

BASICS OF STATISTICS

 \triangleright Sampling

- \triangleright Estimators, bias, consistency, and mean squared error
- \triangleright Law of Large Numbers
- **► Central Limit Theorem**
- \triangleright Hypothesis testing

 \triangleright Statistics is concerned with data that are subject to random variations

 \triangleright Collecting data through sampling,

 \triangleright Summarizing and analyzing data by estimating the parameters of the underlying distribution(s)

 $X:$ height of a person

1.75 1.92 1.69 1.80 ….

Estimate mean: $\hat{\mu} \approx E(X)$ Estimate variance: $\hat{\sigma}^2 \approx Var(X)$

Sampling

of the subpopulation)

- \triangleright Definition: An estimator is a function that uses input from the sample space to estimate a parameter of the underlying data distribution
- Examples: Let $x_1, ..., x_n$ be the values of i.i.d. random variables X_i
	- Empirical mean and the sample mean: $\bar{X} = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} x_i$
	- Empirical variance: $S_{em}^2 = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})^2$
	- Sample variance: $S^2 = \frac{1}{n}$ $\frac{1}{n-1}\sum_{i=1}^{n}(x_i-\bar{X})^2$

Eet (x_1, y_1) , ..., (x_n, y_n) be samples of i.i.d. random variables X_i , Y_i

$$
\triangleright \text{ Empirical covariance: } \hat{\mathcal{C}}_{em} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})(y_i - \bar{Y})
$$

$$
\triangleright \text{ Sample covariance: } \hat{C} = \frac{1}{n-1} \sum_{i=1}^{n} (x_i - \bar{X})(y_i - \bar{Y})
$$

$$
\triangleright \text{ Correlation: } r = \frac{\hat{c}}{S_X S_Y}
$$

For linear dependency between two variables, e.g., $Y = aX + b$:

$$
r = \begin{cases} 1, & a > 0 \\ -1, & a < 0 \end{cases}
$$

Empirical distribution function and empirical median

Extert $x_1, ..., x_n$ be the values of i.i.d. random variables X_i

Empirical distribution function: $\widehat{F}_{X_{i:n}}(x) = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} \llbracket x_i \leq x$

where $\llbracket x_i \leq x \rrbracket \coloneqq \big\{$ $1, x_i \leq x$ $0, x_i > x$ is called the indicator function

 \triangleright Empirical median \hat{x}_{med} is defined as $\hat{F}_{X_{i:n}}(\hat{x}_{med}) = \frac{1}{2}$ $\frac{1}{2}$, that is, for ordered $x_{i_1} \leq \cdots \leq x_{i_n}$:

$$
\hat{x}_{med} = \begin{cases} x_{(i_{(n+1)/2})} & \text{for odd } n \\ \frac{(x_{i_{n/2}} + x_{i_{(n+2)/2}})}{2} & \text{for even } n \end{cases}
$$

- \triangleright What is the expected life time of a specific electronic device (in months)?
- \triangleright Random variable X:= life time in # months
- \triangleright Random sample:

 $x_1 = 38$, $x_2 = 33$, $x_3 = 35$, $x_4 = 32$, $x_5 = 9$, $x_6 = 36$, $x_7 = 31$, $x_8 = 37$, $x_9 = 22$, $x_{10} = 40$, $x_{11} = 30$

$$
\triangleright \text{ Empirical mean: } \bar{X} = \frac{1}{11} \sum_{i=1}^{11} x_i \approx 31.2
$$

 \triangleright Empirical median: 33

Empirical variance: $S_{em}^2 = \frac{1}{11}$ $\frac{1}{11}\sum_{i=1}^{11} (x_i - \bar{X})^2 \approx 70.69$

Sample variance: $S^2 = \frac{1}{10}$ $\frac{1}{10}\sum_{i=1}^{11} (x_i - \bar{X})^2 \approx 77.76$

- \triangleright How "good" is an estimator?
	- \triangleright How well does it approximate the true parameter on average?
	- \triangleright Can it yield the true parameter with more and more data?
	- \triangleright What is the variance of the estimator?

- \triangleright Definition: An estimator $\hat{\gamma}$ is unbiased if its expected value $E(\hat{\gamma})$ is equal to the true value of the parameter γ it estimates, i.e., $E(\hat{\gamma}) = \gamma$, otherwise $\hat{\gamma}$ is biased with squared bias $(E(\hat{\gamma}) - \gamma)^2$
- \triangleright Definition: An estimator $\hat{\gamma}$ derived from *n* values of i.i.d. random variables X_i is consistent if lim $n\rightarrow\infty$ $P(|\hat{\gamma} - \gamma| > \varepsilon) = 0$ for all $\varepsilon > 0$

Extraporation 1. x_n be the values of i.i.d. random variables X_i

 \triangleright Theorem

 \triangleright The empirical mean $\bar{X} = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^n x_i$ is an **unbiased consistent** estimator of the true mean $E(X)$

 \triangleright The empirical variance $S_{em}^2 = \frac{1}{n}$ $\frac{1}{n}\sum_{i=1}^{n}(x_i-\bar{X})^2$ is a **biased consistent** estimator of the true variance $Var(X)$, it can be shown that $E(S_{em}^2) = \frac{n-1}{n}$ \overline{n} $Var(X)$

- \triangleright The sample variance $S^2 = \frac{1}{n}$ $\frac{1}{n-1}\sum_{i=1}^n(x_i-\bar{X})^2$ is an unbiased consistent estimator of the true variance $Var(X)$
- \triangleright The sample covariance $\hat{C} = \frac{1}{n}$ $\frac{1}{n-1}\sum_{i=1}^n (x_1-\bar{X})(y_i-\bar{Y})$ is an unbiased consistent estimator of $Cov(X)$
- Fine empirical distribution function $\widehat{F}_{X_{i:n}}(x) = \frac{1}{n}$ $\frac{1}{n} \sum_{i=1}^{n} \llbracket x_i \leq x \rrbracket$ is an **unbiased** consistent estimator of the true cumulative distribution F_X

Exact $x_1, x_2, ..., x_n$ be a random sample from a distr. $f_X(x)$ and $\bar{X} = \sum_i \frac{X_i}{n}$ \overline{n}

- \triangleright Weak law of large numbers (weak consistency of the empirical mean)
	- \triangleright lim $n\rightarrow\infty$ $P(|\bar{X} - E(X)| > \varepsilon) = 0$ for all $\varepsilon > 0$
	- \triangleright Sample average converges in probability towards the mean of the distr. of X
- Strong law of large numbers (strong consistency of the empirical mean)
	- \triangleright P(lim $n \rightarrow \infty$ $|\overline{X} - E(X)| > \varepsilon$ = 0 for all ε >0
	- \triangleright Sample average converges almost surely towards the mean of the distr. of X

- \triangleright Definition: An unbiased estimator $\hat{\gamma}$ is the best estimator of the true parameter γ if it has lowest variance among all other unbiased estimators, i.e., for all unbiased estimators $\hat{\gamma}'$ of γ : $Var(\hat{\gamma}) \leq Var(\hat{\gamma}')$
- \triangleright The mean squared error between an estimator $\hat{\gamma}$ and γ is:

$$
mse(\hat{\gamma} - \gamma) = E((\hat{\gamma} - \gamma)^2) = Var(\hat{\gamma}) + Bias(\hat{\gamma})^2
$$

Because:

$$
Var(\hat{\gamma}) = Var(\hat{\gamma} - \gamma) = E((\hat{\gamma} - \gamma)^2) - E^2(\hat{\gamma} - \gamma)
$$

\n
$$
Bias(\hat{\gamma}) = E(\hat{\gamma}) - \gamma = E(\hat{\gamma}) - E(\gamma) = E(\hat{\gamma} - \gamma)
$$

\triangleright Notes

- \triangleright The sample mean is the best estimator of the true mean for many useful distributions
- \triangleright The sample variance is the best estimator of the true variance for normally distributed data

- \triangleright How useful is an estimator for the understanding of the underlying distribution?
- \triangleright It depends on the distribution!

\triangleright Example

- \triangleright Random variable X:= yearly income in \$1000
- \triangleright Random sample:

$$
x_1 = 58
$$
; $x_2 = 74$; $x_3 = 69$; $x_4 = 81$; $x_5 = 64$; $x_6 = 120$; $x_7 = 55$;
 $x_8 = 71$; $x_9 = 77$; $x_{10} = 65$; $x_{11} = 23,000 \Rightarrow \overline{X} \approx 2,158$

\triangleright Empirical median is more insightful in this case

- A Maximum Likelihood Estimator, i.e., $argmax_{\theta} P(x_1, ..., x_n | \theta)$
	- **► Consistent**
	- \triangleright Asymptotically normal
	- \triangleright Asymptotically optimal, i.e., with smallest variance
- \triangleright Min(x₁, ..., x_n)
- \triangleright $Max(x_1, ..., x_n)$
- \triangleright Empirical skewness

$$
Sk = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})^3}{\left(\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{X})^2\right)^{3/2}}
$$

Source: Wikipedia

- \triangleright X is normally distributed \Leftrightarrow $X \sim N(\mu, \sigma^2) \Leftrightarrow f_X(x) = \frac{1}{\sqrt{2\pi}}$ $\overline{2\pi\sigma^2}$ $e^{-\frac{(x-\mu)^2}{2\sigma^2}}$ $2\sigma^2$ μ : mean, σ : standard deviation
- \triangleright Standard normal distribution: $N(0,1)$
- > Cumulative distribution of $N(0,1)$: $\Phi(z) = \int_{-\infty}^{z} \frac{1}{\sqrt{2}}$ $\overline{2\pi}$ \boldsymbol{e} x^2 $\overline{2}$ dx

► Theorem: If $X \sim N(\mu, \sigma^2)$ then $Y = \frac{(X - \mu)^2}{\sigma^2}$ σ $\sim N(0,1)$

 \triangleright Central Limit Theorem: Let $X_1, X_2, ..., X_n$ be i.i.d. random variables from a distr. with mean μ and finite non-zero variance σ^2 . The cdf of the random variable $Z := \sum_i X_i$ converges to the cdf of the normal distribution $N(n\mu, n\sigma^2)$. That is:

$$
\lim_{n \to \infty} P(a \le \frac{Z - n\mu}{\sqrt{n}\sigma} \le b) = \Phi(b) - \Phi(a)
$$

Corollary: The cdf of $Z = \frac{1}{n}$ $\frac{1}{n} \sum_i X_i$ converges to the cdf of $N\left(\mu,\frac{\sigma^2}{n}\right)$ \overline{n}

 $f_X(x)$ is uniform Avg. of X_1, X_2 sampled repeatedly from $f_X(x)$

Avg. of X_1, X_2, X_3, X_4 sampled repeatedly from $f_X(x)$

Galton Machine

Empirical evidence for the Central Limit Theorem (by considering sequences of i.i.d. Bernoulli variables) and for the Law of Large Numbers (by considering random samples from a Binomial distribution)

\triangleright Example hypotheses:

- \triangleright Sample originates from normal distribution
- \triangleright Two random variables are independent
- \triangleright Sample is Bernoulli distributed with p=0.5

 \triangleright Goal: Falsification of hypothesis by lack of statistical evidence

- \triangleright Hypothesis to be falsified: H_0 (null hypothesis)
- \triangleright Counter hypothesis: H_1
- \triangleright Test region R from cdf of test variable X
	- \triangleright X \in R \Rightarrow reject H_0
	- $\triangleright X \notin R \Rightarrow$ retain H_0

Hypothesis testing: Example

Assume average IQ of students is 100 $H_0: \mu = 100$

 $\overline{IQ} = 115$ Is this likely given $\mu = 100$? If yes retain H_0 else reject

- \triangleright How well is a parameter estimated
	- \triangleright Consider estimator $\hat{\theta}$ for parameter θ
	- \triangleright How well does $\hat{\theta}$ represent θ ?

$$
P(\hat{\theta} - c \le \theta \le \hat{\theta} + c) = 1 - \alpha
$$

 \triangleright Definitions

- > The interval $[\hat{\theta} c, \hat{\theta} + c]$ is the confidence interval
- \triangleright The value 1α is the confidence level
- \triangleright α is the significance level (typically: 0.01, 0.05, 0.1)

A test of the form $H_0: \theta = \theta_0$ vs. $H_1: \theta \neq \theta_0$ is called a two-sided test

- \triangleright A test of either of these forms
	- $\triangleright H_0: \theta \leq \theta_0 \text{ vs. } H_1: \theta > \theta_0$
	- $\triangleright H_0: \theta \geq \theta_0$ vs. $H_1: \theta < \theta_0$
	- is called a one-sided test

- \triangleright Consider i.i.d. random variables $X_1, ..., X_n$, $n \geq 1$, from a distribution with unknown, non-zero mean μ and known finite variance σ^2 .
	- \triangleright We know $\bar{X} = \frac{1}{n}$ $\frac{1}{n} \sum_i X_i$ is approximately normally distributed with $N(\mu, \frac{\sigma}{n})$ \overline{n} 2)
	- \triangleright We also know that $Y =$ $(\bar{X}-\mu)\sqrt{n}$ σ $\sim N(0,1)$

$$
P\left(-z \le \frac{(\overline{X} - \mu)\sqrt{n}}{\sigma} \le z\right) = \Phi(z) - \Phi(-z) = P\left(\overline{X} - \frac{z\sigma}{\sqrt{n}} \le \mu \le \overline{X} + \frac{z\sigma}{\sqrt{n}}\right)
$$

- ⇒ For confidence interval $[\bar{X}-c,\bar{X}+c]$ set $z \coloneqq \frac{c\sqrt{n}}{\tau}$ $rac{\sqrt{n}}{\sigma}$ and look up $\Phi(z)$
- \Rightarrow For confidence level 1α , and a proposed value for μ , reject null hypothesis if $|Y| > \Phi^{-1}(1 - \alpha/2)$
- Definition: The **p-value** is minimal significance level at which H_0 can be rejected

Z-score table

Areas Under the One-Tailed Standard Normal Curve

 $\sigma = 1$

This table provides the area between the mean and some Z score.

24

For a parameter $\hat{\theta}$ derived from a sample and a proposed parameter θ , we can test

 $H_0: \hat{\theta} = \theta$ vs. $H_1: \hat{\theta} \neq \theta$

 \triangleright $s = \sqrt{Var(\hat{\theta})}$ is called the standard error and $Var(\hat{\theta})$ is the sample variance

> Test variable $W ≔$ $\widehat{\theta}-\theta$ $\frac{-b}{s}$ is approximately $N(0,1)$ -distributed (i.e., distribution of W converges to $N(0,1)$ for growing sample size)

 \rightarrow Reject H_0 at level α when $|W| > \Phi^{-1}(1 - \alpha/2)$

\triangleright Example

- \triangleright $\hat{\theta}$: Average increase of height of men compared to height of women
- \triangleright Proposed parameter $\theta = 0$

- \triangleright What is the expected life time of a specific electronic device (in months)?
- \triangleright Random variable X:= life time in # months
- \triangleright Random sample:

 $x_1 = 38$, $x_2 = 33$, $x_3 = 35$, $x_4 = 32$, $x_5 = 9$, $x_6 = 36$, $x_7 = 31$, $x_8 = 37$, $x_9 = 22$, $x_{10} = 40$, $x_{11} = 30$

► Empirical mean:
$$
\bar{X} = \frac{1}{11} \sum_{i=1}^{11} x_i \approx 31.2
$$

\n► Sample variance: $S^2 = \frac{1}{10} \sum_{i=1}^{11} (x_i - \bar{X})^2 \approx 77.76$

 \triangleright Hypothesis I: Devices have a life time of around 2 years

$$
W \coloneqq \frac{\widehat{\theta} - \theta}{\sqrt{Var(\widehat{\theta})}} \approx 0.82 < 1.96 \text{ (for significance level 0.05)}
$$

 \triangleright Hypothesis II: Devices have a life time of around 1 year

$$
W := \frac{\widehat{\theta} - \theta}{\sqrt{Var(\widehat{\theta})}} \approx 2,177 > 1.96
$$
 (for significance level 0.05)

- \triangleright H₀: coin has head probability $p = p_0$
- \triangleright X: test variable representing #heads in *n* tosses
- \triangleright We know that approximately $X \sim N(pn, p(1-p)n)$

$$
\triangleright Y := \frac{(X - pn)}{\sqrt{p(1 - p)n}} \sim N(0, 1) \Rightarrow \text{reject } H_0 \text{ at level } \alpha \ (= 0.05) \text{ if }
$$

$$
Y > \Phi^{-1}(1 - \alpha/2) \text{ or } Y < \Phi^{-1}(\alpha/2) \Leftrightarrow |Y| > \Phi^{-1}(1 - \alpha/2)
$$

t-Test for unknown mean and unknown variance

- \triangleright Consider i.i.d. random variables $X_1, ..., X_n$, $n \geq 1$, from a distribution with unknown, non-zero mean μ and unknown variance
- Exect s^2 be the sample variance. $Y = \frac{(\bar{X} \mu)\sqrt{n}}{s}$ $rac{\mu_{\mathcal{D}}}{S}$ has a **Student's t distribution** with $n - 1$ degrees of freedom

 \triangleright With analogous derivation as before:

Plattner

$$
P\left(\bar{X} - \frac{t_{n-1,1-\alpha/2}S}{\sqrt{n}} \le \mu \le \bar{X} + \frac{t_{n-1,1-\alpha/2}S}{\sqrt{n}}\right) = 1 - \alpha
$$

 \Rightarrow For proposed μ and significance level α , reject null hypothesis if $|Y| > t_{n-1,1-\alpha/2}$

- \triangleright Compare two prediction algorithms A and A' based on performance on k labeled datasets
- \triangleright Let $e_1, ..., e_k$ and $e_1', ..., e_k'$ be the error values (or any performance values), respectively
- \triangleright Are the error means any different?
- Fact: \bar{e} and \bar{e}' are approximately normally distributed, but we neither know the means nor the variances
- \triangleright Since σ_e and σ_e' are unknown, we need to use **t-distribution** with k-1 degrees of freedom to estimate how close μ_e and μ_e' are ($H_0: \ \mu_e = \mu_e'$)

 \triangleright $\overline{d} = \overline{e} - \overline{e'}$ is also *t*-distributed, with k-1 degrees of freedom

$$
\Rightarrow H_0: \bar{d} = 0 \text{ and } Y := \frac{(\bar{d}-0)\sqrt{k}}{s_d} \text{ is the t-statistics}
$$

 \triangleright Use *t*-distribution table to determine the $t_{k-1,1-\alpha/2}$ score $I\triangleright$ If $t_{k-1,1-\alpha/2}$ < |Y| reject H_0 otherwise retain it

- \triangleright Given sample $x_1, ..., x_n$ of i.i.d. random variables X_i and absolute frequencies $h_1, ..., h_k$ of class $c_j, 1 \le j \le k$, we can test
	- $\triangleright H_0: X_i$ follow a proposed discrete distribution

 \triangleright Z_k = $\sum_{j=1}^k (h_j - E(h_j))^2$ $\frac{f(x,y)}{f(x)}$, with $E(h_j)$ being the expected frequency of class c_j according to the proposed distribution, is χ^2 -distributed with k-1 degrees of freedom

 \rightarrow Reject H_0 at test level α (e.g. 0.05) if $Z_k > \chi^2_{k-1,1-\alpha}$

Chi square distribution table

31

- \triangleright r = number of columns
- \triangleright m = number of rows
- \triangleright n_{ij} = Actual number in cell_{ij}
- \triangleright n_{ij}^* = Expected number in cell_{ij}
- \triangleright $(r 1)(m 1) =$ degrees of freedom

$$
n_{jk}^{*} = \frac{n_{j} \cdot n_{k}}{n}
$$

$$
\chi^{2} = \sum_{j=1}^{m} \sum_{k=1}^{r} \frac{(n_{jk} - n_{jk}^{*})^{2}}{n_{jk}^{*}}
$$

n.

 \rightarrow Reject H_0 at test level α (e.g. 0.05) if $\chi^2 > \chi^2_{(r-1)(m-1),1-\alpha}$

- \triangleright Formulate null hypothesis
- \triangleright Define corresponding random variable for the test
- Furn the variable into a $N(0,1)$ -distributed variable, or a t-statistics, or a χ^2 statistics, …
- \triangleright Test whether the new statistics lies in the critical region of the underlying distribution