
BASICS OF INFORMATION THEORY
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Outline

 Information content

 Entropy, mutual information, relative entropy

 Compression, Shannon’s Noiseless Coding Theorem

 Minimum description length

 Noisy channels, Noisy-Channel Coding Theorem 

 Modeling information content in natural language
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Information theory: Overview

 Main assumptions

 Communication happens over a channel

 Information is measurable and always ≥ 0,  and is never lost

 The bit is the most fundamental unit of information

 Coding theory is a direct application area of information theory

 Data compression (Source Coding) 

 Error correcting codes (Channel Coding)
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Claude Shannon 
(1916 – 2001)

 Landmark publication in 1948: “A Mathematical Theory of 
Communication”

 Fundamental problem: Exact or approximate reproduction 
of a received message 



Information content

 Formalization of information content

 1. Intuition: The more surprising a piece of information (i.e. event), the higher 
its information content

ℎ 𝑥 ↑ ⟺ 𝑃(𝑥) ↓

 2. Intuition: The content of two independent events 𝑥 and event 𝑦 should 
simply add up (additivity)

ℎ 𝑥 ∩ 𝑦 = ℎ 𝑥 + ℎ(𝑦)

Define ℎ 𝑥 ≔ − log2 𝑃(𝑥)
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Entropy

 Let 𝑋 be a discrete random variable

 Definition: The entropy of 𝑋 is defined as

𝐻 𝑋 = − 𝑥∈𝑑𝑜𝑚(𝑋)𝑃 𝑥 log𝑃(𝑥)

 Example 

 Let 𝑋 be a random variable with 8 equally possible states

 What is the average number of bits needed to encode a state of 𝑋?

𝐻 𝑋 = − 𝑥∈𝑑𝑜𝑚(𝑋)𝑃 𝑥 log𝑃(𝑥)

= −8
1

8
log

1

8
= 3
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Entropy function for a binary random variable 𝑋
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Properties of entropy 

 log 𝑛 ≥ 𝐻 𝑋 ≥ 0, where 𝑛 = |𝑑𝑜𝑚 𝑋 |

 For discrete random variable 𝑋 the entropy 𝐻 𝑋 is maximized for  

𝑓𝑋 𝑥 =
1

|𝑑𝑜𝑚 𝑋 |

 For continuous random variable 𝑋,𝐻 𝑋 is maximized for                   
𝑓𝑋 𝑥 = 𝑁 𝐸 𝑋 , 𝑉𝑎𝑟 𝑋

 𝐻 𝑌 𝑋 = − 𝑋  𝑌 𝑃(𝑋, 𝑌) log𝑃 𝑌|𝑋 (conditional entropy, i.e., the 
average additional information to encode 𝑌 when 𝑋 is known)

 𝐻 𝑋, 𝑌 = 𝐻 𝑌 𝑋 + 𝐻[𝑋] (joint entropy of 𝑋 and 𝑌) 

 𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻[𝑌] for independent random variables 𝑋, 𝑌
(additivity)
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Lossless compression: Huffman compression

 Let 𝑋 be a random variable with 8 possible states 
{𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7, 𝑥8}

with occurrence probabilities

(
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In any case: 3 bits would be sufficient to encode any of the 8 states. 

Can we do better?
𝑒𝑛𝑐𝑜𝑑𝑖𝑛𝑔: 0,10,110,1110,111100,111101,111110,111111

𝑥8𝑥7𝑥6𝑥5

𝑥4
𝑥3

𝑥2𝑥1
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8
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4
1

4
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21

2
Bottom-up
tree construction
by combining
lowest-frequency 
subtrees
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Prefix property: no codeword is 
prefix of another codeword!



Noiseless Coding Theorem

 Let 𝑋 be a random variable with 𝑛 possible states.

 Theorem: For any noiseless encoding of the states of 𝑋, 𝐻(𝑋) is a lower 
bound on the average code length of a state of 𝑋. 

 Corollary: The Huffman compression achieves the above lower bound and 
is thus optimal for noiseless compression

(Note that there are more sophisticated algorithms that encode several states 
at the same time, e.g. Lempel-Ziv-Welch algorithm. With appropriately 
generalized notions of variables and states, Shannon’s theorem still holds.) 
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Example: Ziv-Lempel compression (e.g., LZ77)

 Use lookahead window and backward window to scan text 

 Identify in lookahead window the longest string that occurs in backward 
window and replace the string by a pointer to its previous occurrence

 Text is encoded in triples 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠, 𝑙𝑒𝑛𝑔𝑡ℎ, 𝑛𝑒𝑤

𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠: distance to previous occurrence

𝑙𝑒𝑛𝑔𝑡ℎ: length of the string

𝑛𝑒𝑤: symbol following the string

More advanced variants use adaptive dictionaries with statistical occurrence 
analysis!
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Example: Ziv-Lempel compression (e.g., LZ77)

Text: 𝐴 𝐴 𝐵 𝐴 𝐵 𝐵 𝐵 𝐴 𝐵 𝐴 𝐴 𝐵 𝐴 𝐵 𝐵 𝐵 𝐴 𝐵 𝐵 𝐴 𝐵 𝐵
Code: ∅, 0, 𝐴 −1,1, 𝐵 −2,2, 𝐵 −4, 3, 𝐴 (−9, 8, 𝐵)(−3,3, ∅)

 Note that LZ77 and other sophisticated lossless compression algorithms 
(e.g. LZ78, Lempel-Ziv-Welch,…) encode several states at the same time. 

 With appropriately generalized notions of variables and states, Shannon’s 
noiseless coding theorem still holds!
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Minimum description length (MDL)

 Given a model 𝑀,

 𝑙(𝑀): Number of bits needed to encode 𝑀, 

 𝑙(𝐷|𝑀): Number of bits needed to encode sample data 𝐷 based on 𝑀
(typically a function capturing information loss, e.g. − log𝑃 𝐷 𝑀 , for the 
data)

 MDL principle: Choose the model for 𝐷 is one that minimizes 𝑙 𝑀 + 𝑙(𝐷|𝑀)

 MDL from a probability perspective: Let 𝑃(𝑀|𝐷) be the posterior probability 
of model 𝑀 given 𝐷.

argmax
𝑀

𝑃 𝑀 𝐷 = argmax
𝑀

𝑃 𝐷 𝑀 𝑃 𝑀

𝑃 𝐷

= argmin
𝑀

− log𝑃 𝐷 𝑀 − log𝑃 𝑀 + log𝑃(𝐷)

 Occam’s razor (by William of Ockham, 1285 – 1349)

Given multiple hypotheses that explain the same data (other things being equal), 
choose the most plausible one (≈ the simplest hypothesis).
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Inductive inference and Kolmogorov Complexity

 Goal of inductive inference 

 Accurate predictions based on previous observations

 Simple examples

 What is the continuation of  010011000111 … ?

 What is the continuation of 2, 4, 6, 8, … ? 

 For the last example sequence, 2𝑘 and 2𝑘4 − 20𝑘3 + 70𝑘2 − 98𝑘 + 48
are both valid generating functions with different continuations

 The Kolmogorov Complexity (aka: algorithmic entropy) of a sequence 𝒙

 The size of the smallest program 𝒎 that generates 𝒙 as output (i.e., the 
amount of information contained in 𝒎)

 Is equivalent to the Minimum Description Length of 𝒙
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Noisy channels
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Encoder Decoder

Noisy channel

Sender Receiver

𝒔  𝒔

𝒕 𝒓

 Encoder introduces systematic redundancy to 𝒔, resulting in vector 𝒕

 𝒓 is a noisy version of 𝒕

 Decoder uses knowledge about systematic redundancy to reconstruct 𝒔 as 
well as possible

 Main question: How to achieve perfect communication over an imperfect, 
noisy channel?



Example: Repetition Codes

 Simple probabilistic approach

 Suppose that 𝑃 0 = 𝑃 1 = 0.5 and that the probability of bit conversion 
due to noise (i.e., from 0 to 1 or vice versa) is 𝑞

 Compute for each 𝒓𝑖 the 𝑠𝑖 that maximizes the likelihood ratio

𝑃 𝒓𝑖 | 𝑠𝑖

𝑃 𝒓𝑖 |  𝑠𝑖
=  1≤𝑗≤3

𝑃 𝑟𝑖𝑗 | 𝑡𝑖𝑗

𝑃 𝑟𝑖𝑗 | 𝑡𝑖𝑗
, where 

𝑃 𝑟𝑖𝑗 | 𝑡𝑖𝑗

𝑃 𝑟𝑖𝑗 | 𝑡𝑖𝑗
=  

1−𝑞

𝑞
, 𝑟𝑖𝑗 = 𝑡𝑖𝑗

𝑞

1−𝑞
, 𝑟𝑖𝑗 ≠ 𝑡𝑖𝑗
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Example from D. J. McKay: Information Theory, Inference and Learning Algorithms



Channel capacity

 𝑋 and 𝑌 are discrete random variables

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 = 𝑃 𝑌 = 𝑦|𝑋 = 𝑥 𝑃(𝑋 = 𝑥)

 Definition: The channel capacity is given by 

𝐶 = max
𝑃(𝑋)

 
𝑥
 

𝑦
𝑃 𝑋 = 𝑥, 𝑌 = 𝑦 log

𝑃 𝑋 = 𝑥, 𝑌 = 𝑦

𝑃 𝑋 = 𝑥 𝑃 𝑌 = 𝑦

 The mutual information measures the information that 𝑋 and 𝑌 share in         

bits
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Noisy channelSender Receiver
𝑋 𝑌

Inherent fixed property of 
the communication channel

Mutual information between 𝑋 and 𝑌



Source information rate

 Definition: The source information rate (or average block entropy) is the 
average number of channel symbols (i.e., bits) used to represent a source 
symbol in any block of source symbols

𝑅 = lim
𝑛→∞

1

𝑛
𝐻 𝑋𝑛, 𝑋𝑛−1, … , 𝑋1

 A source is called memory-less iff

𝑅 = lim
𝑛→∞

1

𝑛
𝐻 𝑋𝑛, 𝑋𝑛−1, … , 𝑋1 = lim

𝑛→∞

1

𝑛
 

1≤𝑖≤𝑛
𝐻 𝑋𝑖 =

𝑛

𝑛
𝐻 𝑋 = 𝐻 𝑋
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Noisy-Channel Coding Theorem (simplified) 
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Encoder Decoder

Noisy channel

Sender Receiver

𝐻: Entropy of the source

𝑅: Source information rate

𝐶: Channel capacity

 Theorem: Error-free transmission is possible if 𝐻 ≤ 𝑅 ≤ 𝐶.



Other important concepts of information theory (1)

 Relative entropy (Kullback-Leibler Divergence) 

Let 𝑓 and 𝑔 be two probability density functions over random variable 𝑋.

Assuming  that 𝑔 is an approximation of 𝑓, the additional average number    

of bits to encode a state of 𝑋 through 𝑔 is given by

𝐾𝐿 𝑓 ∥ 𝑔 =  
𝑥

𝑓 𝑥 log
𝑓(𝑥)

𝑔(𝑥)
𝑑𝑥

 Properties of relative entropy

 𝐾𝐿 𝑓 ∥ 𝑔 ≥ 0 (Gibbs’ inequality)

 𝐾𝐿 𝑓 ∥ 𝑔 ≠ 𝐾𝐿 𝑔 ∥ 𝑓 (asymmetric)

 Jensen-Shannon Divergence (symmetric measure based on KL divergence):

𝐽𝑆 𝑓, 𝑔 = 𝛼 𝐾𝐿 𝑓 ∥ 𝑔 + 𝛽 𝐾𝐿 𝑔 ∥ 𝑓 with 𝛼 + 𝛽 = 1
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 Mutual information for continuous variables

Let 𝑋 and 𝑌 be two random variables with a joint distribution 

function 𝑃. The degree of their independence is given by

𝐼 𝑋, 𝑌 = 𝐾𝐿 𝑃 𝑋, 𝑌 ∥ 𝑃 𝑋 𝑃 𝑌 =  𝑝 𝑋, 𝑌 log
𝑃(𝑋, 𝑌)

𝑃 𝑋 𝑃(𝑌)
𝑑𝑋 𝑑𝑌

 Properties of mutual information

 𝐼 𝑋, 𝑌 ≥ 0

 𝐼 𝑋, 𝑌 = 0 if and only if 𝑋 and 𝑌 are independent

 𝐼 𝑋, 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋 = 𝐻 𝑋 + 𝐻 𝑌 − 𝐻[𝑋, 𝑌]

(i.e., the entropy reduction of 𝑋 by being told the value of 𝑌)
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Other important concepts of information theory (2)



Modeling natural language

21

Term distribution

Expected information content

Terms in text ordered by frequencies

Te
rm

 f
re

q
u

e
n

ci
es

Most representative terms

Is there a weighting scheme that gives higher weights to representative terms?



Zipf’s law

 Linguistic observation in large text corpora

 Few terms occur very frequently

 Many terms occur infrequently
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Source: http://www.ucl.ac.uk/~ucbplrd/language_page.htm

Frequency of term 𝑡 is inversely
proportional to its rank

𝑓 𝑡 = 𝐶
1

𝑟(𝑡)

𝐶: frequency of the most frequent term
𝑟(𝑡): rank of term 𝑡

http://www.ucl.ac.uk/~ucbplrd/language_page.htm


Heap’s law

 Empirical law describing the portion of vocabulary captured by a 
document 
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Document size 𝑛

Si
ze

 o
f

vo
ca

b
u

la
ry

V
(𝑛

)

𝑉 𝑛 = 𝐾𝑛𝛽

For parameters
𝐾 (typically 10 ≤ 𝐾 ≤ 100)
and 𝛽 (typically 0.4 ≤ 𝛽 ≤ 0.6)

Vocabulary of a text grows sublinearly with its size!

See also: Modern Information Retrieval, 6.5.2 

http://www.amazon.com/Modern-Information-Retrieval-Ricardo-Baeza-Yates/dp/020139829X


Zipf’s law & Heaps’ law
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Source: Modern Information Retrieval

 Two sides of the same coin …

 Both laws suggest opportunities for compression 

http://www.amazon.com/Modern-Information-Retrieval-Ricardo-Baeza-Yates/dp/020139829X


Tf-idf weighting scheme (1)

 Which are the terms that best represent a document?

 Is there a weighting scheme that gives higher weights to representative 
terms?
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Tf-idf weighting scheme (2)

 Given a document, by which terms is it best represented?

 Is there a weighting scheme that gives higher weights to representative 
terms?

 Consider corpus with documents 𝐷 = 𝑑1, … , 𝑑𝑛 with terms from a 
vocabulary 𝑉 = 𝑡1, … , 𝑡𝑚 .

 The term frequency of term 𝑡𝑖 in document 𝑑𝑗 is measured by

𝑡𝑓 𝑡𝑖 , 𝑑𝑗 =
𝑓𝑟𝑒𝑞 𝑡𝑖,𝑑𝑗

𝑚𝑎𝑥𝑘 𝑓𝑟𝑒𝑞 𝑡𝑘,𝑑𝑗

 The inverse document frequency for a term 𝑡𝑖 is measured by

𝑖𝑑𝑓 𝑡𝑖 , 𝐷 = log
𝐷

𝑑∈𝐷; 𝑡𝑖 𝑜𝑐𝑐𝑢𝑟𝑠 𝑖𝑛 𝑑
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Normalisation makes estimation 
independent of document length.

Downweights terms that ocurr 
in many documents (i.e., stop words:
the, to, from, if, … ).

 Central weighting scheme for 
scoring and ranking



Tf, idf, and tf-idf
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Tf, idf, and tf-idf weights (plotted in log-scale) computed on a collection from
Wall Street Journal (~99,000 articles published between 1987 and 1989) 

Source: Modern Information Retrieval

http://www.amazon.com/Modern-Information-Retrieval-Ricardo-Baeza-Yates/dp/020139829X


Some more thoughts on information content

 We used a syntactic definition of information content 

 But information content is not just a syntactic concept

 We also used a closed world assumption where the semantic context of 
sender and receiver was assumed to be the same and could thus be 
factored out 

 What is the relation between semantics, information content, and 
communication context?
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