

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

Outline

- Basic terminology
- Features
- Training and validation
- Model selection
 - Error and loss measures
 - Statistical comparison
 - Evaluation measures

Terminology

Instance

- A real-world object
- Abstractly described through feature values, $\mathbf{x} = (x_1, ..., x_n)$

Class

- Set of similar instances
- > Typically described by a class label

Discrete features

- Categorical features, i.e., features without ordering or scale (e.g., Boolean features, IDs of specific terms contained in a document, ...)
- Ordinal features, i.e., features that can be ordered but do not have a scale (e.g., Running IDs, date of an event, house numbers, seat numbers, ...)

Continuous features

Real-valued features (i.e., with ordering and scale), e.g., height, weight, time, ...

Feature type	Order	Scale	Tendency	Dispersion
Categorical	Х	X	mode	n/a
Ordinal	V	X	median	quantiles
Continuous	V	V	mean	Range, variance, standard deviation

From To	Categorical	Ordinal	Continuous
Categorical	Grouping	Ordering	Calibration
Ordinal	Unordering	Ordering	Calibration
Continuous	Discretization	Discretization	Normalization

> Example

Prediction of creditworthiness; one of the features is the credit amount

Discretization of continuous features

- Statistical process of choosing "good" features for specific classification task (e.g., χ²-test of independence, mutual information/information gain, correlation analysis, ...)
- Features should be
 - Not too general
 - > Not too specific
 - Possibly independent of each other
 - Possibly with strong class correlation
- Feature selection and transformation depends on the data at hand and the underlying classification task
 - Rule 1: Get to know your data
 - Rule 2: Make plausible assumptions (e.g. height in a population is normally distributed, income distribution is highly skewed and peaked, ...)

Terminology: Training and test set

Training set

circumference

 \succ Pairs $(\mathbf{x}, l(\mathbf{x}))$ of instances and corresponding class labels used to train a classification model

Test set

Instances for which the classes are known but hidden to test the classifier

Supervised learning

Learning with training and test set

Linear classification models

- > Naive Bayes
- > Perceptron
- ➢ Winnow
- Logistic Regression
- Support Vector Machines
- ▶ ...

Non-linear classification models

- Rule-based classifiers
- K-Nearest Neighbors
- Hierarchical classifiers
- Ensemble classifiers
- Kernel methods
- Neural networks
- ≻ ...

- \succ In binary classification instance can belong either to C or to \overline{C}
- For k > 2 different classes C_1, \dots, C_k
 - \blacktriangleright One-of classification: Instance can belong to only one of the k classes
 - \blacktriangleright Any-of classification: Instance can belong to many or none of the k classes
- Examples of binary classifiers that naturally generalize to multiclass classifiers
 - > Naive Bayes
 - Decision trees
 - K-nearest neighbors
 - Neural networks
- In general, geometric models (e.g., Support Vector Machines, Winnow, etc.) do not generalize to multiclass classifiers

One-of classification: Instance can belong to only one of the k classes

- > Typical solution:
 - 1. Build a classifier for each C_i and its complement $\overline{C_i}$
 - 2. For each instance, apply each classifier separately
 - 3. Assign the instance to the class with maximum score (where the score represents how well the instance fits the class)
- Any-of classification: Instance can belong to many or none of the k classes
 - > Typical solution:
 - 1. Build a classifier for each C_i and its complement $\overline{C_i}$
 - 2. The decision of one classifier has no influence on the decisions of the other classifiers

Training and validation

- Refers to cases where an algorithm's performance is much better on the training than on the test set
- > May occur when
 - Training set is small
 - Training instances are not representative
 - Parameters are set to the best performing values on the training set
 - Learning is performed for too long (e.g., for neural networks)
 - When the dimensionality of the data is high

Instance space grows exponentially with increasing number of dimensions
 Training data becomes quickly non-representative (
 -> overfitting)

Example from C. Bishop, PRML

- Distribution of data in high-dimensional space may be counter-intuitive
- Example 1: Distance-based similarities become non-discriminative (why?)
- Example 2: What is the fraction of the volume lies between 1 and 1ε in a sphere of radius r = 1?

$$V(r) = \alpha r^{D} \Rightarrow \frac{V(1) - V(1 - \varepsilon)}{V(1)} = \frac{\alpha - \alpha (1 - \varepsilon)^{D}}{\alpha} = 1 - (1 - \varepsilon)^{D}$$

For large *D* most of the volume is concentrated near the surface.

N-fold cross validation

- Partition the dataset randomly in N folds (ideally, the frequency of each class in a fold should be proportional to its frequency in the full dataset).
- > Repeat for each fold F_i

Train the model on the remaining N-1 folds and test on F_i

Estimate the error err_i on F_i

Compute the weighted average of the parameter values by taking errors into account

Leave-one-out cross validation

 N-fold cross validation where each fold is a single instance (N is the number of instances)

Alternative to cross validation

- Sample uniformly from a dataset D with n elements n times with replacement
- Use the n sampled elements as training set, and the elements from D that were not sampled as test set
- \succ Repeat the above two steps m times
- What is the expected size of the training and test set?
 - Expected fraction of instances in the test set is

$$\left(1-\frac{1}{n}\right)^n \approx \frac{1}{e} = 0.368$$

- Expected fraction of instances in the training set is 0.632
- Compute weighted average of the parameter values by taking the error from each of the *m* runs into account

- Given different prediction algorithms for the same data, which one should we select?
- There are different possibilities
 - Choose the algorithm with the lowest average error (or highest average prediction accuracy) from the N runs of cross validation
 - > Choose the algorithm that minimizes the following bootstrapping error

$$\overline{err} = \frac{1}{m} \sum_{i=1}^{m} 0.632 \ err_{i,test} + 0.368 \ err_{i,training}$$

Classification error

- > Training error: Fraction of misclassifications in training set
- Test error: Fraction of misclassifications in the test set

Generalized error

 \succ For data $\mathbf{D} = {\mathbf{x}_1, ..., \mathbf{x}_n}$ and classification algorithm h the generalized error is

$$P(h(\mathbf{x}) \neq l(\mathbf{x})) = E(test \ error) = err(h)$$

A classifier that minimizes the Bayes error is called a **Bayes optimal classifier**.

Consider a model for predicting whether someone has the disease or not

predicted		disease	e ok
around truth	disease	0]	ן1000
ground trath	ok	L10	0

- Probabilistic loss function (weighted Bayes error)
 - → Let $c = (c_1, ..., c_k)$ be the target classes to which an instance x can belong with some probability
 - > Expected loss is given by the weighted Bayes error:

$$\bar{L}_{Bayes} = \sum_{i} \sum_{j} \int_{\mathbf{x} \in R_{j}} l_{i,j} P(c_{i} | \mathbf{x}) P(\mathbf{x}) d\mathbf{x}$$

is minimized when each **x** is assigned to the class *j* that minimizes $\sum_{i} l_{i,j} P(c_i | \mathbf{x})$

Loss functions

For instance \mathbf{x} , let y be the predicted and t the true class.

> 0-1 loss:
$$l(y,t) = [[y \neq x]] = \begin{cases} 1, & y \neq t \\ 0, & y = t \end{cases}$$
 (indicator function)

▶ Absolute loss: l(y, t) = |y - t|

> Information loss: $l(t, \mathbf{x}) = \begin{cases} -\log P(t|\mathbf{x}), \ t \ is \ true \ class \ of \ \mathbf{x} \\ -\log(1 - P(t|\mathbf{x})), \ otherwise \end{cases}$

> Quadratic loss: $l(y, t) = c(y - t)^2$, for constant c

> Exponential loss:
$$l(y, \mathbf{x}) = \frac{1}{n} \sum_{i} e^{-y \operatorname{sign}(\mathbf{x})}$$

 S_d

Model selection through hypothesis testing

- > Let h and h' be two models and $err_1, ..., err_k$ and $err_1', ..., err_k'$ the respective error values derived from k-fold cross validation
- Are the error means any different?
- \blacktriangleright Fact: \overline{err} and $\overline{err'}$ are approximately normally distributed
- → $\overline{d} = \overline{err} \overline{err'}$ is *t*-distributed, with k-1 degrees of freedom

$$P\left(-t_{k-1,1-\alpha/2} \leq \frac{(\bar{d}-0)\sqrt{k}}{s_d} \leq t_{k-1,1-\alpha/2}\right) = 1-\alpha$$

$$\Rightarrow \text{ If } t_{k-1,1-\alpha/2} < \left|\frac{(\bar{d}-0)\sqrt{k}}{s_d}\right| \text{ reject } H_0 \text{ (i.e., } \mu = \mu') \text{ otherwise retain}$$

▶ What if H_0 is $\overline{d} = \overline{e} - \overline{e'} \ge 0$ (⇒ H_1 is $\overline{d} = \overline{e} - \overline{e'} < 0$) ?

→ Left-sided test:
$$P\left(-t_{k-1,1-\alpha} \le \frac{(\bar{d}-0)\sqrt{k}}{s_d}\right) = 1 - \alpha$$

> If $\frac{(\bar{d}-\mu_d)\sqrt{k}}{s_d} < -t_{k-1,1-\alpha}$ reject H_0 otherwise retain it

it

Let h be a prediction model for class C

- What does accuracy capture?
 - It captures the success rate, but does not say anything about prediction power!
- Is an accuracy of 99% good?

Evaluation measures: Precision and Recall

Let h be a prediction model for class C

- What does Precision represent?
 - \blacktriangleright Probability that *h* is correct whenever it predicts *C*
- What does Recall represent?
 - \blacktriangleright Probability that *h* recognizes an instance from *C*

Let h be a prediction model for class C

		Actual values		
		С	Ē	
Values	С	# True Positives (<i>TP</i>)	# False Positives (<i>FP</i>)	
by h	Ē	# False Negatives (FN)	<pre># True Negatives (TN)</pre>	

 $Sensitivity(h) = Recall(h) = \frac{TP}{TP + FN}; \quad Specificity(h) = \frac{TN}{TN + FP}$

- What does Specificity represent?
 - \blacktriangleright Probability that *h* recognizes an instance from \overline{C}

Let h be a prediction model for class C

		Actual values		
		С	Ē	
Values	С	# True Positives (<i>TP</i>)	<pre># False Positives (FP)</pre>	
by h	Ē	<pre># False Negatives (FN)</pre>	# True Negatives (<i>TN</i>)	

 $F_{\alpha}(h) = \frac{(1 + \alpha^{2}) \cdot Precision(h) \cdot Recall(h)}{\alpha^{2} \cdot Precision(h) + Recall(h)}$

$$F_{1}(h) = \frac{2 \cdot (Precision(h) \cdot Recall(h))}{Precision(h) + Recall(h)}$$

The F1-score is the harmonic mean between Precision and Recall

With decreasing decision threshold, plot precision recall values
 BreakEven = v such that Precision(h) = v = Recall(h)

valuation measures: Receiver-Operating Characteristic curve

Let h be a prediction model for class C; for decreasing decision threshold compute...

For decreasing decision threshold with respect to prediction probabilities

	Rank	(Predicted	Actual Class	Source: I.Witten, E. Frank, M. Hall: Data Mining – Practical Machine Learning Tools and Techniques
	1		0.95	yes	100
	2		0.93	yes	
	3		0.93	no	
	4		0.88	yes	and the second
S	5		0.86	yes	80 .
Ξ	6		0.85	yes	
<u>n</u>	7		0.82	yes 🤶	the second s
Ľ	8		0.80	yes 😜	60
5 C	9		0.80	no	
S.	10		0.79	yes 😨	
ہ ک	11		0.77	no d	
a) .	12		0.76	yes P	40
-	13		0.73	yes F	Often reported as offectiveness measures
-	14		0.65	no	Orten reported as effectiveness measure.
-	15		0.63	yes	20 - المحكوم area under the curve (AUC)
	16		0.58	no	ج
	17		0.56	yes	
	18		0.49	no	0
	19		0.48	yes	0 20 40 60 80 100
	•••				False Positives (%)
			Sensitivit	zy = Recall =	= True Positive Rate = $\frac{TP}{TP + FN}$

 $1 - Specificity = False Postitive Rate = \frac{FP}{FP + TN}$

|Neg|

has to be

 \succ Let h be a prediction model for class C; for decreasing decision threshold compute...

Plattner Institut Evaluation measures for multi-class classification (1)

\succ Let *h* be a prediction model for classes C_1 , ..., C_n

		C _i	\overline{C}_i
Values	C_i	# True Positives (<i>TP_i</i>)	<pre># False Positives (FP_i)</pre>
by h	\overline{C}_i	<pre># False Negatives (FN_i)</pre>	# True Negatives (TN_i)

 $Prec_{micro}(h) = \frac{\sum_{i} TP_{i}}{\sum_{i} TP_{i} + FP_{i}};$

$$Rec_{micro}(h) = \frac{\sum_{i} TP_{i}}{\sum_{i} TP_{i} + FN_{i}};$$

$$F_{1micro}(h) = \frac{2 \cdot Prec_{micro} \cdot Rec_{micro}}{Prec_{micro} + Rec_{micro}}$$

 $Prec_{macro}(h) = \frac{1}{n} \sum_{i} \frac{TP_i}{TP_i + FP_i}$

$$Rec_{macro}(h) = \frac{1}{n} \sum_{i} \frac{TP_i}{TP_i + FN_i}$$

$$F_{1macro}(h) = \frac{1}{n} \sum_{i} F_1(C_i)$$

HPI Hasso Plattner Institut

- In a one-against-all fashion (i.e., class of interest is the positive class and all the other classes together are the negative class) one could analyze
 - ROC curve of for each class
 - Precision-Recall behavior of the classifier for each class
 - Accuracy evaluation for each class
- Overall performance could be reported as the weighted average of precision, recall, accuracy (i.e., weighted by the proportion of instances in each class)

- > For deeper analysis of thresholds or other parameters
 - ROC curves
 - Precision-recall curves
 - Error/loss curves
 - Statistical analysis
- If threshold or parameter analysis is not an issue
 - Precision
 - ➢ Recall
 - > Accuracy
 - > Specificity
 - Prediction error