
BASICS OF STATISTICS
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Outline

 Sampling

 Estimators, bias, consistency, and mean squared error

 Law of Large Numbers

 Central Limit Theorem

 Hypothesis testing
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What is statistics about?

 Statistics is concerned with data that are subject to random variations

 Collecting data through sampling, 

 Summarizing and analyzing data by estimating the parameters of the 
underlying distribution(s)  
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population

sample

𝑋: height of a person

1.75    1.92    1.69    1.80 ….

Estimate mean:  𝜇 ≈ 𝐸 𝑋
Estimate variance:  𝜎2 ≈ 𝑉𝑎𝑟 𝑋



Sampling
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Population

Only data that is easy to
accessible is sampled

Convenience 
sample

Systematic 
sample

Random 
sample

Ordered sampling:
randomly select first
element and then select
every 𝑘’th element

Stratified 
sample

Every element has 
equal probability of 
being selected

When there is variance
in subpopulations, it is better
to sample each population
Independently (sample size
should reflect the proportion 
of the subpopulation)

biased

biased

unbiased

unbiased

…



Estimators

 Definition: An estimator is a function that uses input from the sample 
space to estimate a parameter of the underlying data distribution

 Examples: Let 𝑥1, … , 𝑥𝑛 be the values of i.i.d. random variables 𝑋𝑖

 Empirical mean and the sample mean:  𝑋 =
1

𝑛
 𝑖=1
𝑛 𝑥𝑖

 Empirical variance: 𝑆𝑒𝑚
2 =

1

𝑛
 𝑖=1
𝑛 𝑥𝑖 −  𝑋 2

 Sample variance: 𝑆2 =
1

𝑛−1
 𝑖=1
𝑛 𝑥𝑖 −  𝑋 2
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Covariance estimators and correlation

 Let 𝑥1, 𝑦1 , … , 𝑥𝑛, 𝑦𝑛 be samples of i.i.d. random variables 𝑋𝑖 , 𝑌𝑖

 Empirical covariance:  𝐶𝑒𝑚 =
1

𝑛
 𝑖=1
𝑛 𝑥𝑖 −  𝑋 𝑦𝑖 −  𝑌

 Sample covariance:  𝐶 =
1

𝑛−1
 𝑖=1
𝑛 𝑥𝑖 −  𝑋 𝑦𝑖 −  𝑌

 Correlation: 𝑟 =
 𝐶

𝑆𝑋𝑆𝑌

For linear dependency between two variables, e.g., 𝑌 = 𝑎𝑋 + 𝑏:

𝑟 =  
1, 𝑎 > 0
−1, 𝑎 < 0
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Empirical distribution function and empirical median

 Let 𝑥1, … , 𝑥𝑛 be the values of i.i.d. random variables 𝑋𝑖

 Empirical distribution function:   𝐹𝑋𝑖:𝑛
𝑥 =

1

𝑛
 𝑖=1
𝑛 𝑥𝑖 ≤ 𝑥

where 𝑥𝑖 ≤ 𝑥 ≔  
1, 𝑥𝑖 ≤ 𝑥
0, 𝑥𝑖 > 𝑥

is called the indicator function

 Empirical median  𝑥𝑚𝑒𝑑 is defined as  𝐹𝑋𝑖:𝑛
 𝑥𝑚𝑒𝑑 =

1

2
, that is, for ordered 

𝑥𝑖1 ≤ ⋯ ≤ 𝑥𝑖𝑛:

 𝑥𝑚𝑒𝑑 =  

𝑥 𝑖(𝑛+1)/2
𝑓𝑜𝑟 𝑜𝑑𝑑 𝑛

𝑥𝑖𝑛/2+𝑥𝑖(𝑛+2)/2

2
𝑓𝑜𝑟 𝑒𝑣𝑒𝑛 𝑛
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Example

 What is the expected life time of a specific electronic device (in months)?

 Random variable 𝑋:= life time in # months

 Random sample: 

𝑥1 = 38, 𝑥2 = 33, 𝑥3 = 35, 𝑥4 = 32, 𝑥5 = 9, 𝑥6 = 36, 𝑥7 = 31,

𝑥8 = 37, 𝑥9 = 22, 𝑥10 = 40, 𝑥11 = 30

 Empirical mean:  𝑋 =
1

11
 𝑖=1
11 𝑥𝑖 ≈ 31.2

 Empirical median:  33

 Empirical variance:  𝑆𝑒𝑚
2 =

1

11
 𝑖=1
11 𝑥𝑖 −  𝑋 2 ≈ 70.69

 Sample variance:  𝑆2 =
1

10
 𝑖=1
11 𝑥𝑖 −  𝑋 2 ≈ 77.76
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Estimators

 How “good” is an estimator?

 How well does it approximate the true parameter on average?

 Can it yield the true parameter with more and more data?

 What is the variance of the estimator?

 Definition: An estimator  𝛾 is unbiased if its expected value 𝐸  𝛾 is equal to 
the true value of the parameter 𝛾 it estimates, i.e., 𝐸  𝛾 = 𝛾, otherwise  𝛾
is biased with squared bias 𝐸  𝛾 − 𝛾 2

 Definition: An estimator  𝛾 derived from 𝑛 values of i.i.d. random variables 𝑋𝑖 is 
consistent if lim

𝑛→∞
𝑃 | 𝛾 − 𝛾 > 𝜀 = 0 for all 𝜀>0
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Mean and variance estimators

 Let 𝑥1, … , 𝑥𝑛 be the values of i.i.d. random variables 𝑋𝑖

 Theorem 

 The empirical mean  𝑋 =
1

𝑛
 𝑖=1
𝑛 𝑥𝑖 is an unbiased consistent estimator of the 

true mean 𝐸 𝑋

 The empirical variance 𝑆𝑒𝑚
2 =

1

𝑛
 𝑖=1
𝑛 𝑥𝑖 −  𝑋 2 is a biased consistent estimator 

of the true variance 𝑉𝑎𝑟 𝑋 , it can be shown that 𝐸 𝑆𝑒𝑚
2 =

𝑛−1

𝑛
𝑉𝑎𝑟 𝑋

 The sample variance 𝑆2 =
1

𝑛−1
 𝑖=1
𝑛 𝑥𝑖 −  𝑋 2 is an unbiased consistent 

estimator of the true variance 𝑉𝑎𝑟 𝑋

 The sample covariance  𝐶 =
1

𝑛−1
 𝑖=1
𝑛 𝑥1 −  𝑋 𝑦𝑖 −  𝑌 is an unbiased 

consistent estimator of 𝐶𝑜𝑣 𝑋

 The empirical distribution function  𝐹𝑋𝑖:𝑛
𝑥 =

1

𝑛
 𝑖=1
𝑛 𝑥𝑖 ≤ 𝑥 is an unbiased 

consistent estimator of the true cumulative distribution 𝐹𝑋
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Law of Large Numbers

 Let 𝑥1, 𝑥2, … , 𝑥𝑛 be a random sample from a distr. 𝑓𝑋 𝑥 and   𝑋 =  𝑖
𝑋𝑖

𝑛

 Weak law of large numbers (weak consistency of the empirical mean)

 lim
𝑛→∞

𝑃 |  𝑋 − 𝐸 𝑋 > 𝜀 = 0 for all 𝜀>0

 Sample average converges in probability towards the mean of the distr. of 𝑋

 Strong law of large numbers (strong consistency of the empirical mean)

 𝑃( lim
𝑛→∞

|  𝑋 − 𝐸 𝑋 | > 𝜀) = 0 for all 𝜀>0

 Sample average converges almost surely towards the mean of the distr. of 𝑋
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Best estimators

 Definition: An unbiased estimator  𝛾 is the best estimator of the true 
parameter 𝛾 if it has lowest variance among all other unbiased estimators, 
i.e., for all unbiased estimators   𝛾′ of 𝛾: 𝑉𝑎𝑟  𝛾 ≤ 𝑉𝑎𝑟  𝛾′

 The mean squared error between an estimator  𝛾 and 𝛾 is:

𝑚𝑠𝑒  𝛾 − 𝛾 = 𝐸  𝛾 − 𝛾 2 = 𝑉𝑎𝑟  𝛾 + 𝐵𝑖𝑎𝑠  𝛾 2

Because:

𝑉𝑎𝑟  𝛾 = 𝑉𝑎𝑟  𝛾 − 𝛾 = 𝐸  𝛾 − 𝛾 2 − 𝐸2  𝛾 − 𝛾

𝐵𝑖𝑎𝑠  𝛾 = 𝐸  𝛾 − 𝛾 = 𝐸  𝛾 − 𝐸 𝛾 = 𝐸  𝛾 − 𝛾

 Notes 
 The sample mean is the best estimator of the true mean for many useful 

distributions

 The sample variance is the best estimator of the true variance for normally 
distributed data
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Usefulness of estimators

 How useful is an estimator for the understanding of the underlying 
distribution?

 It depends on the distribution!

 Example  

 Random variable 𝑋:= yearly income in $1000

 Random sample: 

𝑥1 = 58; 𝑥2 = 74; 𝑥3 = 69; 𝑥4 = 81; 𝑥5 = 64; 𝑥6 = 120; 𝑥7 = 55;

𝑥8 = 71; 𝑥9 = 77; 𝑥10 = 65; 𝑥11 = 23,000 ⇒  𝑋 ≈ 2,158

 Empirical median is more insightful in this case
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Other useful estimators

 Maximum Likelihood Estimator, i.e., 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑃 𝑥1, … , 𝑥𝑛|𝜃

 Consistent 

 Asymptotically normal 

 Asymptotically optimal, i.e., with smallest variance

 𝑀𝑖𝑛(𝑥1, … , 𝑥𝑛)

 𝑀𝑎𝑥(𝑥1, … , 𝑥𝑛)

 Empirical skewness

𝑆𝑘 =

1
𝑛
 𝑖=1
𝑛 𝑥𝑖 −  𝑋 3

1
𝑛
 𝑖=1
𝑛 𝑥𝑖 −  𝑋 2

3/2
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Recap of the normal distribution

 𝑋 is normally distributed ⟺ 𝑋~𝑁 𝜇, 𝜎2 ⟺ 𝑓𝑋 𝑥 =
1

2𝜋𝜎2
𝑒
−
(𝑥−𝜇)2

2𝜎2

𝜇:𝑚𝑒𝑎𝑛, 𝜎: 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

 Standard normal distribution: 𝑁 0,1

 Cumulative distribution of 𝑁 0,1 : Φ 𝑧 =  −∞
𝑧 1

2𝜋
𝑒
𝑥2

2 𝑑𝑥

 Theorem: If 𝑋~ 𝑁 𝜇, 𝜎2 then 𝑌 ≔
𝑋−𝜇

σ
~ 𝑁 0,1
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Central Limit Theorem

 Central Limit Theorem: Let 𝑋1, 𝑋2, … , 𝑋𝑛 be i.i.d. random variables from a 
distr. with mean 𝜇 and finite non-zero variance 𝜎2. The cdf of the random 
variable 𝑍:=  𝑖𝑋𝑖 converges to the cdf of the  normal distribution 
𝑁 𝑛𝜇, 𝑛𝜎2 . That is:

lim
𝑛→∞

𝑃(𝑎 ≤
𝑍−𝑛𝜇

𝑛𝜎
≤ 𝑏) = Φ 𝑏 − Φ(𝑎)

 Corollary: The cdf of 𝑍:=
1

𝑛
 𝑖 𝑋𝑖 converges to the cdf of 𝑁 𝜇,

𝜎2

𝑛
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Central Limit Theorem: Example

𝑓𝑋 𝑥 is uniform Avg. of 𝑋1, 𝑋2 sampled
repeatedly from 𝑓𝑋(𝑥)

Avg. of 𝑋1, 𝑋2, 𝑋3, 𝑋4

sampled repeatedly 
from 𝑓𝑋(𝑥)
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Galton Machine
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Empirical evidence for the Central Limit Theorem (by considering sequences
of i.i.d. Bernoulli variables) and for the Law of Large Numbers (by considering
random samples from a Binomial distribution)



Hypothesis testing

 Example hypotheses:

 Sample originates from normal distribution

 Two random variables are independent

 Sample is Bernoulli distributed with p=0.5

 Goal: Falsification of hypothesis by lack of statistical evidence

 Hypothesis to be falsified: 𝐻0 (null hypothesis)

 Counter hypothesis: 𝐻1

 Test region 𝑅 from cdf of test variable 𝑋

 𝑋 ∈ 𝑅 ⇒ reject 𝐻0

 𝑋 ∉ 𝑅 ⇒ retain 𝐻0 Retain 𝐻0 Reject 𝐻0

𝐻0 true 𝑜𝑘 Type I error

𝐻1 true Type II error 𝑜𝑘
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Hypothesis testing: Example

Assume average IQ 
of students is 100
𝐻0: 𝜇 = 100

𝐼𝑄1 𝐼𝑄2 𝐼𝑄3 𝐼𝑄4 𝐼𝑄5 𝐼𝑄6 𝐼𝑄7 𝐼𝑄8

Run IQ test 
on sample

𝐼𝑄 = 115
Is this likely given 𝜇 = 100?
If yes retain 𝐻0 else reject 
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Confidence interval and confidence level

 How well is a parameter estimated

 Consider estimator  𝜃 for parameter 𝜃

 How well does  𝜃 represent 𝜃?

𝑃  𝜃 − 𝑐 ≤ 𝜃 ≤  𝜃 + 𝑐 = 1 − 𝛼

 Definitions

 The interval [  𝜃 − 𝑐,  𝜃 + 𝑐] is the confidence interval

 The value 1 − 𝛼 is the confidence level

 𝛼 is the significance level (typically: 0.01, 0.05, 0.1) 

21
confidence interval

 𝜃 here: reject  𝜃 here: retain

Critical region



One sided and two-sided tests

 A test of the form   𝐻0: 𝜃 = 𝜃0 𝑣𝑠. 𝐻1: 𝜃 ≠ 𝜃0 is called a two-sided test

 A test of either of these forms 

 𝐻0: 𝜃 ≤ 𝜃0 𝑣𝑠. 𝐻1: 𝜃 > 𝜃0

 𝐻0: 𝜃 ≥ 𝜃0 𝑣𝑠. 𝐻1: 𝜃 < 𝜃0

is called a one-sided test

22



Unknown mean and known variance

 Consider i.i.d. random variables 𝑋1, … , 𝑋𝑛, 𝑛 ≫ 1, from a distribution with 
unknown, non-zero mean 𝜇 and known finite variance 𝜎2.

 We know  𝑋 =
1

𝑛
 𝑖 𝑋𝑖 is approximately normally distributed with 𝑁(𝜇,

𝜎

𝑛

2
)

 We also know that 𝑌 =
(  𝑋−𝜇) 𝑛

𝜎
~𝑁(0,1)

𝑃 −𝑧 ≤
(  𝑋 − 𝜇) 𝑛

𝜎
≤ 𝑧 = Φ 𝑧 − Φ −𝑧 = 𝑃  𝑋 −

𝑧𝜎

𝑛
≤ 𝜇 ≤  𝑋 +

𝑧𝜎

𝑛

⇒ For confidence interval [  𝑋 − 𝑐,  𝑋 + 𝑐] set 𝑧 ≔
𝑐 𝑛

𝜎
and look up Φ 𝑧

⇒ For confidence level 1 − 𝛼, and a proposed value for 𝜇, reject null hypothesis if

𝑌 > Φ−1 1 − 𝛼/2

 Definition: The p-value is minimal significance level at which 𝐻0 can be rejected
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Z-score table
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Wald Test

 For a parameter  𝜃 derived from a sample and a proposed parameter 𝜃, we 
can test

𝐻0:  𝜃 = 𝜃 vs. 𝐻1:  𝜃 ≠ 𝜃

 𝑠 = 𝑉𝑎𝑟  𝜃 is called the standard error and 𝑉𝑎𝑟  𝜃 is the sample variance

 Test variable 𝑊 ≔
 𝜃−𝜃

𝑠
is approximately 𝑁 0,1 -distributed (i.e., distribution 

of 𝑊 converges to 𝑁 0,1 for growing sample size) 

 Reject 𝐻0 at level α when |𝑊| > Φ−1 1 − 𝛼/2

 Example 

  𝜃: Average increase of height of men compared to height of women 

 Proposed parameter 𝜃 = 0
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Wald test: Example

 What is the expected life time of a specific electronic device (in months)?
 Random variable 𝑋:= life time in # months
 Random sample: 

𝑥1 = 38, 𝑥2 = 33, 𝑥3 = 35, 𝑥4 = 32, 𝑥5 = 9, 𝑥6 = 36, 𝑥7 = 31,
𝑥8 = 37, 𝑥9 = 22, 𝑥10 = 40, 𝑥11 = 30

 Empirical mean:  𝑋 =
1

11
 𝑖=1
11 𝑥𝑖 ≈ 31.2

 Sample variance:  𝑆2 =
1

10
 𝑖=1
11 𝑥𝑖 −  𝑋 2 ≈ 77.76

 Hypothesis I: Devices have a life time of around 2 years

𝑊 ≔
 𝜃−𝜃

𝑉𝑎𝑟  𝜃

≈ 0,82 < 1.96 (for significance level 0.05)

 Hypothesis II: Devices have a life time of around 1 year

𝑊 ≔
 𝜃−𝜃

𝑉𝑎𝑟  𝜃

≈ 2,177 > 1.96 (for significance level 0.05)
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Example: Probability of heads

 𝐻0: coin has head probability 𝑝 = 𝑝0
 𝑋: test variable representing #heads in 𝑛 tosses

 We know that approximately 𝑋~𝑁(𝑝𝑛, 𝑝 1 − 𝑝 𝑛)

 𝑌 ≔
(𝑋−𝑝𝑛)

𝑝 1−𝑝 𝑛
~𝑁 0,1 ⇒ reject 𝐻0 at level 𝛼 (= 0.05) if 

𝑌 > Φ−1 1 − 𝛼/2 or 𝑌 < Φ−1 𝛼/2 ⟺ 𝑌 > Φ−1 1 − 𝛼/2

27



t-Test for unknown mean and unknown variance

 Consider i.i.d. random variables 𝑋1, … , 𝑋𝑛, 𝑛 ≫ 1, from a distribution with 
unknown, non-zero mean 𝜇 and unknown variance

 Let 𝑠2 be the sample variance. 𝑌:=
(  𝑋−𝜇) 𝑛

𝑠
has a Student’s t distribution 

with 𝑛 − 1 degrees of freedom

 With analogous derivation as before: 

𝑃  𝑋 −
𝑡𝑛−1,1−𝛼/2𝑠

𝑛
≤ 𝜇 ≤  𝑋 +

𝑡𝑛−1,1−𝛼/2𝑠

𝑛
= 1 − 𝛼

⇒ For proposed 𝜇 and significance level 𝛼, reject null hypothesis if 𝑌 > 𝑡𝑛−1,1−𝛼/2

28

𝒏 = 𝟏

𝒏 = 𝟓

𝒏 = 𝟑𝟎



t-Test in practice

 Compare two prediction algorithms A and A’ based on performance on 𝑘
labeled datasets

 Let 𝑒1, … , 𝑒𝑘 and 𝑒1′, … , 𝑒𝑘′ be the error values (or any performance 
values), respectively

 Are the error means any different?

 Fact:  𝑒 and  𝑒′ are approximately normally distributed, but we neither 
know the means nor the variances

 Since 𝜎𝑒 and 𝜎𝑒′ are unknown, we need to use t-distribution with k-1 
degrees of freedom to estimate how close 𝜇𝑒 and 𝜇𝑒′ are (𝐻0: 𝜇𝑒 = 𝜇𝑒′) 

  𝑑 =  𝑒 −  𝑒′ is also t-distributed, with k-1 degrees of freedom

⇒ 𝐻0:  𝑑 = 0 and  𝑌 ≔
(  𝑑−0) 𝑘

𝑠𝑑
is the t-statistics

 Use t-distribution table to determine the 𝑡𝑘−1,1−𝛼/2 score 

 If  𝑡𝑘−1,1−𝛼/2 < 𝑌 reject 𝐻0 otherwise retain it
29



Chi-Square Goodness-of-Fit-Test

 Given sample 𝑥1, … , 𝑥𝑛 of i.i.d. random variables 𝑋𝑖 and absolute 
frequencies ℎ1, … , ℎ𝑘 of class 𝑐𝑗 , 1 ≤ 𝑗 ≤ 𝑘, we can test 

 𝐻0: 𝑋𝑖 follow a proposed discrete distribution

 𝑍𝑘 ≔
 𝑗=1
𝑘 ℎ𝑗−𝐸 ℎ𝑗

2

𝐸 ℎ𝑗
, with 𝐸 ℎ𝑗 being the expected frequency of class 𝑐𝑗

according to the proposed distribution, is  𝜒2-distributed with k-1 degrees of 
freedom

 Reject 𝐻0 at test level α (e.g. 0.05) if 𝑍𝑘 > 𝜒𝑘−1,1−𝛼
2

𝜒2distributon 𝒌 = 𝟓

𝒌 = 𝟖

𝒌 = 𝟏𝟓

𝒌 = 𝟐𝟎

𝒌 = 𝟐𝟗

30



Chi square distribution table
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Chi-Square independence test 

 𝑟 = number of columns

 𝑚 = number of rows

 𝑛𝑖𝑗 = Actual number in cellij
 𝑛𝑖𝑗

∗ =  Expected number in cellij

 (𝑟 − 1)(𝑚 − 1) = degrees of freedom

Feature 𝑋

Feature 𝑌 Sum

Sum

 Reject 𝐻0 at test level α (e.g. 0.05)

if 𝜒2 > 𝜒 𝑟−1 𝑚−1 ,1−𝛼
2
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General recipe for hypothesis testing

 Formulate null hypothesis

 Define corresponding random variable for the test

 Turn the variable into a 𝑁 0,1 -distributed variable, or a t-statistics, or a 𝜒2-
statistics, …

 Test whether the new statistics lies in the critical region of the underlying 
distribution
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