃 𝑥𝑖 𝐵

with 𝑝𝐴 + 𝑝𝐵 = 1 and 𝑃 𝑥𝑖 𝐴 = 𝐴 𝜇𝐴, 𝜎𝐴
2, 𝑥𝑖 =

1

2𝜋𝜎𝐴
2
𝑒
(𝑥𝑖−𝜇𝐴)2

2𝜎𝐴
2

Mixture models
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𝐴 𝐵



𝐴 𝐵

Expectation maximization (EM)

𝐿 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 , 𝑝𝐴, 𝑝𝐵; 𝑥1, … , 𝑥𝑛 =  

𝑖

𝑝𝐴 𝑃 𝑥𝑖 𝐴 + 𝑝𝐵 𝑃 𝑥𝑖 𝐵

1. Expectation step: Estimate the expected membership value of each point 
𝑥𝑖 given the current estimations of 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵, 𝑝𝐴 , 𝑝𝐵

2. Maximization step: Use the expected membership values to re-estimate 
the parameters, and continue with Step 1 until convergence of 
log 𝐿 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 , 𝑝𝐴, 𝑝𝐵; 𝑥1, … , 𝑥𝑛
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EM algorithm for mixture models

𝐿 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 , 𝑝𝐴, 𝑝𝐵; 𝑥1, … , 𝑥𝑛 =  

𝑖

𝑝𝐴 𝑃 𝑥𝑖 𝐴 + 𝑝𝐵 𝑃 𝑥𝑖 𝐵

1. Initialize the parameters 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵, 𝑝𝐴, 𝑝𝐵 to some random values 
(constraint: 𝑝𝐴 + 𝑝𝐵 = 1)

2. E-step: For each 𝑥𝑖 compute expected membership values 𝑃 𝐴 𝑥𝑖 , 𝑃(𝐵|𝑥𝑖)

3. M-step: Re-estimate the parameters 

4. Iterate steps 2 and 3 until convergence (i.e., until changes of log likelihood 
are negligible)
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Exact EM calculations for the GMM example

𝐿 𝜇𝐴, 𝜎𝐴, 𝜇𝐵 , 𝜎𝐵 , 𝑝𝐴, 𝑝𝐵; 𝑥1, … , 𝑥𝑛 =  

𝑖

𝑝𝐴 𝑃 𝑥𝑖 𝐴 + 𝑝𝐵 𝑃 𝑥𝑖 𝐵

 Start with random parameters

 Maximize log-likelihood (i.e., target function) by iterating following steps:

1. Compute membership weights 

𝑤𝐴𝑖 = 𝑃 𝐴 𝑥𝑖 =
𝑃 𝑥𝑖 𝐴 𝑃(𝐴)

𝑃 𝑥𝑖 𝐴 𝑃 𝐴 + 𝑃 𝑥𝑖 𝐵 𝑃(𝐵)
=

𝑃 𝑥𝑖 𝐴 𝑝𝐴

𝑃 𝑥𝑖 𝐴 𝑝𝐴 + 𝑃 𝑥𝑖 𝐵 𝑝𝐵

2. Compute parameters 

𝑝𝐴 =
1

𝑛
 𝑖 𝑤𝐴𝑖

𝜇𝐴 =
𝑤𝐴1𝑥1+ …+𝑤𝐴𝑛𝑥𝑛

𝑤𝐴1+ …+𝑤𝐴𝑛

𝜎𝐴
2 =

𝑤𝐴1(𝑥1−𝜇𝐴)2+ …+𝑤𝐴𝑛(𝑥𝑛−𝜇𝐴)2

𝑤𝐴1+ …+𝑤𝐴𝑛
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𝑝𝐵 =
1

𝑛
 𝑖 𝑤𝐵𝑖

𝜇𝐵 =
𝑤𝐵1𝑥1+ …+𝑤𝐵𝑛𝑥𝑛

𝑤𝐵1+ …+𝑤𝐵𝑛

𝜎𝐵
2 =

𝑤𝐵1(𝑥1−𝜇𝐵)2+ …+𝑤𝐵𝑛(𝑥𝑛−𝜇𝐵)2

𝑤𝐵1+ …+𝑤𝐵𝑛



EM generalization

 For observed data points 𝑥1, … , 𝑥𝑛 and hidden values 𝑧1, … , 𝑧𝑚 and model 
parameters 𝛉, estimate the maximum likelihood of

𝐿(𝛉; 𝐱 )=  𝐳𝑃(𝐱, 𝐳| 𝛉)

Expectation step:

– Estimate the expected value of 𝐳 under the current parameters 𝛉(𝑡)

and the observed data points 𝐱

– Estimate the expected value of log 𝑃(𝐱, 𝐳|𝛉 𝑡 ) with the current 
value of 𝐳

Maximization step:

– Use the just computed estimation of 𝐳 to find 𝛉(𝑡+1) that maximizes 

log𝑃(𝐱, 𝐳|𝛉 𝑡+1 )

 Note: EM monotonically approaches local maximum
29



Different views: The frequentists’ view

 Probability of an event should be assessed objectively 
 I.e.,  measure the probability of the event as the relative occurrence frequency 

of that event based on a large number of trials 

 Examples

 Fraction of heads when tossing a coin 𝑛 times

 Relative frequency with which the face 6 shows up when rolling a die 𝑛 times

 Relative frequency with which a drug shows certain adverse reaction when 
tested on 𝑛 subjects 

 Shortcomings
 Can be only applied to frequently repeatable events

 The higher the frequency of an event, the more “meaningful” the probability 
estimate

30



Different views: The Bayesian view 

 Prior beliefs / probabilities are used to quantify the uncertainty about the 
occurrence of events

 I.e., prior beliefs are used to quantify the uncertainty of parameters of a 
statistical model 

 Prior beliefs are updated based on new observations and allow the 
adaptation of the parameters to the new data

 With increasing number of observations, prior beliefs become less and 
less relevant (i.e., uncertainty is reduced)

 Drawback: Reasoning and inference has to include the prior beliefs



Bayesian inference

 By applying Bayes’ theorem: 𝑃 𝜽 𝑥1, … , 𝑥𝑛 =
𝑃(𝑥1,… , 𝑥𝑛|𝜽) 𝑃(𝜽)

𝑃(𝑥1,… , 𝑥𝑛 )

𝑃 𝜽 𝑥1, … , 𝑥𝑛 ∝ 𝑃(𝑥1, … , 𝑥𝑛|𝜽) 𝑃(𝜽)

Prior probability
distribution for 
parameters

Likelihood of
parameters in
light of data

Posterior
distribution of
parameters

Evidence

Typically with exponential family distributions with pdfs of the form:

𝑃 𝒙; 𝜽 = ℎ 𝒙 𝑔 𝜽 exp{𝜽𝑇𝒖(𝒙)}

Important property: closure under multiplication

Iterative substitution as more and 
more data points are observed
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Bayesian inference: Example

 𝑃 𝜽 𝑥1, … , 𝑥𝑛 ∝ 𝑃(𝑥1, … , 𝑥𝑛|𝜽) 𝑃(𝜽)

 Why exponential family distributions?

 For algebraic convenience!

 Example 

Suppose 𝑃(𝑘1, 𝑘2 𝜃 = 𝑘1+𝑘2
𝑘1

𝜃𝑘1(1 − 𝜃)𝑘2 (binomially distributed data)  

Assume 𝑃 𝜃 =
𝜃𝑎−1 1−𝜃 𝑏−1

𝐵 𝑎,𝑏
(𝜃 is Beta distributed with hyper-parameters 𝑎, 𝑏: 

counts reflecting belief formation)

𝑃 𝜃|𝑘1, 𝑘2 =

𝑘1+𝑘2
𝑘1

𝜃𝑘1+𝑎−1(1 − 𝜃)𝑘2+𝑏−1 1
𝐵 𝑎, 𝑏

 𝜃=0

1 𝑘1+𝑥2
𝑘1

𝜃𝑘1+𝑎−1(1 − 𝜃)𝑘2+𝑏−1 1
𝐵 𝑎, 𝑏

𝑑𝜃

=
𝜃𝑘1+𝑎−1(1 − 𝜃)𝑘2+𝑏−1

𝐵 𝑘1 + 𝑎, 𝑘2 + 𝑏 Posterior of parameters has same 
form as the prior 
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Bayesian inference: Conjugate priors

 𝑃 𝜽 is called a conjugate prior of 𝑃(𝑥1, … , 𝑥𝑛|𝜽) if the posterior, 
𝑃 𝜽 𝑥1, … , 𝑥𝑛 , is in the same pdf family as the prior.

 Examples

Likelihood function Conjugate prior

Bernoulli Beta

Binomial Beta

Poisson Gamma

Multinomial Dirichlet

Gaussian Gaussian
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Cox’s theorem

 Any belief system satisfying the following conditions can be described by 
the laws of probability

 The belief in the occurrence of an event is dependent on information about the 
event (dependency)

 The belief in the occurrence of an event can be represented by a real number 
(numerical comparability) 

 The belief in the occurrence of an event changes sensibly with observations 
(common sense)

 If the belief in the occurrence of an event can be derived in many ways, all the 
results must be equal (consistency)
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