
LINEAR CLASSIFICATION MODELS

1

Outline

 Geometric classification models

 Perceptron

 Winnow

 Support Vector Machines

 Probabilistic classification models

 Naïve Bayes

 Multinomial Naïve Bayes

2

Geometric classification models

 Basic linear classifier constructs a linear decision boundary 𝐰 ⋅ 𝐱 = 𝑡

 𝐰 is the vector from negative to positive center

 𝐱 is an instance feature vector to be classified

 In the above model: 𝑡 =
𝐩−𝐧 𝐩+𝐧

2
=

𝐩 2− 𝐧 2

2

3

+
+

+
+
+

+ +

+

-
-

-
-

- - -

-
𝐰 = 𝐩 − 𝐧

𝐩

𝐧

𝐰 ⋅ 𝐱 = 𝑡

Geometric models: Maximum-margin classifiers

 Decision boundary maximizes the margin between negative and positive
class

 A geometric model is called translation invariant if it does not depend on
the origin of the coordinate system is

4

+
+

+
+
+

+ +

+

-
-

-
-

- - -

-

𝐰

Expressiveness of geometric linear models

 General model (i.e., target function)

𝑓 𝐱 =
1, 𝑤1𝑥1 +⋯+ 𝑤𝑘𝑥𝑘 ≥ 𝑡
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⟺
𝑓 𝐱 = 𝑠𝑖𝑔𝑛 𝐰′ ⋅ 𝐱′ ,

𝐰′ ← −𝑡,𝑤1, … , 𝑤𝑘 , 𝐱′ =

1
𝑥1
.
.
.
𝑥𝑘

 Classes that are expressed as a disjunction of Boolean features i.e.,

𝐶 = 𝑋1 ∨ ⋯∨ 𝑋𝑘 can separated

 Separation of Exclusive-Or or general DNF representations, e.g.,

𝐶 = 𝑋1 ∧ 𝑋2 ∨ 𝑋1 ∧ 𝑋2 , or 𝐶 = 𝑋1 ∧ 𝑋2 ∨ 𝑋3 ∧ 𝑋4 ∨ 𝑋2 ∧ 𝑋3 , is not

possible

 Problem if data is not linearly separable 5

The Perceptron Algorithm

 Invented by F. Rosenblatt in 1957

 For labeled data 𝐱1, 𝑙 𝐱1 , … , 𝐱𝑛, 𝑙 𝐱𝑛 , 𝐱𝑖 ∈ ℝ𝑘 , 𝑙 𝐱𝑖 ∈ −1,1

 Learn 𝐰′ for 𝑓 = 𝑠𝑖𝑔𝑛(𝐰′ ⋅ 𝐱′) as follows

1. Initialize 𝐰′ to (0,…,0)

2. For each 𝐱𝑖
If 𝑙 𝐱𝑖 ≠ 𝑠𝑖𝑔𝑛 𝐰′ ⋅ 𝐱𝑖′ then

𝐰′ ← 𝐰′ + 𝑟 ⋅ 𝑙 𝐱𝑖 ⋅ 𝐱𝑖′

3. Repeat 2. until
1

n
 𝑗=1
𝑛 𝑙 𝐱𝑗 − 𝑠𝑖𝑔𝑛 𝐰′ ⋅ 𝐱𝑗′ < 𝛾

6

//e.g., learning rate 𝑟 = 0.1

//for user-set threshold 𝛾

Example

7

Convergence of the Perceptron Algorithm

 Theorem 1

 If the data is not linearly separable, the algorithm may not finish

 Theorem 2 (Novikoff 1962)

 Let 𝛾 ∈ ℝ be chosen in such a way that for all labeled instances

𝐰′ ⋅ 𝐱𝑖′ 𝑙 𝐱𝑖 > 𝛾 and let 𝑅 = max |𝑥1|, … , |𝑥𝑘+1|; 𝐱 ∈ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 .

The number of all possible updates to 𝐰′ by the algorithm is bounded by
𝑅2

𝛾2

8

Expressiveness of the Perceptron Algorithm

 Theorem

 Classes that can be represented by primitive Boolean combination of
features, (AND, OR, NAND, NOR) can be represented by the Perceptron
Algorithm (i.e., can be separated from their complement)

 Classes represented by XOR feature combinations or more complex formulas
(i.e., for which multiple NANDs or NORs are needed) cannot be represented
by the Perceptron Algorithm

 Abstract representation of an XOR case (for: 𝑥1 ∈ 𝑎,−𝑎 , 𝑥2 ∈ 𝑏, −𝑏)

𝐶+ = 𝑥1 = −𝑎 ∧ 𝑥2 = 𝑏 ∨ 𝑥1 = 𝑎 ∧ 𝑥2 = −𝑏

9

Basic linear classifier vs. Perceptron algorithm

10

+

Basic linear
classifier

Perceptron classifier

Source: Machine Learning by P. Flach

𝑥2

𝑥1

The Winnow Algorithm

𝑓 𝐱 =
1, 𝑤1𝑥1 +⋯+𝑤𝑘𝑥𝑘 ≥ 𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 For labeled data 𝐱1, 𝑙 𝐱1 , … , 𝐱𝑛, 𝑙 𝐱𝑛 , 𝐱𝑖 ∈ 0,1 𝑘 , 𝑙 𝐱𝑖 ∈ 0,1

 Learn 𝐰 for 𝑓(𝐱) as follows

1. Set all 𝑤𝑖 ≔ 1, 𝑡 ≔
𝑛

2

//leads to good bounds on the number of possible updates

2. For each example 𝐱𝑖
If 𝑓 𝐱𝑖 = 0 ∧ 𝑙 𝐱𝑖 = 1 //promote involved weights

For each 𝑗 with 𝑥𝑗 = 1 set 𝑤𝑗 ← 2𝑤𝑗

If 𝑓 𝐱𝑖 = 1 ∧ 𝑙 𝐱𝑖 = 0 //demote involved weights

For each 𝑗 with 𝑥𝑗 = 1 set 𝑤𝑗 ←
𝑤𝑗

2

3. Repeat 2. until
1

n
 𝑗=1
𝑛 𝑙 𝐱𝑗 − 𝑓(𝐱𝑗) < 𝛾

11

Number of updates for the Winnow Algorithm

 Initially 𝑓 𝐱 = 𝑥𝑖1 ∨ ⋯∨ 𝑥𝑖𝑙 for certain 𝑥𝑖𝑗 ≠ 0 (i.e., a monotone Boolean

function)

We need to update 𝑙 ≤ 𝑘 weight components

 Also none of these weight components can get greater than 𝑡

 The algorithm performs “binary search” in the range of each weight

component, which is given by (0,
𝑛

2
]

 Bound on updates 𝑂 𝑘 log𝑛

12

Advantages of Winnow

 Winnow Algorithm is robust in the presence of label noise or feature
noise (important because often training data does not represent well the
class distributions)

 Popular in natural language processing where many features are binary
 There exist other robust variations

 Example: following updates can be used (balanced version)

2. For each example 𝐱𝑖

If 𝑤𝑗
+ − 𝑤𝑗

− ⋅ 𝐱𝑖 < 𝑡 ∧ 𝑙 𝐱𝑖 = 1 //promote involved weights

For each 𝑗 with 𝑥𝑗 = 1 set 𝑤𝑗
+ ← 2𝑤𝑗

+
, 𝑤𝑗

− ←
𝑤𝑗

−

2

If 𝑤𝑗
+ − 𝑤𝑗

− ⋅ 𝐱𝑖 > 𝑡 ∧ 𝑙 𝐱𝑖 = 0 //demote involved weights

For each 𝑗 with 𝑥𝑗 = 1 set 𝑤𝑗
+ ←

𝑤𝑗
+

2
, 𝑤𝑗

− ← 2𝑤𝑗
−

13

Support Vector Machines

 Goal: Set the separation plane so that margin is

maximized (maximum margin hyperplane)

 Linear SVMs are also called maximum margin

classifiers

 Hyperplane is described by 𝐰 ⋅ 𝐱𝑖 − 𝑡 = 0,

where 𝐰 is a normal vector to the hyperplane

and 𝐱 a point on the hyperplane

 The offset (distance) of the hyperplane from the

origin:
𝑡

𝐰

+
++

+

+
+

++

-
- -

-

-

-
-

𝑥1

𝑥2

separation hyperplane

margin

support vector

14

Geometry of Support Vector Machines

15

Source: Machine Learning by P. Flach

Support Vector Machines: Margin width

 For every data point on the positive side

𝐰 ⋅ 𝐱𝑖 − 𝑡 ≥ 1

 For every data point on the negative side

𝐰 ⋅ 𝐱𝑖 − 𝑡 ≤ −1

 𝐰 is difficult to minimize (it involves square root)

1

2
𝐰 2 is easier to minimize.

 Margin width:
2

𝐰

 Increasing width Minimizing 𝐰

+
++

+

+
+

++

-
- -

-

-

-
-

𝑥1

𝑥2

separation hyperplane

margin

support vector

16

Optimization problem (1)

 Quadratic programming optimization problem

argmin𝐰,𝑡
1

2
𝐰 2

subject to 𝑦𝑖 𝐰 ⋅ 𝐱𝑖 − 𝑡 ≥ 1

for all trainings instances 𝐱1, … , 𝐱𝑛 and their true labels 𝑦1, … , 𝑦𝑛

+
++

+

+
+

++

-
- -

-

-

-
-

𝑥1

𝑥2

separation hyperplane

margin

support vector

17

Optimization problem (2)

 Quadratic programming optimization problem

argmin𝐰,𝑡
1

2
𝐰 2

subject to 𝑦𝑖 𝐰 ⋅ 𝐱𝑖 − 𝑡 ≥ 1

for all trainings instances 𝐱1, … , 𝐱𝑛
and their true labels 𝑦1, … , 𝑦𝑛

 Primal form

𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛 =
1

2
𝐰 2 −

𝑖
𝛼𝑖 𝑦𝑖 𝐰 ⋅ 𝐱𝑖 − 𝑡 − 1

argmin
𝐰,𝑡

max
𝛂≥0

𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛

for Lagrange multipliers 𝛼𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛

Note: We are not interested in instances 𝐱𝑖 for which 𝑦𝑖 𝐰 ⋅ 𝐱𝑖 − 𝑡 − 1>0, for
these points 𝛼𝑖 must be set to 0, in order to maximize the expression in 𝛂

+
++

+

+
+

++

-
- -

-

-

-
-

𝑥1

𝑥2

separation hyperplane

margin

support vector

18

Finding the optimal 𝐰

𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛 =
1

2
𝐰 2 −

𝑖
𝛼𝑖 𝑦𝑖 𝐰 ⋅ 𝐱𝑖 − 𝑡 − 1

=
1

2
𝐰 2 −

𝑖
𝛼𝑖𝑦𝑖 𝐰 ⋅ 𝐱𝑖 +

𝑖
𝛼𝑖𝑦𝑖𝑡 +

𝑖
𝛼𝑖

=
1

2
𝐰 ⋅ 𝐰 −𝐰

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖 + 𝑡

𝑖
𝛼𝑖𝑦𝑖 +

𝑖
𝛼𝑖

𝜕𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛

𝜕𝐰
= 0 ⇔ 𝐰 =

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖

𝜕𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛

𝜕𝑡
= 0 ⇔

𝑖
𝛼𝑖𝑦𝑖 = 0

19

By plugging these values back into 𝜦
we can get rid of 𝐰 and 𝑡

Dual problem

𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛 =
1

2
𝐰 ⋅ 𝐰 −𝐰

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖 + 𝑡

𝑖
𝛼𝑖𝑦𝑖 +

𝑖
𝛼𝑖

𝜕𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛

𝜕𝐰
= 0 ⇔ 𝐰 =

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖

𝜕𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛

𝜕𝑡
= 0 ⇔

𝑖
𝛼𝑖𝑦𝑖 = 0

 Quadratic optimization problem

𝜦 𝛼1, … , 𝛼𝑛 = −
1

2

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖 +

𝑖
𝛼𝑖

argmax
𝜶≥0

𝑖
𝛼𝑖 −

1

2

𝑖

𝑗
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐱𝑖 ⋅ 𝐱𝑗

subject to 𝑖 𝛼𝑖𝑦𝑖 = 0 (and 𝛼𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛)
20

By plugging these values back into 𝜦
we can get rid of 𝐰 and 𝑡

kernel

Solving the SVM optimization problem

 In general, the dual form of a quadratic optimization problem is only a
lower bound of the primal formulation

 Under certain conditions, known as Karush-Kuhn-Tucker conditions, which
are satisfied by the dual form of the SVM optimization problem, the two
solutions become equal

 In practice the dual form is solved through quadratic programming
optimization techniques

 Once the 𝛼𝑖 , 1 ≤ 𝑖 ≤ 𝑛 are known the SVM classifier is:

𝐰 ⋅ 𝐱 + 𝑡 =
𝑖
𝛼𝑖𝑦𝑖𝐱𝑖 ⋅ 𝐱 + 𝑡

≥ 1 ⇒ +
≤ −1 ⇒ −

 What about t?

21

SVM vs. Perceptron or Winnow

22

Source: Wikipedia

For the Perceptron or Winnow Algorithm
the only goal is to classify every instance
correctly

In addition an SVM aims
at maximizing the margin
between the two classes

Soft-margin SVMs

 Can the model be extended to handle data

that is “almost” linearly separable?

 Primal form

argmin𝐰,𝑡,𝛏
1

2
𝐰 2 + 𝐶 𝑖 𝜉𝑖

subject to 𝑦𝑖 𝐰 ⋅ 𝐱𝑖 − 𝑡 ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0

for all trainings instances 𝐱1, … , 𝐱𝑛
and their true labels 𝑦1, … , 𝑦𝑛

 𝐶: is user-specified trade-off between margin width and error

 𝜉𝑖: slack variables representing real-valued errors

+
++

+

+
+

-+

-
- -

-

-

-
-

𝑥1

𝑥2

+

23

SVM vs. Soft-Margin SVM

24

𝜉: slack variable
Penalty, also called hinge loss

SVM Soft-Margin SVM

Margin is 𝑚 = 1 − 𝜉

Dual problem for the Soft-Margin SVM

𝜦 𝐰, 𝑡, 𝝃, 𝜶, 𝜷

=
1

2
𝐰 ⋅ 𝐰 −𝐰

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖 + 𝑡

𝑖
𝛼𝑖𝑦𝑖 +

𝑖
𝛼𝑖 +

𝑖
𝐶 − 𝛼𝑖 − 𝛽𝑖 𝜉𝑖

𝜕𝜦 𝐰, 𝑡, 𝝃, 𝜶, 𝜷

𝜕𝐰
= 0 ⇔ 𝐰 =

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖

𝜕𝜦 𝐰, 𝑡, 𝝃, 𝜶, 𝜷

𝜕𝑡
= 0 ⇔

𝑖
𝛼𝑖𝑦𝑖 = 0

𝜕𝜦 𝐰, 𝑡, 𝝃, 𝜶, 𝜷

𝜕𝜉𝑖
= 0 ⇔ ∀𝑖: 𝐶 − 𝛼𝑖 − 𝛽𝑖 = 0 ⇔𝜷≥𝟎 𝐶 ≥ 𝛼𝑖 ≥ 0

 Dual problem

argmax
𝜶≥0

𝑖
𝛼𝑖 −

1

2

𝑖

𝑗
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐱𝑖 ⋅ 𝐱𝑗

subject to 𝑖 𝛼𝑖𝑦𝑖 = 0 (and C ≥ 𝛼𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛)

25

Summary of SVMs

 Come in different variations (principle is the same)

 Simultaneously minimize the empirical error and maximize the margin
width

 Same expressiveness as the perceptron algorithm

 In general, quadratic training time (quadratic optimization)

 T. Joachims showed linear training time for linear SVMs

(www.joachims.org/publications/joachims_06a.pdf)

 Directly applicable only to two-class problems

 Parameter values in a solution are difficult to interpret

26

http://www.joachims.org/publications/joachims_06a.pdf

Input space classification space

Kernel Trick

 Apply non-linear transformation function 𝜙:ℝ𝑑1 ↦ ℝ𝑑2 , 𝑑2 > 𝑑1
to input instances 𝐱1, … , 𝐱𝑛 and find hyperplane

𝐰 ⋅ 𝜙 𝐱 = 𝑡 that separates the classes

 Same optimization problem as before:

argmax
𝛂

𝑖
𝛼𝑖 −

1

2

𝑖

𝑗
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝜿(𝐱𝑖 , 𝐱𝑗)

subject to 𝛼𝑖 > 0, ∀𝛼𝑖 and 𝑖 𝛼𝑖𝑦𝑖 = 0

 Classification through

𝐰 ⋅ 𝐱 − 𝑡 = 𝑖 𝛼𝑖𝑦𝑖𝜿(𝐱𝑖 ⋅ 𝐱) − 𝑡
≥ 1 ⇒ +
≤ −1 ⇒ −

 Typical kernel functions:

 𝜿 𝐱1, 𝐱2 = 𝐱1 ⋅ 𝐱2 + 𝑐 𝑑 (polynomial kernel)

 𝜿 𝐱1, 𝐱2 = exp −
𝐱1−𝐱2

2

2𝜎2 (Gaussian kernel)
27

Kernel trick example

 Suppose that 𝐧 = 0,0 and 𝐩 = 0,1

 Let us further suppose that 𝐩 has been derived from two positive

examples, i.e., 𝐩 =
1

2
𝐩1 + 𝐩2 with 𝐩1 = −1,1 and 𝐩2 = 1,1

 For the basic linear classifier, the separation hyperplane was defined as

𝐩 − 𝐧 ⋅ 𝐱 = 𝑡 ⟺
1

2
𝐩1 ⋅ 𝐱 + 𝐩2 ⋅ 𝐱 − 𝐧 ⋅ 𝐱 = 𝑡

 Applying the kernel trick

𝐱 = 𝑥, 𝑦 ↦ 𝐱′ = 𝑥2, 𝑦2, 2𝑥𝑦

𝜿 𝐱1 ⋅ 𝐱2 = 𝐱1
′ ⋅ 𝐱 2

′

= 𝑥1
2𝑥2

2 + 𝑦1
2𝑦2

2 + 2𝑥1𝑦1𝑥2𝑦2
= 𝐱1 ⋅ 𝐱2

2

1

2
𝜿(𝐩1 ⋅ 𝐱) +

1

2
𝜿(𝐩2 ⋅ 𝐱) − 𝜿(𝐧 ⋅ 𝐱) = 𝑡

⇔ 𝑥2 + 𝑦2 = 𝑡 (separation function)

28

Probabilistic classifiers from linear classifiers

 We can define 𝐰 as the unit length, then

𝑑 𝐱𝑖 =
𝐰 ⋅ 𝐱𝑖 +𝑡

𝐰

 We can learn a (Gaussian) mixture model based on the distances and use
Bayes’ theorem to derive

𝑃 +|𝑑 𝐱𝑖 =
𝑃 𝑑 𝐱𝑖 | + 𝑃 +

𝑃 𝑑 𝐱𝑖 | + 𝑃 + + 𝑃 𝑑 𝐱𝑖 | − 𝑃 −
29

Source: Machine Learning
by P. Flach

Naïve Bayes (1)

 𝐃 = {𝐝1, … , 𝐝𝑛} a corpus of documents, where each document is seen as a set
of words, and can be represented as a binary vector

𝐝𝑖 = 𝑤𝑖1, … , 𝑤𝑖𝑚 , 𝑤𝑖𝑗 =
1, 𝑤𝑗 ∈ 𝐝𝑖

0, 𝑤𝑗 ∉ 𝐝𝑖

 𝑐1, … , 𝑐𝑘 topics/classes to which a document can belong

 𝐕 = 𝑤 ∈ 𝐝|𝐝 ∈ 𝐃 = 𝑤1, … ,𝑤𝑚 vocabulary of all terms in the corpus

 What is the most probable topic for a document?

 We can compute the joint probability of a document 𝐝𝑖 and a topic 𝑐𝑗 as

𝑃 𝐝𝑖 , 𝑐𝑗 = 𝑃 𝐝𝑖|𝑐𝑗 𝑃 𝑐𝑗 = 𝑃 𝑤𝑖1, … , 𝑤𝑖𝑚|𝑐𝑗 𝑃 𝑐𝑗

 Most probable topic for 𝐝𝑖 can be found by computing the maximum a posteriori
(MAP)

argmax
𝑐𝑗

𝑃 𝑤𝑖1, … , 𝑤𝑖𝑚|𝑐𝑗 𝑃 𝑐𝑗

30

Impossible to estimate!!!
Curse of dimensionality

Naïve Bayes (2)

 If we assume independence between the terms given the topic

argmax
𝑐𝑗

𝑃 𝑤𝑖1, … , 𝑤𝑖𝑚|𝑐𝑗 𝑃 𝑐𝑗 = argmax
𝑐𝑗

𝑃 𝑤𝑖1|𝑐𝑗 ⋅ … ⋅ 𝑃 𝑤𝑖𝑚|𝑐𝑗 𝑃(𝑐𝑗)

 Assuming that words follow a multivariate Bernoulli distribution (i.e.,
categorical distribution) for a given topic

𝑃 𝑤|𝛉𝑗 =
𝑤′∈𝑐𝑗

𝑃 𝑤′|𝑐𝑗
𝑤=𝑤′

the maximum likelihood estimation of 𝑃 𝑤𝑖𝑙 𝑐𝑗 is given by

𝑃 𝑤𝑖𝑙 𝑐𝑗 =
𝑤𝑖𝑙∧𝑐𝑗

 𝑤∈𝐕 # 𝑤∧𝑐𝑗
, i.e., fraction of occurrences of 𝑤𝑖𝑙 in 𝑐𝑗

 Similar reasoning for topic distribution yields

𝑃 𝑐𝑗 =
 𝐝∈𝐃 𝑐𝑗∧d
 𝑐 𝐝∈𝐃 𝑐∧d

, i.e., fraction of occurrences of 𝑐𝑗 in 𝐃
31

Naïve Bayes: Smoothing

argmax
𝑐𝑗

𝑃 𝑤𝑖1, … , 𝑤𝑖𝑚|𝑐𝑗 𝑃 𝑐𝑗 = argmax
𝑐𝑗

𝑃 𝑤𝑖1|𝑐𝑗 ⋅ … ⋅ 𝑃 𝑤𝑖𝑚|𝑐𝑗 𝑃(𝑐𝑗)

 What if 𝑤𝑖𝑙 does not occur in topic 𝑐𝑗?

 Use smoothing

 Laplace smoothing

𝑃 𝑤𝑖𝑙 𝑐𝑗 =
𝑤𝑖𝑙, 𝑐𝑗 + 𝛼

 𝑤∈𝐕 # 𝑤, 𝑐𝑗 + 𝛼

 Jelinek-Mercer smoothing

𝑃 𝑤𝑖𝑙 𝑐𝑗 = λ𝑃 𝑤𝑖𝑙 𝑐𝑗 + 1 − 𝜆 𝑃 𝑤𝑖𝑙 𝐃

 Dirichlet smoothing (the larger the topic the lower the smoothing)

𝑃 𝑤𝑖𝑙 𝑐𝑗 =
𝑤𝑖𝑙, 𝑐𝑗 + 𝜇𝑃(𝑤𝑖𝑙|𝐃)

𝜇 + 𝑤∈𝐕# 𝑤, 𝑐𝑗

32

Example: Parameter estimation for Naïve Bayes

 Smoothed parameter estimation for positive class with Laplace smoothing

with 𝛼 = 1 : 𝛉+ =
3

9
,
4

9
,
2

9

 Smoothed parameter estimation for the negative class: 𝛉− =
4

8
,
2

8
,
2

8

33

Terms
Source: Machine Learning
by P. Flach

Naïve Bayes as a generative model

 Features are generates by some class

 Every feature is independent of the other features given the class

 In such cases, the joint probability 𝑃 𝑓1, … , 𝑓𝑛, 𝑐 is of interest, because

𝑃 𝑐|𝑓1, … , 𝑓𝑛 =
𝑃 𝑓1, … , 𝑓𝑛|𝑐 𝑃 𝑐

𝑃 𝑓1, … , 𝑓𝑛

34

𝑐

𝑓1 𝑓2 𝑓𝑛
…

Unknown class

Observed features

This term is not defined
by the above model, we
only know 𝑃 𝑓1, … , 𝑓𝑛|𝑐 𝑃 𝑐

Multinomial Naïve Bayes

 In the previous model, we dismissed multiple occurrences of words

 Assuming that documents follow a multinomial distribution

𝑃 𝐝𝑖|𝛉𝑗 = 𝐝𝑖 ! ⋅
𝑤𝑖𝑙∈𝐝𝑖

𝑃 𝑤𝑖𝑙|𝑐𝑗
𝑓𝑟𝑒𝑞 𝑤𝑖𝑙;𝐝𝑖

𝑓𝑟𝑒𝑞 𝑤𝑖𝑙; 𝐝𝑖 !

we can estimate the maximum likelihood of 𝑃 𝑤𝑖𝑙 𝑐𝑗 as

𝑃 𝑤𝑖𝑙 𝑐𝑗 =
 𝐝∈𝑐𝑗

𝑓𝑟𝑒𝑞 𝑤𝑖𝑙; 𝐝

 𝑤∈𝐕 𝑓𝑟𝑒𝑞 𝑤; 𝑐𝑗

(all previous smoothing strategies can be used)

 Similarly to before we estimate 𝑃 𝑐𝑗 as the fraction of occurrences of 𝑐𝑗
in 𝐃

35

Example: Prameters for the Multinomial Naïve Bayes

 Smoothed parameter estimation for positive class with Laplace smoothing

with 𝛼 = 1 : 𝛉+ =
6

20
,
10

20
,
4

20

 Smoothed parameter estimation for the negative class: 𝛉− =
12

20
,
4

20
,
4

20

36

Terms Terms

Source: Machine Learning by P. Flach

Naïve Bayes vs. Multinomial Naïve Bayes

 Assume we see new document 𝐝 = #𝑎 = 3, #𝑏 = 1, #𝑐 = 0

 Naïve Bayes: 𝑃 𝐝|𝛉+ 𝑃 𝛉+ =
3

9
⋅
4

9
⋅ 1 −

2

9
⋅ 0.5 = 0.057 and

𝑃 𝐝|𝛉− 𝑃 𝛉− =
4

8
⋅
2

8
⋅ 1 −

2

8
⋅ 0.5 = 0.047

 Multinomial Naïve Bayes: 𝑃 𝐝|𝛉+ 𝑃 𝛉+ = 4! ⋅
6

20

3

3!
⋅

10

20

1

1!
⋅

4

20

0

0!
⋅ 0.5 = 0.027

and 𝑃 𝐝|𝛉− 𝑃 𝛉− = 4! ⋅
12

20

3

3!
⋅

4

20

1

1!
⋅

4

20

0

0!
⋅ 0.5 = 0.0864

37

Terms Terms

𝛉+ =
𝟑

𝟗
,
𝟒

𝟗
,
𝟐

𝟗
𝛉− =

𝟒

𝟖
,
𝟐

𝟖
,
𝟐

𝟖
𝛉+ =

𝟔

𝟐𝟎
,
𝟏𝟎

𝟐𝟎
,
𝟒

𝟐𝟎
𝛉− =

𝟏𝟐

𝟐𝟎
,
𝟒

𝟐𝟎
,
𝟒

𝟐𝟎

Summary of Naïve Bayes models

 Fairly good performance even when independence assumption does not
hold

 Can easily handle the dimensionality problem

 Needs relatively few training samples to estimate probabilities

(misestimations do not hurt the final calculation of odds
𝑃 𝑓1,…,𝑓𝑛|𝑐 𝑃 𝑐

𝑃 𝑓1,…,𝑓𝑛| 𝑐 𝑃 𝑐
)

 Performance (e.g. for text classification) is slightly worse than the
performance of SVMs or neural networks, but NB methods are much
simpler and more efficient

 When features are highly dependent on each other, performance can
degrade notably (due to independence assumption)

 Multinomial Naïve Bayes shows empirically better performance than
Naïve Bayes on large corpora with high variability in document lengths

38

