

SUPERVISED LEARNING: INTRODUCTION TO CLASSIFICATION

- \triangleright Basic terminology
- \triangleright Features
- \triangleright Training and validation
- Model selection
	- \triangleright Error and loss measures
	- \triangleright Statistical comparison
	- \triangleright Evaluation measures

Terminology

\blacktriangleright Instance

- \triangleright A real-world object
- Abstractly described through feature values, $\mathbf{x} = (x_1, ..., x_n)$

Exercise Class

- \triangleright Set of similar instances
- \triangleright Typically described by a class label

Discrete features

- Categorical features, i.e., features without ordering or scale (e.g., Boolean features, IDs of specific terms contained in a document, …)
- \triangleright Ordinal features, i.e., features that can be ordered but do not have a scale (e.g., Running IDs, date of an event, house numbers, seat numbers, …)

Continuous features

 \triangleright Real-valued features (i.e., with ordering and scale), e.g., height, weight, time, ...

\triangleright Example

 \triangleright Prediction of creditworthiness; one of the features is the credit amount

Discretization of continuous features

 \triangleright Statistical process of choosing "good" features for specific classification task (e.g., χ^2 -test of independence, mutual information/information gain, correlation analysis, …)

\triangleright Features should be

- \triangleright Not too general
- \triangleright Not too specific
- \triangleright Possibly independent of each other
- \triangleright Possibly with strong class correlation
- \triangleright Feature selection and transformation depends on the data at hand and the underlying classification task
	- \triangleright Rule 1: Get to know your data
	- \triangleright Rule 2: Make plausible assumptions (e.g. height in a population is normally distributed, income distribution is highly skewed and peaked, …)

Terminology: Training and test set

Pairs $(x, l(x))$ of instances and corresponding class labels used to train a classification model

► Test set

 \triangleright Instances for which the classes are known but hidden to test the classifier

\triangleright Supervised learning

 \triangleright Learning with training and test set

Linear classification models

- \triangleright Naive Bayes
- \triangleright Perceptron
- Winnow
- Logistic Regression
- \triangleright Support Vector Machines

Non-linear classification models

- \triangleright Rule-based classifiers
- \triangleright K-Nearest Neighbors
- \triangleright Hierarchical classifiers
- \triangleright Ensemble classifiers
- \triangleright Kernel methods
- \triangleright Neural networks
- …

- \triangleright In binary classification instance can belong either to C or to C
- For $k > 2$ different classes $C_1, ..., C_k$
	- \triangleright One-of classification: Instance can belong to only one of the k classes
	- \triangleright Any-of classification: Instance can belong to many or none of the k classes
- \triangleright Examples of binary classifiers that naturally generalize to multiclass classifiers
	- \triangleright Naive Bayes
	- **►** Decision trees
	- \triangleright K-nearest neighbors
	- \triangleright Neural networks
- \triangleright In general, geometric models (e.g., Support Vector Machines, Winnow, etc.) do not generalize to multiclass classifiers

One-of classification: Instance can belong to only one of the k classes

- \triangleright Typical solution:
	- 1. Build a classifier for each C_i and its complement C_i
	- 2. For each instance, apply each classifier separately
	- 3. Assign the instance to the class with maximum score (where the score represents how well the instance fits the class)

Any-of classification: Instance can belong to many or none of the k classes

- \triangleright Typical solution:
	- 1. Build a classifier for each C_i and its complement C_i
	- 2. The decision of one classifier has no influence on the decisions of the other classifiers

Training and validation

- \triangleright Refers to cases where an algorithm's performance is much better on the training than on the test set
- \triangleright May occur when
	- \triangleright Training set is small
	- \triangleright Training instances are not representative
	- \triangleright Parameters are set to the best performing values on the training set
	- \triangleright Learning is performed for too long (e.g., for neural networks)
	- \triangleright When the **dimensionality** of the data is high

 Instance space grows exponentially with increasing number of dimensions Training data becomes quickly non-representative (\rightarrow overfitting)

Example from C. Bishop, PRML

- Distribution of data in high-dimensional space may be counter-intuitive
- Example 1: Distance-based similarities become non-discriminative (why?)
- Example 2: What is the fraction of the volume lies between 1 and 1ε in a sphere of radius $r = 1$?

$$
V(r) = \alpha r^D \Rightarrow \frac{V(1) - V(1 - \varepsilon)}{V(1)} = \frac{\alpha - \alpha (1 - \varepsilon)^D}{\alpha} = 1 - (1 - \varepsilon)^D
$$

For large *D* most of the volume is concentrated near the surface.

N-fold cross validation

- \triangleright Partition the dataset randomly in N folds (ideally, the frequency of each class in a fold should be proportional to its frequency in the full dataset).
- \triangleright Repeat for each fold F_i

Train the model on the remaining N-1 folds and test on *F* Estimate the error err_i on F_i

 \triangleright Compute the weighted average of the parameter values by taking errors into account

Leave-one-out cross validation

 \triangleright N-fold cross validation where each fold is a single instance (N is the number of instances)

Alternative to cross validation

- \triangleright Sample uniformly from a dataset D with n elements n times with replacement
- \triangleright Use the *n* sampled elements as training set, and the elements from D that were not sampled as test set
- \triangleright Repeat the above two steps *m* times
- \triangleright What is the expected size of the training and test set?
	- \triangleright Expected fraction of instances in the test set is

$$
\left(1 - \frac{1}{n}\right)^n \approx \frac{1}{e} = 0.368
$$

- \triangleright Expected fraction of instances in the training set is 0.632
- \triangleright Compute weighted average of the parameter values by taking the error from each of the m runs into account

- \triangleright Given different prediction algorithms for the same data, which one should we select?
- \triangleright There are different possibilities
	- \triangleright Choose the algorithm with the lowest average error (or highest average prediction accuracy) from the N runs of cross validation
	- \triangleright Choose the algorithm that minimizes the following bootstrapping error

$$
\overline{err} = \frac{1}{m} \sum_{i=1}^{m} 0.632 \, err_{i, test} + 0.368 \, err_{i, training}
$$

► Classification error

- \triangleright Training error: Fraction of misclassifications in training set
- \triangleright Test error: Fraction of misclassifications in the test set

► Generalized error

For data $\mathbf{D} = \{x_1, ..., x_n\}$ and classification algorithm h the generalized error is

$$
P(h(\mathbf{x}) \neq l(\mathbf{x})) = E(test\ error) = err(h)
$$

A classifier that minimizes the Bayes error is called a Bayes optimal classifier.

Consider a model for predicting whether someone has the disease or not

Probabilistic loss function (weighted Bayes error)

- Exercic $c = (c_1, ..., c_k)$ be the target classes to which an instance **x** can belong with some probability
- \triangleright Expected loss is given by the weighted Bayes error:

$$
\overline{L}_{Bayes} = \sum_{i} \sum_{j} \int_{\mathbf{x} \in R_j} l_{i,j} P(c_i | \mathbf{x}) P(\mathbf{x}) \, d\mathbf{x}
$$

is minimized when each **x** is assigned to the class *j* that minimizes $\sum_i l_{i,j}P(c_i|\mathbf{x})$

\triangleright Loss functions

For instance x , let y be the predicted and t the true class.

$$
\triangleright \text{ 0-1 loss: } l(y, t) = \llbracket y \neq x \rrbracket = \begin{cases} 1, & y \neq t \\ 0, & y = t \end{cases} \text{ (indicator function)}
$$

Absolute loss: $l(y, t) = |y - t|$

 \triangleright Information loss: $l(t, x) = \{$ $-\log P(t|\mathbf{x})$, t is true class of x $-\log(1 - P(t|\mathbf{x})), \text{ otherwise}$

► Quadratic loss: $l(y, t) = c(y - t)^2$, for constant c

$$
\triangleright \text{ Exponential loss: } l(y, x) = \frac{1}{n} \sum_{i} e^{-y \, sign(x)}
$$

Model selection through hypothesis testing

- Exect h and h' be two models and $err_1, ..., err_k$ and $err_1', ..., err_k'$ the respective error values derived from k-fold cross validation
- \triangleright Are the error means any different?
- \triangleright Fact: \overline{err} and err' are approximately normally distributed
- \triangleright $\overline{d} = \overline{err} \overline{err'}$ is *t*-distributed, with k-1 degrees of freedom

$$
P\left(-t_{k-1,1-\alpha/2} \le \frac{(\bar{d}-0)\sqrt{k}}{s_d} \le t_{k-1,1-\alpha/2}\right) = 1 - \alpha
$$

> If $t_{k-1,1-\alpha/2} < \left|\frac{(\bar{d}-0)\sqrt{k}}{s_d}\right|$ reject H_0 (i.e., $\mu = \mu'$) otherwise retain it

-
- \triangleright What if H_0 is $\bar{d} = \bar{e} \bar{e'} \ge 0$ (\Rightarrow H_1 is $\bar{d} = \bar{e} \bar{e'} < 0$) ?

$$
\Rightarrow \text{Left-sided test:} \quad P\left(-t_{k-1,1-\alpha} \le \frac{(\bar{d}-0)\sqrt{k}}{s_d}\right) = 1 - \alpha
$$

 \triangleright If $\frac{(\bar{d} - \mu_d)\sqrt{k}}{s}$ $\frac{\mu_{d}j\vee\kappa}{s_{d}} < -t_{k-1,1-\alpha}$ reject H_{0} otherwise retain it

\triangleright Let h be a prediction model for class C

- \triangleright What does accuracy capture?
	- \triangleright It captures the success rate, but does not say anything about prediction power!
- \triangleright Is an accuracy of 99% good?

Evaluation measures: Precision and Recall

\triangleright Let h be a prediction model for class C

- \triangleright What does Precision represent?
	- \triangleright Probability that h is correct whenever it predicts C
- \triangleright What does Recall represent?
	- \triangleright Probability that h recognizes an instance from C

\triangleright Let h be a prediction model for class C

 $Specificity(h) =$ **TN** $Sensitivity(h) = Recall(h) = \frac{1}{TP + FN};$ $Specificity(h) = \frac{1}{TN + FP}$ TP $\frac{1}{TP + FN}$;

- \triangleright What does Specificity represent?
	- Probability that h recognizes an instance from \overline{C}

\triangleright Let *h* be a prediction model for class C

 $F_{\alpha}(h) =$ $1 + \alpha^2$) · Precision(h) · Recall(h $\alpha^2 \cdot Precision(h) + Recall(h)$

$$
F_1(h) = \frac{2 \cdot (Precision(h) \cdot Recall(h))}{Precision(h) + Recall(h)}
$$

 \triangleright The F1-score is the harmonic mean between Precision and Recall

 \triangleright With decreasing decision threshold, plot precision recall values \triangleright BreakEven = v such that Precision(h) = v = Recall(h)

Fation measures: Receiver-Operating Characteristic curve

 \triangleright Let h be a prediction model for class C; for decreasing decision threshold compute…

\triangleright For decreasing decision threshold with respect to prediction probabilities

 $Sensitivity = Recall = True Positive Rule$ $TP + FN$ 1 – Specificity = False Postitive Rate = F P $FP + TN$

has to be

 $|Pos|$

 \triangleright Let h be a prediction model for class C; for decreasing decision threshold compute…

Evaluation measures for multi-class classification (1)

Example 1 be a prediction model for classes C_1 ,, C_n

Actual values

 $Prec_{micro}(h) =$ $\sum_i TP_i$ $\sum_i TP_i + FP_i$;

$$
Rec_{micro}(h) = \frac{\sum_{i} TP_{i}}{\sum_{i} TP_{i} + FN_{i}};
$$

 $F_{1micro}(h) =$ 2 · Prec_{micro} · Rec_{micro} Prec_{micro} + Rec_{micro}

 $Prec_{macro}(h) =$ 1 \overline{n} \sum i TP_i $TP_i + FP_i$

$$
Rec_{macro}(h) = \frac{1}{n} \sum_{i} \frac{TP_i}{TP_i + FN_i}
$$

$$
F_{1macro}(h) = \frac{1}{n} \sum_{i} F_1(C_i)
$$

Evaluation measures for multi-class classification (2)

- \triangleright In a one-against-all fashion (i.e., class of interest is the positive class and all the other classes together are the negative class) one could analyze
	- \triangleright ROC curve of for each class
	- \triangleright Precision-Recall behavior of the classifier for each class
	- \triangleright Accuracy evaluation for each class
- \triangleright Overall performance could be reported as the weighted average of precision, recall, accuracy (i.e., weighted by the proportion of instances in each class)

\triangleright For deeper analysis of thresholds or other parameters

- \triangleright ROC curves
- \triangleright Precision-recall curves
- \triangleright Error/loss curves
- \triangleright Statistical analysis
- \triangleright If threshold or parameter analysis is not an issue
	- \triangleright Precision
	- \triangleright Recall
	- \triangleright Accuracy
	- \triangleright Specificity
	- \triangleright Prediction error