

BASICS OF INFORMATION THEORY

\triangleright Information content

- \triangleright Entropy, mutual information, relative entropy
- Compression, Shannon's Noiseless Coding Theorem
- \triangleright Minimum description length
- \triangleright Noisy channels, Noisy-Channel Coding Theorem
- \triangleright Modeling information content in natural language

Information theory: Overview

Claude Shannon $(1916 - 2001)$

- \triangleright Landmark publication in 1948: "A Mathematical Theory of Communication"
- \triangleright Fundamental problem: Exact or approximate reproduction of a received message

\triangleright Main assumptions

- \triangleright Communication happens over a channel
- \triangleright Information is measurable and always ≥ 0 , and is never lost
- \triangleright The bit is the most fundamental unit of information
- Coding theory is a direct application area of information theory
	- Data compression (Source Coding)
	- \triangleright Error correcting codes (Channel Coding)

\triangleright Formalization of information content

 \triangleright 1. Intuition: The more surprising a piece of information (i.e. event), the higher its information content

$$
h(x)\uparrow \Leftrightarrow P(x)\downarrow
$$

 \geq 2. Intuition: The content of two independent events x and event y should simply add up (additivity)

 $h(x \cap y) = h(x) + h(y)$

Define $h(x) \coloneqq -\log_2 P(x)$

- \triangleright Let X be a discrete random variable
- \triangleright Definition: The entropy of X is defined as

$$
H(X) = -\sum_{x \in dom(X)} P(x) \log P(x)
$$

\triangleright Example

- \triangleright Let *X* be a random variable with 8 equally possible states
- \triangleright What is the average number of bits needed to encode a state of X?

$$
H(X) = -\sum_{x \in dom(X)} P(x) \log P(x)
$$

= -8\frac{1}{8} \log \frac{1}{8} = 3

- \triangleright $\log n \geq H[X] \geq 0$, where $n = |dom(X)|$
- For discrete random variable X the entropy $H[X]$ is maximized for $f_X(x) = \frac{1}{\log(x)}$ $| dom(X)|$
- For continuous random variable X, $H[X]$ is maximized for $f_X(x) = N(E(X), Var(X))$
- \triangleright $H[Y|X] = -\sum_{X}\sum_{Y} P(X, Y) \log P(Y|X)$ (conditional entropy, i.e., the average additional information to encode Y when X is known)
- \triangleright $H[X, Y] = H[Y|X] + H[X]$ (joint entropy of X and Y)
- \triangleright $H[X, Y] = H[X] + H[Y]$ for independent random variables X, Y (additivity)

 \triangleright Let X be a random variable with 8 possible states ${x_1, x_2, x_3, x_4, x_5, x_6, x_7, x_8}$

with occurrence probabilities

$$
(\frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64}, \frac{1}{64})
$$

In any case: 3 bits would be sufficient to encode any of the 8 states.

Can we do better?

: 0,10,110,1110,111100,111101,111110,111111

- \triangleright Let X be a random variable with *n* possible states.
- \triangleright Theorem: For any noiseless encoding of the states of X, $H(X)$ is a lower bound on the average code length of a state of X .
- \triangleright Corollary: The Huffman compression achieves the above lower bound and is thus optimal for noiseless compression

(Note that there are more sophisticated algorithms that encode several states at the same time, e.g. Lempel-Ziv-Welch algorithm. With appropriately generalized notions of variables and states, Shannon's theorem still holds.)

\triangleright Use lookahead window and backward window to scan text

- \triangleright Identify in lookahead window the longest string that occurs in backward window and replace the string by a pointer to its previous occurrence
- \triangleright Text is encoded in triples (*previous*, *length*, *new*) previous: distance to previous occurrence $length:$ length of the string new: symbol following the string

More advanced variants use adaptive dictionaries with statistical occurrence analysis!

Text: A A B A B B B B A B A A B A B B B B A B B B A B B Code: $(\emptyset, 0, A) (-1, 1, B) (-2, 2, B) (-4, 3, A) (-9, 8, B) (-3, 3, \emptyset)$

- \triangleright Note that LZ77 and other sophisticated lossless compression algorithms (e.g. LZ78, Lempel-Ziv-Welch,…) encode several states at the same time.
- \triangleright With appropriately generalized notions of variables and states, Shannon's noiseless coding theorem still holds!

- \triangleright Given a model M,
- \triangleright $l(M)$: Number of bits needed to encode M,
- \triangleright $l(D|M)$: Number of bits needed to encode sample data D based on M (typically a function capturing information loss, e.g. $-\log P(D|M)$, for the data)
- **MDL principle:** Choose the model for D is one that minimizes $l(M) + l(D|M)$
- \triangleright MDL from a probability perspective: Let $P(M|D)$ be the posterior probability of model M given D . $\lambda = \lambda = 1 - 2\lambda = \lambda = 2\lambda$

$$
\underset{M}{\operatorname{argmax}} P(M|D) = \underset{M}{\operatorname{argmax}} \left(\frac{P(D|M)P(M)}{P(D)} \right)
$$

=
$$
\underset{M}{\operatorname{argmin}} (-\log P(D|M) - \log P(M) + \log P(D))
$$

 \triangleright Occam's razor (by William of Ockham, 1285 – 1349)

Given multiple hypotheses that explain the same data (other things being equal), choose the most plausible one (\approx the simplest hypothesis).

\triangleright Goal of inductive inference

 \triangleright Accurate predictions based on previous observations

\triangleright Simple examples

- \triangleright What is the continuation of 010011000111 ...?
- \triangleright What is the continuation of 2, 4, 6, 8, ...?
- > For the last example sequence, 2k and $2k^4 20k^3 + 70k^2 98k + 48$ are both valid generating functions with different continuations

 \triangleright The Kolmogorov Complexity (aka: algorithmic entropy) of a sequence x

- \triangleright The size of the smallest program **m** that generates **x** as output (i.e., the amount of information contained in m)
- \triangleright Is equivalent to the Minimum Description Length of x

- \triangleright Encoder introduces systematic redundancy to s, resulting in vector t
- \triangleright r is a noisy version of t
- \triangleright Decoder uses knowledge about systematic redundancy to reconstruct s as well as possible
- \triangleright Main question: How to achieve perfect communication over an imperfect, noisy channel?

Example: Repetition Codes

Example from D. J. McKay: Information Theory, Inference and Learning Algorithms

\triangleright Simple probabilistic approach

- \triangleright Suppose that $P(0) = P(1) = 0.5$ and that the probability of bit conversion due to noise (i.e., from 0 to 1 or vice versa) is q
- \triangleright Compute for each r_i the s_i that maximizes the likelihood ratio

$$
\frac{P(r_i \mid s_i)}{P(r_i \mid \bar{s}_i)} = \prod_{1 \le j \le 3} \frac{P(r_{ij} \mid t_{ij})}{P(r_{ij} \mid \bar{t}_{ij})}, \text{ where } \frac{P(r_{ij} \mid t_{ij})}{P(r_{ij} \mid \bar{t}_{ij})} = \begin{cases} \frac{1-q}{q}, r_{ij} = t_{ij} \\ \frac{q}{1-q}, r_{ij} \ne t_{ij} \end{cases}
$$

Channel capacity

the communication channel

 \triangleright Definition: The channel capacity is given by

$$
C = \max_{P(X)} \sum_{x} \sum_{y} P(X = x, Y = y) \log \left(\frac{P(X = x, Y = y)}{P(X = x)P(Y = y)} \right)
$$

Mutual information between *X* and *Y*

 \triangleright The mutual information measures the information that X and Y share in bits

 \triangleright Definition: The source information rate (or average block entropy) is the average number of channel symbols (i.e., bits) used to represent a source symbol in any block of source symbols

$$
R = \lim_{n \to \infty} \frac{1}{n} H(X_n, X_{n-1}, \dots, X_1)
$$

 \triangleright A source is called memory-less iff

$$
R = \lim_{n \to \infty} \frac{1}{n} H(X_n, X_{n-1}, \dots, X_1) = \lim_{n \to \infty} \frac{1}{n} \sum_{1 \le i \le n} H(X_i) = \frac{n}{n} H(X) = H(X)
$$

Noisy-Channel Coding Theorem (simplified)

\triangleright Theorem: Error-free transmission is possible if $H \leq R \leq C$.

\triangleright Relative entropy (Kullback-Leibler Divergence)

Let f and g be two probability density functions over random variable X. Assuming that q is an approximation of f , the additional average number of bits to encode a state of X through q is given by

$$
KL(f \parallel g) = \int_{x} f(x) \log \frac{f(x)}{g(x)} dx
$$

- \triangleright Properties of relative entropy
	- $≥ KL(f || g) ≥ 0$ (Gibbs' inequality)
	- \triangleright KL(f \parallel g) \neq KL(g \parallel f) (asymmetric)
- Jensen-Shannon Divergence (symmetric measure based on KL divergence): $JS(f,g) = \alpha KL(f \parallel g) + \beta KL(g \parallel f)$ with $\alpha + \beta = 1$

Mutual information for continuous variables

Let X and Y be two random variables with a joint distribution function P . The degree of their independence is given by $I[X, Y] = KL(P(X, Y) \parallel P(X)P(Y)) = || p(X, Y) \log Y$ $P(X, Y)$ $P(X)P(Y)$ $dX dY$

Properties of mutual information

- $\triangleright I[X, Y] \geq 0$
- $\triangleright I[X, Y] = 0$ if and only if X and Y are independent
- $\geq I[X, Y] = H[X] H[X|Y] = H[Y] H[Y|X] = H[X] + H[Y] H[X, Y]$ (i.e., the entropy reduction of X by being told the value of Y)

Modeling natural language

Is there a weighting scheme that gives higher weights to representative terms?

Linguistic observation in large text corpora

- Few terms occur *very frequently*
- Many terms occur *infrequently*

\triangleright Empirical law describing the portion of vocabulary captured by a document

See also: **[Modern Information Retrieval](http://www.amazon.com/Modern-Information-Retrieval-Ricardo-Baeza-Yates/dp/020139829X)**, 6.5.2

Zipf's law & Heaps' law

- \triangleright Two sides of the same coin ...
- \triangleright Both laws suggest opportunities for compression

- \triangleright Which are the terms that best represent a document?
- \triangleright Is there a weighting scheme that gives higher weights to representative terms?

\triangleright Given a document, by which terms is it best represented?

- \triangleright Is there a weighting scheme that gives higher weights to representative terms?
- \triangleright Consider corpus with documents $D = \{d_1, ..., d_n\}$ with terms from a vocabulary $V = \{t_1, ..., t_m\}$.
- \triangleright The term frequency of term t_i in document d_j is measured by

 $tf(t_i, d_j) =$ freq $(t_i\!\!,\!d_j$ max $_k$ freq $\left(t_k,d_j\right)$ Normalisation makes estimation independent of document length.

 \triangleright The inverse document frequency for a term t_i is measured by

$$
idf(t_i, D) = log \frac{|D|}{|\{d \in D; t_i \text{ occurs in } d\}|}
$$
\nFormula:

\nExample:

\nFormula:

\nExample:

\nFormula:

\nExample:

\nExample:

\nExample:

\nFormula:

\nExample:

\nExample:

\nFormula:

\nExample:

\n

Tf, idf, and tf-idf

Tf, idf, and tf-idf weights (plotted in log-scale) computed on a collection from Wall Street Journal (~99,000 articles published between 1987 and 1989)

Source: [Modern Information Retrieval](http://www.amazon.com/Modern-Information-Retrieval-Ricardo-Baeza-Yates/dp/020139829X)

- \triangleright We used a syntactic definition of information content
- \triangleright But information content is not just a syntactic concept
- \triangleright We also used a closed world assumption where the semantic context of sender and receiver was assumed to be the same and could thus be factored out
- \triangleright What is the relation between semantics, information content, and communication context?