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> Geometric classification models

» Perceptron
» Winnow
» Support Vector Machines

> Probabilistic classification models
» Naive Bayes
» Multinomial Naive Bayes
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Geometric classification models

» Basic linear classifier constructs a linear decision boundaryw - x =t
» W is the vector from negative to positive center
» X is an instance feature vector to be classified

(p—n)(p+n) __ |Ipll*=I|In]|?
2 o 2

> Inthe above model: t =
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» Decision boundary maximizes the margin between negative and positive
class

» A geometric model is called translation invariant if it does not depend on
the origin of the coordinate system is
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Expressiveness of geometric linear models
» General model (i.e., target function)

1, W1x1+"°+kak 2 t
X) = .
f(x) {—1, otherwise

8

f(x) = sign(w’ - x"),
\../

» Classes that are expressed as a disjunction of Boolean features i.e.,

W o« (—t,wyq, ..., Wy), x' =

C =X;V--V X} can separated

» Separation of Exclusive-Or or general DNF representations, e.g.,
C=X ANX,) VX AXy),0orC =X AX) V(X3 AX,y)V (Xy AX3),is not
possible
- Problem if data is not linearly separable
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The Perceptron Algorithm

» Invented by F. Rosenblatt in 1957
> For labeled data (xl,l(xl)), (xn,l(xn)), x; € R%, I(x;) € {-1,1}
> Learnw' for f = sign(w’' - X') as follows

1. Initialize W' to (0,..,0)
2. For each Xx;
If I(x;) # sign(w'-x;") then //e.g., learningrater = 0.1
wew +r-l(x;) - x;
3. Repeat 2. until i =1 (l(xj) — sign(w’ - xj')) <y
//for user-set threshold y
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Convergence of the Perceptron Algorithm

» Theorem 1

» If the data is not linearly separable, the algorithm may not finish

» Theorem 2 (Novikoff 1962)

> Let y € R be chosen in such a way that for all labeled instances

(w'-x;)l(x;) > yandlet R = max(|x4], ..., |Xx+1]; X € Training).

2
The number of all possible updates to w' by the algorithm is bounded by %
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Expressiveness of the Perceptron Algorithm
» Theorem

» Classes that can be represented by primitive Boolean combination of
features, (AND, OR, NAND, NOR) can be represented by the Perceptron
Algorithm (i.e., can be separated from their complement)

» Classes represented by XOR feature combinations or more complex formulas
(i.e., for which multiple NANDs or NORs are needed) cannot be represented
by the Perceptron Algorithm

> Abstract representation of an XOR case (for: x; € {a,—a}, x, € {b, —b})

Ct=((y==a)A(x; =b)) V((x1 =a) A (x, = —b))
x5 A
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Basic linear classifier vs. Perceptron algorithm

5h T 1 T i Ll L] Ll 1 )
ast . -
. Perceptron classifier |

-4

Basic linear
classifier A
.‘" i .
i@:ﬁ;‘?"'ﬁ .k s 1 P 1 ' .1\ ~~ N
0 0.5 1 15 2 2.5 3 3.5 4 45 5

X1
Source: Machine Learning by P. Flach
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]_, WiXq + o+ WXy >t
f(x) — .
0, otherwise

> For labeled data (xl,l(xl)), . (xn,l(xn)), x; € {0,1}*, 1(x;) €{0,1}
» Learn w for f(X) as follows

1.

3.

Set all w;:==1, t:=g

//leads to good bounds on the number of possible updates
For each example X;
If f(x;) =0 A I(x;) =1 //promote involved weights
For each j with x; =1 set w; « 2w;
If f(x;) =1 A I(x;) =0 //demote involved weights

. . W]
For each j with x;j =1 set w; «—
2

Repeat 2. until % ;-‘=1(l(xj) —f(xj)) <y

11
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Number of updates for the Winnow Algorithm

> Initially f(x) = xi, V-V x;, for certain X # 0 (i.e., a monotone Boolean

function)
- We need to update | < k weight components

» Also none of these weight components can get greater than t

» The algorithm performs “binary search” in the range of each weight
component, which is given by (0, g]

—> Bound on updates O(k logn)

12
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Advantages of Winnow

Winnow Algorithm is robust in the presence of label noise or feature

noise (important because often training data does not represent well the

class distributions)

Popular in natural language processing where many features are binary
There exist other robust variations

» Example: following updates can be used (balanced version)

2. For each example X;

If (wj+ — Wj_) -X; <tA l(x;) =1 //promote involved weights

. . —_— W._
For each j with x; =1 set Mgke-wa} w; « L

If (Wj+ — Wj_) -X; >t A I(x;) =0 //demote involved weights

+

w _ _
For each j with x; =1 set w! « -, w7 « 2w;
j j 2 j j

13
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Support Vector Machines

» Goal: Set the separation plane so that margin is
maximized (= maximum margin hyperplane) %

» Linear SVMs are also called maximum margin

classifiers margin

>
\ X1
support vector
- supp

separation hyperplane

» Hyperplane is described by w - x; — t = 0,
where w is a normal vector to the hyperplane
and X a point on the hyperplane

» The offset (distance) of the hyperplane from the

.. t
origin. —
R

14
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Geometry of Support Vector Machines

Source: Machine Learning by P. Flach

15
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Support Vector Machines: Margin width

» For every data point on the positive side
w-x;,—t=>1
» For every data point on the negative side

W X; — t < -1 ]
margin

2 T

support vector
Iwll T
separation hyperplane

=>» Margin width:

=» Increasing width <> Minimizing ||w/|]

> ||wl]| is difficult to minimize (it involves square root)
1 . . L
> > |lw||? is easier to minimize.

16
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Optimization problem (1)

margin

>
\ X1
support vector
—___ supp

separation hyperplane

» Quadratic programming optimization problem
: 1
argminy,;  [|wl|?

subjecttoy;(w-x; —t) > 1

for all trainings instances X4, ..., X,, and their true labels y4, ...

17
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Optimization problem (2)

» Quadratic programming optimization problem
: 1
argminy,; ~[|w||?
subjecttoy;(w-x; —t) > 1
for all trainings instances X4, ..., X,
and their true labels y4, ..., y,

margin

>
\ X1
support vector
—__ supp

separation hyperplane

» Primal form
1
A(W» t,aq, ""an) — (E ”WHZ o z,ai(yi(w "X~ t) —1 ))
l

argmin max A(w, t, @y, ..., ay,)
w,t oa=0

for Lagrange multipliersa; = 0,1 <i<n

Note: We are not interested in instances x; for which y;(w - x; — t) — 1>0, for
these points a; must be set to O, in order to maximize the expression in a

18
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Finding the optimal w

A(W: L, aq, "'ran) — <% ”WHZ _ z_ai(yi(w "X — t) -1 ))

1
=SIWIZ = ) W x) + ) ait+ ) @
l l l

=—-W-W—W

1
2
0A(w, t, aq, ..., a,)
=0 w=
ow
0A(w, t, ay,

(3 so) (3 )+ D

_ By plugging these values back into 4
we can getrid of wand ¢t

19
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1
Aw, t,aq, ..., a,) = W W= W(E_aiyixi) +t (2_“1‘3’1‘) + z_ai
l l l

0A(w, t, aq, ..., a,)

o =0 w= ialyle
__ By plugging these values back into 4
0A(wW, t,aq, ..., a,) we can get rid of wand t
ot -0 z =
l

» Quadratic optimization problem

1
Al(aq, ..., a,) = — 5 (E.aiyixi) (Z.aiyixi) + Z.ai
l l l
1
arggaxz:iai — E <Zl 2] al-ajyiiji . X,)

kernel

subjectto };@;y; =0 (anda; = 0,1 <i < n)
20
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Solving the SVM optimization problem

» In general, the dual form of a quadratic optimization problem is only a
lower bound of the primal formulation

» Under certain conditions, known as Karush-Kuhn-Tucker conditions, which
are satisfied by the dual form of the SVM optimization problem, the two
solutions become equal

» |In practice the dual form is solved through quadratic programming
optimization techniques

» Oncethe a;,1 < i < n are known the SVM classifier is:

>1 = +
W - x+t=(2a- -x-)-x+t{_
ilyll < -1 —

» What about t?

21
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SVM vs. Perceptron or Winnow

For the Perceptron or Winnow Algorithm
the only goal is to classify every instance
correctly

A

In addition an SVM aims
at maximizing the margin
between the two classes

Source: Wikipedia

>
X

22
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Soft-margin SVMs

» Can the model be extended to handle data
that is “almost” linearly separable?

» Primal form

, 1
argminy, e > Iwll? + C X ¢

subject to yy(w-x; —t)=>21—-¢;,&§ =0
for all trainings instances X4, ..., X,
and their true labels y4, ..., yn

» C:is user-specified trade-off between margin width and error
» &;:slack variables representing real-valued errors

23
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SVM vs. Soft-Margin SVM

SVM Soft-Margin SVM

Marginism =1—¢ &: slack variable
Penalty, also called hinge loss

24
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Dual problem for the Soft-Margin SVM

A(w) t; f) a}ﬂ)
1
— EW - W — w(z_aiyixi) + t (Z_aiyi) + Z'ai + z(c —a; — :Bl) gi
l l l l
all(w) t) Et al ﬁ)
oW =0 & w= ziaiyixi
all(w; t) El a, ﬂ)
=0 & Z a;y; =0
at i
0A(w, t,§,a, B) .
af =O@Vllc—(li—ﬁi=0 @BZ()CZCQZO
i

» Dual problem

z 1 z z
dargmax _ai — E( _ . aia;yiyjXi - X])
a=0 l l ]

subjectto };;y; =0 (andC>¢a; 20,1 <i <n)

25
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Summary of SVMs

Come in different variations (principle is the same)

Simultaneously minimize the empirical error and maximize the margin
width

Same expressiveness as the perceptron algorithm

In general, quadratic training time (quadratic optimization)
» T.Joachims showed linear training time for linear SVMs
(www.joachims.org/publications/joachims 06a.pdf)

Directly applicable only to two-class problems
Parameter values in a solution are difficult to interpret

26
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Kernel Trick

> Apply non-linear transformation function ¢: R%1 — R%,d, > d1

to input instances X4, ..., X,; and find hyperplane
w - ¢(x) = t that separates the classes

» Same optimization problem as before: /\J/>/

Input space classification space
1
argmax (Z a;— Ezz . aiajyiyjk(xi,xj)>
o i i j

subjectto a; > 0,Va; and }),; a;y; = 0

» Classification through

>1 = +

w - x—t=Zl-cxl-yl-k:(xi-x)—t{S 1o

» Typical kernel functions:
> Kk(X{,X,) = (X1 - X, + ¢)? (polynomial kernel)

”X1—X2”2 27

2 ) (Gaussian kernel)

%) = exp
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Kernel trick example

» Suppose thatn = (0,0) and p = (0,1)
» Let us further suppose that p has been derived from two positive
examples, i.e., p = %(p1 + p,) withp; = (—1,1) and p, = (1,1)

» For the basic linear classifier, the separation hyperplane was defined as

1
(p—n)-x=t<=>§(p1-x+p2-x)—n-x=t

» Applying the kernel trick

X = (x,y) P X = (xz,yz,\/fxy) " ¥
K(X1-X3) = X1 - X5 + i

+
= x{x3 + Yiy3 + 2X1Y1%2)> i ﬁ\"?ﬂhl "
= (X1 " Xp)* :

Sk(P1-X) +3K(P; W) —K(m-X) =t ¢ \j :

& x? + y? = t (separation function)
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Probabilistic classifiers from linear classifiers

Source: Machine Learning
by P. Flach

» We can define ||w|| as the unit length, then
W - X; +t
d(x;) =

lw|
» We can learn a (Gaussian) mixture model based on the distances and use
Bayes’ theorem to derive

P(d(x;)| +)P(+) + P(d(xy)| —)P(—)

29
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Naive Bayes (1)

» D ={d4,..,d,}acorpus of documents, where each document is seen as a set
of words, and can be represented as a binary vector

1, W] € di
0, W] $ di
c4, ..., Cx topics/classes to which a document can belong

V={wed|d € D} = {wy, ...,w,,} vocabulary of all terms in the corpus
What is the most probable topic for a document?

d; = Wiq, oo, Wimn), Wy =

YV V V

» We can compute the joint probability of a document d; and a topic ¢; as
P(di, C]) = P(dl |C])P(CJ) = P(Will cee Wlm|c])P(c])

» Most probable topic for d; can be found by computing the maximum a posteriori
(MAP)
(¢)

Impossible to estimate!!!
Curse of dimensionality

argmax
Cj

30
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Naive Bayes (2)
» If we assume independence between the terms given the topic

argmax P(Wil, ...,Wim|Cj)P(Cj) = argmax P(Wi1|Cj) S P(Wim|Cj)P(Cj)
Cj Cj

» Assuming that words follow a multivariate Bernoulli distribution (i.e.,
categorical distribution) for a given topic

Poio) =[], Plvie) ™
J

the maximum likelihood estimation of P(Wil|Cj) is given by

#(wiAc))
ZWEV #(W/\Cj)’

P(Wil|Cj) = i.e., fraction of occurrences of wy; in ¢;

» Similar reasoning for topic distribution yields

P(Cj) _ _Xdep [c;nd]

,i.e., fraction of occurrences of ¢c; in D
Y¢ Zaep [end] J

31
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Naive Bayes: Smoothing

argmaxP(wil, ...,Wim|Cj)P(Cj) = argmax P(Wi1|Cj) SO P(Wim|Cj)P(Cj)
Cj Cj

» What if w;; does not occur in topic ¢;?

» Use smoothing
» Laplace smoothing

#lw;,ci )+ a
P(wlg) = =i 9)

Zwev(#(w, ) + a)

» Jelinek-Mercer smoothing
P(Willcj) = )\P(Willcj) + (1 — /’l)P(WlllD)

» Dirichlet smoothing (the larger the topic the lower the smoothing)
#(wy, Cj) + pP(wy D)
P(wilc;) =
U+ ZWEV #(W' Cj)

32
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| | Terms

tS)(;uPTcFelza i\ﬁachme Learning E-mail la2 »2 2l Class
ey 0 1 0 +
e 0 1 1 +
e3 1 0 0 +
ey 1 1 0 +
es 1 1 0 -
e 1 0 1 -
ez 1 0 O -
eg 0 0 0 -

Example: Parameter estimation for Naive Bayes

» Smoothed parameter estimation for positive class with Laplace smoothing

witha =1:0% = (gg%)

L. : _ 4
» Smoothed parameter estimation for the negative class: 0~ = (8

)

22)
8

)

33
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Naive Bayes as a generative model

Unknown class

Observed features

» Features are generates by some class
» Every feature is independent of the other features given the class
> In such cases, the joint probability P(fy, ..., f,,, ¢) is of interest, because

P(flr ..-,fnlC)P(C)
P(fi, ) fu)
\

This term is not defined
by the above model, we

only know P(f3, ..., f|c)P(c)

P(clfi, i fo) =

34
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Multinomial Naive Bayes
» In the previous model, we dismissed multiple occurrences of words

» Assuming that documents follow a multinomial distribution

P(d;|6;) = |d;|!- 1_[ P(wulc)

wiEd; fT'GCI(Wil; dl)'

freq(w;;d;)

we can estimate the maximum likelihood of P(Wil|Cj) as

ZdECj freq(w;; d)
ZWEVerQ(W; Cj)

P(wilc;) =
(all previous smoothing strategies can be used)

» Similarly to before we estimate P(cj) as the fraction of occurrences of ¢;
in D
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Source: Machine Learning by P. Flach

Terms Terms
E-mail |a? b? c?| Class E-mail |#a #b #c |Class
ey 0 1 0 + ey 0 3 0 +
es 0 1 1 + s 0 3 3 +
€3 1 0 O + es 3 0 0 +
e4 1 1 0 4= e4 2 3 0 +
es 1 1 0 — es 4 3 0 _
e 1 0 1 - es 4 0 3 _
ey 1 0 0 — e 3 0 0 -
es 0 0 0 - eg 0 0 0 -

» Smoothed parameter estimation for positive class with Laplace smoothing

with =1:9+=(

» Smoothed parameter estimation for the negative class: 0~ = (

6 10 4

20’20’ 20

)

12 4

o)
20’20’ 20

36
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Naive Bayes vs. Multinomial Naive Bayes

Terms Terms
E-mail a2 b? c?| Class E-mail |#a #b #c |Class
ey 0 1 0 + el o 3 0 +
es 0o 1 1 + e 0 3 3 +
es 1 0 0 + e3 3 0 0 +
ey 1 1 0 + e4 2 3 0 +
es 1 1 0o -~ es 4 3 0 -
es 1 0 1 - es 4 0 3 —
ey 1 0 0O —~ e 3 0 0 -
€g 0 0 0 - eg 0 0 0 -
o _ (5,:3) o :<i 2 z) o = (E,E,i) o :(E,i,i)
9°9'9 8’8’8 2020 20 20°20°20

» Assume we see new documentd = (#a = 3,#b = 1,#c = 0)
> Naive Bayes: P(d|0")P(0%) = g -g : (1 = g) -0.5 = 0.057 and

P(d|7)P(87) =2 -2. (1 _ g) .0.5 = 0.047

&) &) @)
> Multinomial Naive Bayes: P(d|0")P(0%) = 4! - 2; - Zf' : 2& - 0.5 =0.027

12 3 4 1 4 0
and P(d|®07)P(07) =4!- (20) - (20) - (20) - 0.5 = 0.0864

3! 1! 0! 37
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Summary of Naive Bayes models

Fairly good performance even when independence assumption does not
hold

Can easily handle the dimensionality problem

Needs relatively few training samples to estimate probabilities
P(fl,---,fn|C)P(C))
P(flr""fnla)P(E)

(misestimations do not hurt the final calculation of odds

Performance (e.g. for text classification) is slightly worse than the
performance of SVMs or neural networks, but NB methods are much
simpler and more efficient

When features are highly dependent on each other, performance can
degrade notably (due to independence assumption)

Multinomial Naive Bayes shows empirically better performance than
Naive Bayes on large corpora with high variability in document lengths



