

BASICS OF STATISTICS

Sampling \succ

- Estimators, bias, consistency, and mean squared error
- Law of Large Numbers
- Central Limit Theorem
- > Hypothesis testing

Statistics is concerned with data that are subject to random variations

Collecting data through sampling,

Summarizing and analyzing data by estimating the parameters of the underlying distribution(s)

X: height of a person

1.75 1.92 1.69 1.80

Estimate mean: $\hat{\mu} \approx E(X)$ Estimate variance: $\hat{\sigma}^2 \approx Var(X)$

Sampling

of the subpopulation)

- Definition: An estimator is a function that uses input from the sample space to estimate a parameter of the underlying data distribution
- \succ Examples: Let x_1, \dots, x_n be the values of i.i.d. random variables X_i
 - > Empirical mean and the sample mean: $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$
 - > Empirical variance: $S_{em}^2 = \frac{1}{n} \sum_{i=1}^n (x_i \bar{X})^2$
 - > Sample variance: $S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{X})^2$

▶ Let $(x_1, y_1), ..., (x_n, y_n)$ be samples of i.i.d. random variables X_i, Y_i

- ► Empirical covariance: $\hat{C}_{em} = \frac{1}{n} \sum_{i=1}^{n} (x_i \bar{X})(y_i \bar{Y})$
- > Sample covariance: $\hat{C} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i \bar{X})(y_i \bar{Y})$
- **Correlation**: $r = \frac{\hat{C}}{S_X S_Y}$

For linear dependency between two variables, e.g., Y = aX + b:

$$r = \begin{cases} 1, & a > 0 \\ -1, & a < 0 \end{cases}$$

Plattner Institut Empirical distribution function and empirical median

 \succ Let x_1, \dots, x_n be the values of i.i.d. random variables X_i

> Empirical distribution function: $\hat{F}_{X_{i:n}}(x) = \frac{1}{n} \sum_{i=1}^{n} [x_i \le x]$

where $\llbracket x_i \le x \rrbracket \coloneqq \begin{cases} 1, x_i \le x \\ 0, x_i > x \end{cases}$ is called the **indicator function**

Empirical median \hat{x}_{med} is defined as $\hat{F}_{X_{i:n}}(\hat{x}_{med}) = \frac{1}{2}$, that is, for ordered $x_{i_1} \leq \cdots \leq x_{i_n}$:

$$\hat{x}_{med} = \begin{cases} x_{\left(i_{(n+1)/2}\right)} & \text{for odd } n \\ \frac{\left(x_{i_{n/2}} + x_{i_{(n+2)/2}}\right)}{2} & \text{for even } n \end{cases}$$

Example

- What is the expected life time of a specific electronic device (in months)?
 Development was in the expected life time in the enths.
- Random variable X:= life time in # months
- Random sample:
 - $x_1 = 38, x_2 = 33, x_3 = 35, x_4 = 32, x_5 = 9, x_6 = 36, x_7 = 31, x_8 = 37, x_9 = 22, x_{10} = 40, x_{11} = 30$

> Empirical mean:
$$\overline{X} = \frac{1}{11} \sum_{i=1}^{11} x_i \approx 31.2$$

- Empirical median: 33
- ► Empirical variance: $S_{em}^2 = \frac{1}{11} \sum_{i=1}^{11} (x_i \bar{X})^2 \approx 70.69$

> Sample variance:
$$S^2 = \frac{1}{10} \sum_{i=1}^{11} (x_i - \bar{X})^2 \approx 77.76$$

- ➢ How "good" is an estimator?
 - How well does it approximate the true parameter on average?
 - Can it yield the true parameter with more and more data?
 - What is the variance of the estimator?

- ► Definition: An estimator $\hat{\gamma}$ is **unbiased** if its expected value $E(\hat{\gamma})$ is equal to the true value of the parameter γ it estimates, i.e., $E(\hat{\gamma}) = \gamma$, otherwise $\hat{\gamma}$ is biased with squared **bias** $(E(\hat{\gamma}) \gamma)^2$
- ► Definition: An estimator $\hat{\gamma}$ derived from *n* values of i.i.d. random variables X_i is **consistent** if $\lim_{n \to \infty} P(|\hat{\gamma} \gamma| > \varepsilon) = 0$ for all $\varepsilon > 0$

 \blacktriangleright Let x_1, \dots, x_n be the values of i.i.d. random variables X_i

> Theorem

➤ The empirical mean $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} x_i$ is an **unbiased consistent** estimator of the true mean E(X)

➤ The empirical variance $S_{em}^2 = \frac{1}{n} \sum_{i=1}^n (x_i - \bar{X})^2$ is a **biased consistent** estimator of the true variance Var(X), it can be shown that $E(S_{em}^2) = \frac{n-1}{n} Var(X)$

- ➤ The sample variance $S^2 = \frac{1}{n-1} \sum_{i=1}^n (x_i \bar{X})^2$ is an **unbiased consistent** estimator of the true variance Var(X)
- ► The sample covariance $\hat{C} = \frac{1}{n-1} \sum_{i=1}^{n} (x_1 \bar{X})(y_i \bar{Y})$ is an **unbiased consistent** estimator of Cov(X)
- ➤ The empirical distribution function $\hat{F}_{X_{i:n}}(x) = \frac{1}{n} \sum_{i=1}^{n} [x_i \le x]$ is an **unbiased consistent** estimator of the true cumulative distribution F_X

 \succ Let $x_1, x_2, ..., x_n$ be a random sample from a distr. $f_X(x)$ and $\overline{X} = \sum_i \frac{X_i}{n}$

- Weak law of large numbers (weak consistency of the empirical mean)
 - $\geq \lim_{n \to \infty} P(|\bar{X} E(X)| > \varepsilon) = 0 \text{ for all } \varepsilon > 0$
 - \blacktriangleright Sample average converges in probability towards the mean of the distr. of X
- Strong law of large numbers (strong consistency of the empirical mean)
 - $\geq P(\lim_{n \to \infty} |\overline{X} E(X)| > \varepsilon) = 0 \text{ for all } \varepsilon > 0$
 - Sample average converges almost surely towards the mean of the distr. of X

- ► Definition: An unbiased estimator $\hat{\gamma}$ is the **best estimator** of the true parameter γ if it has lowest variance among all other unbiased estimators, i.e., for all unbiased estimators $\hat{\gamma}'$ of γ : $Var(\hat{\gamma}) \leq Var(\hat{\gamma}')$
- \succ The mean squared error between an estimator $\hat{\gamma}$ and γ is:

$$mse(\hat{\gamma} - \gamma) = E((\hat{\gamma} - \gamma)^2) = Var(\hat{\gamma}) + Bias(\hat{\gamma})^2$$

Because:

$$Var(\hat{\gamma}) = Var(\hat{\gamma} - \gamma) = E((\hat{\gamma} - \gamma)^2) - E^2(\hat{\gamma} - \gamma)$$
$$Bias(\hat{\gamma}) = E(\hat{\gamma}) - \gamma = E(\hat{\gamma}) - E(\gamma) = E(\hat{\gamma} - \gamma)$$

Notes

- The sample mean is the best estimator of the true mean for many useful distributions
- The sample variance is the best estimator of the true variance for normally distributed data

- How useful is an estimator for the understanding of the underlying distribution?
- It depends on the distribution!

> Example

- > Random variable X:= yearly income in \$1000
- Random sample:

$$x_1 = 58; x_2 = 74; x_3 = 69; x_4 = 81; x_5 = 64; x_6 = 120; x_7 = 55;$$

 $x_8 = 71; x_9 = 77; x_{10} = 65; x_{11} = 23,000 \implies \overline{X} \approx 2,158$

Empirical median is more insightful in this case

- > Maximum Likelihood Estimator, i.e., $argmax_{\theta}P(x_1, ..., x_n | \theta)$
 - Consistent
 - Asymptotically normal
 - Asymptotically optimal, i.e., with smallest variance
- \succ Min (x_1, \ldots, x_n)
- \succ Max (x_1, \ldots, x_n)
- Empirical skewness

$$Sk = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})^3}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})^2\right)^{3/2}}$$

Source: Wikipedia

- ➤ X is normally distributed ⇔ X ~ N(μ, σ²) ⇔ f_X(x) = 1/(√2πσ²) e^{-(x-μ)²}/_{2σ²}
 µ: mean, σ: standard deviation
- > Standard normal distribution: N(0,1)
- ► Cumulative distribution of N(0,1): $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2\pi}} e^{\frac{x^2}{2}} dx$

➤ Theorem: If $X \sim N(\mu, \sigma^2)$ then $Y \coloneqq \frac{(X-\mu)}{\sigma} \sim N(0,1)$

Central Limit Theorem: Let $X_1, X_2, ..., X_n$ be i.i.d. random variables from a distr. with mean μ and finite non-zero variance σ^2 . The cdf of the random variable $Z := \sum_i X_i$ converges to the cdf of the normal distribution $N(n\mu, n\sigma^2)$. That is:

$$\lim_{n \to \infty} P(a \le \frac{Z - n\mu}{\sqrt{n\sigma}} \le b) = \Phi(b) - \Phi(a)$$

> Corollary: The cdf of $Z := \frac{1}{n} \sum_{i} X_{i}$ converges to the cdf of $N\left(\mu, \frac{\sigma^{2}}{n}\right)$

 $f_X(x)$ is uniform

Avg. of X_1, X_2 sampled repeatedly from $f_X(x)$

Avg. of X_1, X_2, X_3, X_4 sampled repeatedly from $f_X(x)$

Galton Machine

Empirical evidence for the Central Limit Theorem (by considering sequences of i.i.d. Bernoulli variables) and for the Law of Large Numbers (by considering random samples from a Binomial distribution)

Example hypotheses:

- Sample originates from normal distribution
- Two random variables are independent
- Sample is Bernoulli distributed with p=0.5

Goal: Falsification of hypothesis by lack of statistical evidence

- > Hypothesis to be falsified: H_0 (null hypothesis)
- \succ Counter hypothesis: H_1
- Test region R from cdf of test variable X
 - $\succ X \in R \Rightarrow \text{reject } H_0$
 - $\succ X \notin R \Rightarrow \text{retain } H_0$

	Retain H_0	Reject H_0		
H_0 true	ok	Type I error		
H_1 true	Type II error	ok		

Hypothesis testing: Example

Assume average IQ of students is 100 $H_0: \mu = 100$

 $\overline{IQ} = 115$ Is this likely given $\mu = 100$? If yes retain H_0 else reject

- How well is a parameter estimated
 - \succ Consider estimator $\hat{\theta}$ for parameter θ
 - > How well does $\hat{\theta}$ represent θ ?

$$P(\hat{\theta} - c \le \theta \le \hat{\theta} + c) = 1 - \alpha$$

Definitions

- > The interval $[\hat{\theta} c, \hat{\theta} + c]$ is the **confidence interval**
- > The value 1α is the **confidence level**
- $\succ \alpha$ is the significance level (typically: 0.01, 0.05, 0.1)

> A test of the form $H_0: \theta = \theta_0 vs. H_1: \theta \neq \theta_0$ is called a two-sided test

- > A test of either of these forms
 - $\succ H_0: \theta \leq \theta_0 \ vs. H_1: \theta > \theta_0$
 - \succ $H_0: \theta \ge \theta_0 vs. H_1: \theta < \theta_0$
 - is called a one-sided test

- Consider i.i.d. random variables $X_1, ..., X_n, n \gg 1$, from a distribution with **unknown**, non-zero mean μ and **known** finite variance σ^2 .
 - ► We know $\overline{X} = \frac{1}{n} \sum_{i} X_{i}$ is approximately normally distributed with $N(\mu, \frac{\sigma^{2}}{n})$
 - ▶ We also know that $Y = \frac{(\bar{X} \mu)\sqrt{n}}{\sigma} \sim N(0, 1)$

$$P\left(-z \le \frac{(\bar{X} - \mu)\sqrt{n}}{\sigma} \le z\right) = \Phi(z) - \Phi(-z) = P\left(\bar{X} - \frac{z\sigma}{\sqrt{n}} \le \mu \le \bar{X} + \frac{z\sigma}{\sqrt{n}}\right)$$

- \Rightarrow For confidence interval $[\overline{X} c, \overline{X} + c]$ set $z \coloneqq \frac{c\sqrt{n}}{\sigma}$ and look up $\Phi(z)$
- ⇒ For confidence level 1α , and a proposed value for μ , reject null hypothesis if $|Y| > \Phi^{-1}(1 \alpha/2)$
- > Definition: The **p-value** is minimal **significance level** at which H_0 can be rejected

Z-score table

Areas Under the One-Tailed Standard Normal Curve

This table provides the area between the mean and some Z score.

the m	nean and s	an and some Z score.						$\sigma = 1$			
For example, when Z score = 1.45						4955					
the a	rea = 0.42	65.						0.4265		_	
					Z		μ=0	1.45		_	
Z	0.00	0.01	0.02	0.03	0.04	0.05	0.06	0.07	0.08	0.09	
0.0	0.0000	0.0040	0.0080	0.0120	0.0160	0.0199	0.0239	0.0279	0.0319	0.0359	
0.1	0.0398	0.0438	0.0478	0.0517	0.0557	0.0596	0.0636	0.0675	0.0714	0.0753	
0.2	0.0793	0.0832	0.0871	0.0910	0.0948	0.0987	0.1026	0.1064	0.1103	0.1141	
0.3	0.1179	0.1217	0.1255	0.1293	0.1331	0.1368	0.1406	0.1443	0.1480	0.1517	
0.4	0.1554	0.1591	0.1628	0.1664	0.1700	0.1736	0.1772	0.1808	0.1844	0.1879	
0.5	0.1915	0.1950	0.1985	0.2019	0.2054	0.2088	0.2123	0.2157	0.2190	0.2224	
0.6	0.2257	0.2291	0.2324	0.2357	0.2389	0.2422	0.2454	0.2486	0.2517	0.2549	
0.7	0.2580	0.2611	0.2642	0.2673	0.2704	0.2734	0.2764	0.2794	0.2823	0.2852	
0.8	0.2881	0.2910	0.2939	0.2967	0.2995	0.3023	0.3051	0.3078	0.3106	0.3133	
0.9	0.3159	0.3186	0.3212	0.3238	0.3264	0.3289	0.3315	0.3340	0.3365	0.3389	
1.0	0.3413	0.3438	0.3461	0.3485	0.3508	0.3531	0.3554	0.3577	0.3599	0.3621	
1.1	0.3643	0.3665	0.3686	0.3708	0.3729	0.3749	0.3770	0.3790	0.3810	0.3830	
1.2	0.3849	0.3869	0.3888	0.3907	0.3925	0.3944	0.3962	0.3980	0.3997	0.4015	
1.3	0.4032	0.4049	0.4066	0.4082	0.4099	0.4115	0.4131	0.4147	0.4162	0.4177	
1.4	0.4192	0.4207	0.4222	0.4236	0.4251	0.4265	0.4279	0.4292	0.4306	0.4319	
1.5	0.4332	0.4345	0.4357	0.4370	0.4382	0.4394	0.4406	0.4418	0.4429	0.4441	
1.6	0.4452	0.4463	0.4474	0.4484	0.4495	0.4505	0.4515	0.4525	0.4535	0.4545	
1.7	0.4554	0.4564	0.4573	0.4582	0.4591	0.4599	0.4608	0.4616	0.4625	0.4633	
1.8	0.4641	0.4649	0.4656	0.4664	0.4671	0.4678	0.4686	0.4693	0.4699	0.4706	
1.9	0.4713	0.4719	0.4726	0.4732	0.4738	0.4744	0.4750	0.4756	0.4761	0.4767	
2.0	0.4772	0.4778	0.4783	0.4788	0.4793	0.4798	0.4803	0.4808	0.4812	0.4817	
2.1	0.4821	0.4826	0.4830	0.4834	0.4838	0.4842	0.4846	0.4850	0.4854	0.4857	
2.2	0.4861	0.4864	0.4868	0.4871	0.4875	0.4878	0.4881	0.4884	0.4887	0.4890	
2.3	0.4893	0.4896	0.4898	0.4901	0.4904	0.4906	0.4909	0.4911	0.4913	0.4916	
2.4	0.4918	0.4920	0.4922	0.4925	0.4927	0.4929	0.4931	0.4932	0.4934	0.4936	
2.5	0.4938	0.4940	0.4941	0.4943	0.4945	0.4946	0.4948	0.4949	0.4951	0.4952	
2.6	0.4953	0.4955	0.4956	0.4957	0.4959	0.4960	0.4961	0.4962	0.4963	0.4964	
2.7	0.4965	0.4966	0.4967	0.4968	0.4969	0.4970	0.4971	0.4972	0.4973	0.4974	
2.8	0.4974	0.4975	0.4976	0.4977	0.4977	0.4978	0.4979	0.4979	0.4980	0.4981	
2.9	0.4981	0.4982	0.4982	0.4983	0.4984	0.4984	0.4985	0.4985	0.4986	0.4986	
3.0	0.4987	0.4987	0.4987	0.4988	0.4988	0.4989	0.4989	0.4989	0.4990	0.4990	
3.1	0.4990	0.4991	0.4991	0.4991	0.4992	0.4992	0.4992	0.4992	0.4993	0.4993	
3.2	0.4993	0.4993	0.4994	0.4994	0.4994	0.4994	0.4994	0.4995	0.4995	0.4995	

24

For a parameter $\hat{\theta}$ derived from a sample and a proposed parameter θ , we can test

$$H_0: \hat{\theta} = \theta \text{ vs. } H_1: \hat{\theta} \neq \theta$$

S = √Var($\hat{\theta}$) is called the standard error and Var($\hat{\theta}$) is the sample variance
Test variable W := $\frac{\hat{\theta} - \theta}{s}$ is approximately N(0,1)-distributed (i.e., distribution

of W converges to N(0,1) for growing sample size)

→ Reject H_0 at level α when $|W| > \Phi^{-1}(1 - \alpha/2)$

➢ Example

- $\hat{\theta}$: Average increase of height of men compared to height of women
- > Proposed parameter $\theta = 0$

- > What is the expected life time of a specific electronic device (in months)?
- Random variable X:= life time in # months
- Random sample:

 $x_1 = 38, x_2 = 33, x_3 = 35, x_4 = 32, x_5 = 9, x_6 = 36, x_7 = 31, x_8 = 37, x_9 = 22, x_{10} = 40, x_{11} = 30$

Hypothesis I: Devices have a life time of around 2 years

$$W \coloneqq \frac{\widehat{\theta} - \theta}{\sqrt{Var(\widehat{\theta})}} \approx 0.82 < 1.96 \text{ (for significance level 0.05)}$$

> Hypothesis II: Devices have a life time of around 1 year

$$W \coloneqq \frac{\widehat{\theta} - \theta}{\sqrt{Var(\widehat{\theta})}} \approx 2,177 > 1.96 \text{ (for significance level 0.05)}$$

- \succ H_0 : coin has head probability $p = p_0$
- \succ X: test variable representing #heads in n tosses
- ▶ We know that approximately $X \sim N(pn, p(1-p)n)$

→
$$Y \coloneqq \frac{(X-pn)}{\sqrt{p(1-p)n}} \sim N(0,1) \Rightarrow$$
 reject H_0 at level α (= 0.05) if

$$Y > \Phi^{-1}(1 - \alpha/2)$$
 or $Y < \Phi^{-1}(\alpha/2) \Leftrightarrow |Y| > \Phi^{-1}(1 - \alpha/2)$

t-Test for unknown mean and unknown variance

- Consider i.i.d. random variables $X_1, ..., X_n, n \gg 1$, from a distribution with **unknown**, non-zero mean μ and **unknown** variance
- ► Let s^2 be the sample variance. $Y := \frac{(\bar{X}-\mu)\sqrt{n}}{s}$ has a **Student's t distribution** with n-1 degrees of freedom

With analogous derivation as before:

Plattner

$$P\left(\bar{X} - \frac{t_{n-1,1-\alpha/2}S}{\sqrt{n}} \le \mu \le \bar{X} + \frac{t_{n-1,1-\alpha/2}S}{\sqrt{n}}\right) = 1 - \alpha$$

 \Rightarrow For proposed μ and significance level α , reject null hypothesis if $|Y| > t_{n-1,1-\alpha/2}$

- Compare two prediction algorithms A and A' based on performance on k labeled datasets
- > Let $e_1, ..., e_k$ and $e_1', ..., e_k'$ be the error values (or any performance values), respectively
- Are the error means any different?
- Fact: \overline{e} and $\overline{e'}$ are approximately normally distributed, but we neither know the means nor the variances
- Since σ_e and σ_e' are unknown, we need to use **t-distribution** with k-1 degrees of freedom to estimate how close μ_e and μ_e' are (H_0 : $\mu_e = \mu_e'$)

 $\succ \bar{d} = \bar{e} - \bar{e'}$ is also *t*-distributed, with k-1 degrees of freedom

$$\Rightarrow H_0: \overline{d} = 0$$
 and $Y \coloneqq \frac{(\overline{d} - 0)\sqrt{k}}{s_d}$ is the t-statistics

▶ Use t-distribution table to determine the t_{k-1,1-α/2} score
 ▶ If t_{k-1,1-α/2} < |Y| reject H₀ otherwise retain it

- Given sample $x_1, ..., x_n$ of i.i.d. random variables X_i and absolute frequencies $h_1, ..., h_k$ of class $c_j, 1 \le j \le k$, we can test
 - \succ $H_0: X_i$ follow a proposed discrete distribution

 $\succ Z_k \coloneqq \frac{\sum_{j=1}^k (h_j - E(h_j))^2}{E(h_j)}, \text{ with } E(h_j) \text{ being the expected frequency of class } c_j$ according to the proposed distribution, is χ^2 -distributed with k-1 degrees of freedom

→ Reject H_0 at test level α (e.g. 0.05) if $Z_k > \chi^2_{k-1,1-\alpha}$

Chi square distribution table

d.f.	χ ² .25	χ ² .10	X ² .05	χ ² .025	X ² .010	X ² .005	$\chi^{2}_{.001}$
1	1.32	2.71	3.84	5.02	6.63	7.88	10.8
2	2.77	4.61	5.99	7.38	9.21	10.6	13.8
3	4.11	6.25	7.81	9.35	11.3	12.8	16.3
4	5.39	7.78	9.49	11.1	13.3	14.9	18.5
5	6.63	9.24	11.1	12.8	15.1	16.7	20.5
6	7.84	10.6	12.6	14.4	16.8	18.5	22.5
7	9.04	12.0	14.1	16.0	18.5	20.3	24.3
8	10.2	13.4	15.5	17.5	20.1	22.0	26.1
9	11.4	14.7	16.9	19.0	21.7	23.6	27.9
10	12.5	16.0	18.3	20.5	23.2	25.2	29.6
11	13.7	17.3	19.7	21.9	24.7	26.8	31.3
12	14.8	18.5	21.0	23.3	26.2	28.3	32.9
13	16.0	19.8	22.4	24.7	27.7	29.8	34.5
14	17.1	21.1	23.7	26.1	29.1	31.3	36.1
15	18.2	22.3	25.0	27.5	30.6	32.8	37.7
16	19.4	23.5	26.3	28.8	32.0	34.3	39.3
17	20.5	24.8	27.6	30.2	33.4	35.7	40.8
18	21.6	26.0	28.9	31.5	34.8	37.2	42.3
19	22.7	27.2	30.1	32.9	36.2	38.6	32.8
20	23.8	28.4	31.4	34.2	37.6	40.0	45.3
21	24.9	29.6	32.7	35.5	38.9	41.4	46.8
22	26.0	30.8	33.9	36.8	40.3	42.8	48.3
23	27.1	32.0	35.2	38.1	41.6	44.2	49.7
24	28.2	33.2	36.4	39.4	32.0	45.6	51.2
25	29.3	34.4	37.7	40.6	44.3	46.9	52.6
26	30.4	35.6	38.9	41.9	45.6	48.3	54.1
27	31.5	36.7	40.1	43.2	47.0	49.6	55.5
28	32.6	37.9	41.3	44.5	48.3	51.0	56.9
29	33.7	39.1	42.6	45.7	49.6	52.3	58.3

31

- \succ r = number of columns
- \succ *m* = number of rows
- \succ n_{ij} = Actual number in cell_{ij}
- $\succ n_{ij}^*$ = Expected number in cell_{ij}
- → (r-1)(m-1) = degrees of freedom

	Feature Y						Sum S
Feature X	1	2		k		r	n _{j.}
1	<i>n</i> ₁₁	n ₁₂		<i>n</i> _{1<i>k</i>}		n _{1r}	n _{1.}
2	<i>n</i> ₂₁	n ₂₂		n _{2k}		n _{2r}	n _{2.}
j				n _{jk}			n _{j.}
т	n _{m1}	n _{m2}		n _{mk}		n _{mr}	n _{m.}
Sum Σ	<i>n</i> .1	n.2		<i>n</i> . <i>k</i>		<i>n</i> . <i>r</i>	n

$$n_{jk}^{*} = \frac{n_{j} \cdot n_{k}}{n}$$
$$\chi^{2} = \sum_{j=1}^{m} \sum_{k=1}^{r} \frac{(n_{jk} - n_{jk}^{*})^{2}}{n_{jk}^{*}}$$

→ Reject H_0 at test level α (e.g. 0.05) if $\chi^2 > \chi^2_{(r-1)(m-1),1-\alpha}$

- Formulate null hypothesis
- Define corresponding random variable for the test
- > Turn the variable into a N(0,1)-distributed variable, or a t-statistics, or a χ^2 -statistics, ...
- Test whether the new statistics lies in the critical region of the underlying distribution