
SUPERVISED LEARNING: INTRODUCTION TO 
CLASSIFICATION
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 Basic terminology

 Features

 Training and validation

 Model selection

 Error and loss measures

 Statistical comparison

 Evaluation measures



Terminology

 Instance

 A real-world object  

 Abstractly described through feature values, 𝐱 = 𝑥1, … , 𝑥𝑛

 Class

 Set of similar instances 

 Typically described by a class label
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Features

 Discrete features 

 Categorical features, i.e., features without ordering or scale (e.g., Boolean 
features, IDs of specific terms contained in a document,  …)

 Ordinal features, i.e., features that can be ordered but do not have a scale 
(e.g., Running IDs, date of an event, house numbers, seat numbers, …) 

 Continuous features

 Real-valued features (i.e., with ordering and scale), e.g., height, weight, time, …
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Feature type Order Scale Tendency Dispersion

Categorical X X mode n/a

Ordinal √ X median quantiles

Continuous √ √ mean Range, variance, standard
deviation



Feature transformations
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From Categorical Ordinal Continuous

Categorical Grouping Ordering Calibration

Ordinal Unordering Ordering Calibration

Continuous Discretization Discretization Normalization

 Example

 Prediction of creditworthiness; one of the features is the credit amount 

Credit amount
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“Bad” guys

“Good” guys

Accuracy of Naïve Bayes ≈0.75%

Accuracy of 
Naïve Bayes ≈0.76%

To



Discretization of continuous features
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Discretization

Merging / Splitting

Supervised Unsupervised

Distance,
similarity

Dependency,
entropy

Groups/bins based on 
𝜒2, mutual information,
entropy, MDL, and 
correlation analysis

Binning strategies
+

cluster, MDL analysis

Accuracy,
error

Groups/bins based on 
prediction analysis 



Feature selection

 Statistical process of choosing “good” features for specific classification 
task (e.g., 𝜒2-test of independence, mutual information/information gain, 
correlation analysis, …)

 Features should be

 Not too general

 Not too specific

 Possibly independent of each other 

 Possibly with strong class correlation  

 Feature selection and transformation depends on the data at hand and 
the underlying classification task 

 Rule 1: Get to know your data

 Rule 2: Make plausible assumptions (e.g. height in a population is normally 
distributed, income distribution is highly skewed and peaked, …)
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 Training set

 Pairs 𝐱, 𝑙 𝐱 of instances and corresponding class labels used to train a 

classification model

 Test set

 Instances for which the classes are known but hidden to test the classifier

 Supervised learning

 Learning with training and test set
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Terminology: Training and test set



Linear classification models

 Naive Bayes

 Perceptron

 Winnow

 Logistic Regression

 Support Vector Machines

 …
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Non-linear classification models

 Rule-based classifiers

 K-Nearest Neighbors

 Hierarchical classifiers

 Ensemble classifiers

 Kernel methods

 Neural networks

 …
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Multi-class classification

 In binary classification instance can belong either to 𝐶 or to  𝐶

 For 𝑘 > 2 different classes 𝐶1, … , 𝐶𝑘
 One-of classification: Instance can belong to only one of the 𝑘 classes

 Any-of classification: Instance can belong to many or none of the 𝑘 classes

 Examples of binary classifiers that naturally generalize to multiclass 
classifiers 

 Naive Bayes 

 Decision trees 

 K-nearest neighbors

 Neural networks

 In general, geometric models (e.g., Support Vector Machines, Winnow, 
etc.) do not generalize to multiclass classifiers
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One-of vs. any-of classification

 One-of classification: Instance can belong to only one of the 𝑘 classes

 Typical solution:

1. Build a classifier for each 𝐶𝑖 and its complement  𝐶𝑖
2. For each instance, apply each classifier separately 

3. Assign the instance to the class with maximum score (where the score 
represents how well the instance fits the class)

 Any-of classification: Instance can belong to many or none of the 𝑘 classes

 Typical solution:

1. Build a classifier for each 𝐶𝑖 and its complement  𝐶𝑖
2. The decision of one classifier has no influence on the decisions of the 

other classifiers
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Training and validation

𝐱𝑖 , 𝑙 𝐱𝑖 for data    

𝐱1, … , 𝐱𝑛 and
𝑙: 𝐱𝑖 ↦ {𝑦1, …, 𝑦𝑘}

(𝐱𝑛+𝑙 , ? ),1 ≤ 𝑙 ≤ 𝑚

Instance-class pairs 

𝐱𝑖 , 𝑙 𝐱𝑖 for data 

𝐱1, … , 𝐱𝑛+𝑚 and 
𝑙: 𝐱𝑖 ↦ {𝑦1, …, 𝑦𝑘}

Test set

Training set

Trained model

Learn model

Validate
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Validated model



Overfitting

 Refers to cases where an algorithm’s performance is much better on the 
training than on the test set 

 May occur when

 Training set is small

 Training instances are not representative

 Parameters are set to the best performing values on the training set

 Learning is performed for too long (e.g., for neural networks)

 When the dimensionality of the data is high
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Curse of dimensionality

 Instance space grows exponentially with increasing number of dimensions

 Training data becomes quickly non-representative ( overfitting)

 Distribution of data in high-dimensional space may be counter-intuitive

 Example 1: Distance-based similarities become non-discriminative (why?) 

 Example 2: What is the fraction of the volume lies between 1 and 1 − 𝜀 in a 
sphere of radius 𝑟 = 1?

𝑉 𝑟 = 𝛼𝑟𝐷 ⇒
𝑉 1 − 𝑉(1 − 𝜀)

𝑉(1)
=

𝛼 − 𝛼(1 − 𝜀)𝐷

𝛼
= 1 − (1 − 𝜀)𝐷

For large D most of the volume is concentrated near the surface.

Example from C. Bishop, PRML
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Cross validation

 How to adjust model parameters to good values and 
avoid overfitting?

 N-fold cross validation

 Partition the dataset randomly in N folds (ideally, the 
frequency of each class in a fold should be proportional to 
its frequency in the full dataset).

 Repeat for each fold F𝒊
Train the model on the remaining N-1 folds and test on F𝒊
Estimate the error 𝑒𝑟𝑟𝑖 on F𝒊

 Compute the weighted average of the parameter values by 
taking errors into account

 Leave-one-out cross validation 

 N-fold cross validation where each fold is a single instance 
(N is the number of instances)
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10 folds

Test fold

10-fold cross validation



Bootstrapping

 Alternative to cross validation

 Sample uniformly from a dataset 𝐷 with 𝑛 elements 𝑛 times with 
replacement

 Use the 𝑛 sampled elements as training set, and the elements from 𝐷 that 
were not sampled as test set

 Repeat the above two steps 𝑚 times

 What is the expected size of the training and test set?

 Expected fraction of instances in the test set is

1 −
1

𝑛

𝑛

≈
1

𝑒
= 0.368

 Expected fraction of instances in the training set is 0.632

 Compute weighted average of the parameter values by taking the error from 
each of the 𝑚 runs into account
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Model selection through validation

 Given different prediction algorithms for the same data, which one should 
we select?

 There are different possibilities 

 Choose the algorithm with the lowest average error (or highest average 
prediction accuracy) from the N runs of cross validation

 Choose the algorithm that minimizes the following bootstrapping error

𝑒𝑟𝑟 =
1

𝑚
 

𝑖=1

𝑚

0.632 𝑒𝑟𝑟𝑖,𝑡𝑒𝑠𝑡 + 0.368 𝑒𝑟𝑟𝑖,𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
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Error types

 Classification error

 Training error: Fraction of misclassifications in training set

 Test error: Fraction of misclassifications in the test set

 Generalized error

 For data 𝐃 = 𝐱1, … , 𝐱𝑛 and classification algorithm ℎ the generalized error is

𝑃 ℎ 𝐱 ≠ 𝑙 𝐱 = 𝐸 𝑡𝑒𝑠𝑡 𝑒𝑟𝑟𝑜𝑟 = 𝑒𝑟𝑟 ℎ
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Bayes error

 Probability of misclassification

𝑃(𝐴, 𝑥)
𝑃(𝐵, 𝑥)

𝑅1 𝑅2

𝑒𝑟𝑟𝐵𝑎𝑦𝑒𝑠 =  
𝑥𝜖𝑅1

𝑃 𝐵 𝑥 𝑃(𝑥) 𝑑𝑥 +  
𝑥𝜖𝑅2

𝑃 𝐴 𝑥 𝑃(𝑥) 𝑑𝑥

Algorithm classifies 𝑥 as A Algorithm classifies 𝑥 as B

A classifier that minimizes the Bayes error is called a Bayes optimal classifier.
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Decision 
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Classification loss (1)

 Consider a model for predicting whether someone has the disease or not

 Probabilistic loss function (weighted Bayes error)

 Let 𝒄 = (𝑐1, … , 𝑐𝑘) be the target classes to which an instance 𝐱 can belong with 
some probability 

 Expected loss is given by the weighted Bayes error:

 𝐿𝐵𝑎𝑦𝑒𝑠 =  
𝑖
 

𝑗
 
𝐱∈𝑅𝑗

𝑙𝑖,𝑗𝑃 𝑐𝑖 𝐱 𝑃(𝐱) 𝑑𝐱

is minimized when each 𝐱 is assigned to the class j

that minimizes  𝑖 𝑙𝑖,𝑗𝑃 𝑐𝑖 𝐱

predicted
disease

ok

disease ok

ground truth 𝑙𝑖,𝑗: loss matrix0 1000
10 0
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Classification loss (2)

 Loss functions

For instance 𝐱, let 𝑦 be the predicted and 𝑡 the true class. 

 0-1 loss: 𝑙 𝑦, 𝑡 = 𝑦 ≠ 𝑥 =  
1, 𝑦 ≠ 𝑡
0, 𝑦 = 𝑡

(indicator function)

 Absolute loss: 𝑙 𝑦, 𝑡 = 𝑦 − 𝑡

 Information loss: 𝑙 𝑡, 𝐱 =  
− log𝑃 𝑡|𝐱 , 𝑡 𝑖𝑠 𝑡𝑟𝑢𝑒 𝑐𝑙𝑎𝑠𝑠 𝑜𝑓 𝐱

− log 1 − 𝑃 𝑡|𝐱 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Quadratic loss: 𝑙 𝑦, 𝑡 = 𝑐 𝑦 − 𝑡 2, for constant 𝑐

 Exponential loss: 𝑙 𝑦, 𝐱 =
1

𝑛
 𝑖 𝑒

−𝑦 𝑠𝑖𝑔𝑛(𝐱)



Model selection through hypothesis testing

 Let ℎ and ℎ′ be two models and 𝑒𝑟𝑟1, … , 𝑒𝑟𝑟𝑘 and 𝑒𝑟𝑟1′, … , 𝑒𝑟𝑟𝑘′ the 
respective error values derived from k-fold cross validation

 Are the error means any different?

 Fact: 𝑒𝑟𝑟 and 𝑒𝑟𝑟′ are approximately normally distributed

  𝑑 = 𝑒𝑟𝑟 − 𝑒𝑟𝑟′ is t-distributed, with k-1 degrees of freedom

𝑃 −𝑡𝑘−1,1−𝛼/2 ≤
(  𝑑 − 0) 𝑘

𝑠𝑑
≤ 𝑡𝑘−1,1−𝛼/2 = 1 − 𝛼

 If  𝑡𝑘−1,1−𝛼/2 <
(  𝑑−0) 𝑘

𝑠𝑑
reject 𝐻0 (i.e., 𝜇 = 𝜇′) otherwise retain it

 What if 𝐻0 is  𝑑 =  𝑒 −  𝑒′ ≥ 0 (⇒ 𝐻1 is  𝑑 =  𝑒 −  𝑒′ < 0) ?

𝑃 −𝑡𝑘−1,1−𝛼 ≤
(  𝑑 − 0) 𝑘

𝑠𝑑
= 1 − 𝛼

 If   
(  𝑑−𝜇𝑑) 𝑘

𝑠𝑑
< −𝑡𝑘−1,1−𝛼 reject 𝐻0 otherwise retain it
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 Left-sided test:



Evaluation measures: Accuracy

 Let ℎ be a prediction model for class 𝐶

 What does accuracy capture?
 It captures the success rate, but does not say anything about prediction 

power!

 Is an accuracy of 99% good?

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 ℎ =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁

𝐶  𝐶

𝐶 # True Positives 
(𝑇𝑃)

# False Positives
(𝐹𝑃)

 𝐶 # False Negatives 
(𝐹𝑁)

# True Negatives 
(𝑇𝑁)

Actual values

Values
predicted
by ℎ

Confusion
matrix
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Decision 
threshold



 Let ℎ be a prediction model for class 𝐶

 What does Precision represent?

 Probability that ℎ is correct whenever it predicts 𝐶

 What does Recall represent?

 Probability that ℎ recognizes an instance from 𝐶

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ℎ =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
;

𝐶  𝐶

𝐶 # True Positives 
(𝑇𝑃)

# False Positives
(𝐹𝑃)

 𝐶 # False Negatives 
(𝐹𝑁)

# True Negatives 
(𝑇𝑁)

Actual values

Values
predicted
by ℎ
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Evaluation measures: Precision and Recall

𝑅𝑒𝑐𝑎𝑙𝑙 ℎ =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

Reflects decision 
threshold



 Let ℎ be a prediction model for class 𝐶

 What does Specificity represent?

 Probability that ℎ recognizes an instance from  𝐶

𝐶  𝐶

𝐶 # True Positives 
(𝑇𝑃)

# False Positives
(𝐹𝑃)

 𝐶 # False Negatives 
(𝐹𝑁)

# True Negatives 
(𝑇𝑁)

Actual values

Values
predicted
by ℎ
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Evaluation measures: Sensitivity and Specificity

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 ℎ =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 ℎ = 𝑅𝑒𝑐𝑎𝑙𝑙 ℎ =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
;



 Let ℎ be a prediction model for class 𝐶

 The F1-score is the harmonic mean between Precision and Recall

𝐶  𝐶

𝐶 # True Positives 
(𝑇𝑃)

# False Positives
(𝐹𝑃)

 𝐶 # False Negatives 
(𝐹𝑁)

# True Negatives 
(𝑇𝑁)

Actual values

Values
predicted
by ℎ
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Evaluation measures: F1-measure

𝐹𝛼 ℎ =
1 + 𝛼2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ℎ ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙 ℎ

𝛼2 ⋅ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ℎ + 𝑅𝑒𝑐𝑎𝑙𝑙 ℎ

𝐹1 ℎ =
2 ⋅ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ℎ ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙(ℎ))

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ℎ + 𝑅𝑒𝑐𝑎𝑙𝑙(ℎ)



 Let ℎ be a prediction model for class 𝐶

 With decreasing decision threshold, plot precision recall values 

 𝐵𝑟𝑒𝑎𝑘𝐸𝑣𝑒𝑛 = 𝑣 such that 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ℎ = 𝑣 = 𝑅𝑒𝑐𝑎𝑙𝑙 ℎ

worse
performance

better
performance

BreakEven=0.66
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Evaluation measures: Precision-recall curve



better
performance

 Let ℎ be a prediction model for class 𝐶; for decreasing decision threshold 
compute…

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁

Often reported as performance measure:
area under the curve (AUC), which represents
the ranking accuracy

 𝑥∈𝑃𝑜𝑠,𝑥′∈𝑁𝑒𝑔 𝑟𝑎𝑛𝑘 𝑥 > 𝑟𝑎𝑛𝑘 𝑥′ +
1
2 𝑟𝑎𝑛𝑘 𝑥 = 𝑟𝑎𝑛𝑘 𝑥′

𝑃𝑜𝑠 ⋅ 𝑁𝑒𝑔
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Evaluation measures: Receiver-Operating Characteristic curve



 For decreasing decision threshold with respect to prediction probabilities

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
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Example of ROC curve construction



 Let ℎ be a prediction model for class 𝐶; for decreasing decision threshold 
compute…

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 = 𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

1 − 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
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ROC-based calibration of decision thresholds 

better
performance

Uppermost point of ROC curve 
that touches line of slope
1 corresponds to highest average
Recognition probability of 
positive and negative class 
(i.e., highest avg. Recall 
for both classes) 

For maximum accuracy the slope

has to be  
|𝑁𝑒𝑔|

|𝑃𝑜𝑠|



 Let ℎ be a prediction model for classes 𝐶1, …., 𝐶𝑛

𝐶𝑖  𝐶𝑖

𝐶𝑖 # True Positives 
(𝑇𝑃𝑖)

# False Positives
(𝐹𝑃𝑖)

 𝐶𝑖 # False Negatives 
(𝐹𝑁𝑖)

# True Negatives 
(𝑇𝑁𝑖)

Actual values

𝑃𝑟𝑒𝑐𝑚𝑖𝑐𝑟𝑜 ℎ =
 𝑖 𝑇𝑃𝑖

 𝑖 𝑇𝑃𝑖 + 𝐹𝑃𝑖
;

Values
predicted
by ℎ

𝑅𝑒𝑐𝑚𝑖𝑐𝑟𝑜 ℎ =
 𝑖 𝑇𝑃𝑖

 𝑖 𝑇𝑃𝑖 + 𝐹𝑁𝑖
;

𝑃𝑟𝑒𝑐𝑚𝑎𝑐𝑟𝑜 ℎ =
1

𝑛
 

𝑖

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑃𝑖

𝑅𝑒𝑐𝑚𝑎𝑐𝑟𝑜 ℎ =
1

𝑛
 

𝑖

𝑇𝑃𝑖
𝑇𝑃𝑖 + 𝐹𝑁𝑖

32

Evaluation measures for multi-class classification (1)

𝐹1𝑚𝑖𝑐𝑟𝑜 ℎ =
2 ⋅ 𝑃𝑟𝑒𝑐𝑚𝑖𝑐𝑟𝑜 ⋅ 𝑅𝑒𝑐𝑚𝑖𝑐𝑟𝑜

𝑃𝑟𝑒𝑐𝑚𝑖𝑐𝑟𝑜 + 𝑅𝑒𝑐𝑚𝑖𝑐𝑟𝑜
; 𝐹1𝑚𝑎𝑐𝑟𝑜 ℎ =

1

𝑛
 

𝑖
𝐹1 𝐶𝑖



 In a one-against-all fashion (i.e., class of interest is the positive class and all 
the other classes together are the negative class) one could analyze

 ROC curve of for each class 

 Precision-Recall behavior  of the classifier for each class 

 Accuracy evaluation for each class

 Overall performance could be reported as the weighted average of precision, 
recall, accuracy (i.e., weighted by the proportion of instances in each class) 
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Evaluation measures for multi-class classification (2)



Which measure to use

 For deeper analysis of thresholds or other parameters 

 ROC curves 

 Precision-recall curves

 Error/loss curves

 Statistical analysis

 If threshold or parameter analysis is not an issue 

 Precision

 Recall

 Accuracy

 Specificity

 Prediction error
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