
LINEAR CLASSIFICATION MODELS
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Outline

 Geometric classification models

 Perceptron

 Winnow

 Support Vector Machines

 Probabilistic classification models

 Naïve Bayes

 Multinomial Naïve Bayes
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Geometric classification models

 Basic linear classifier constructs a linear decision boundary 𝐰 ⋅ 𝐱 = 𝑡

 𝐰 is the vector from negative to positive center

 𝐱 is an instance feature vector to be classified

 In the above model:  𝑡 =
𝐩−𝐧 𝐩+𝐧
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Geometric models: Maximum-margin classifiers

 Decision boundary maximizes the margin between negative and positive 
class

 A geometric model is called translation invariant if it does not depend on 
the origin of the coordinate system is 
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Expressiveness of geometric linear models

 General model (i.e., target function)

𝑓 𝐱 =  
1, 𝑤1𝑥1 +⋯+ 𝑤𝑘𝑥𝑘 ≥ 𝑡
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⟺
𝑓 𝐱 = 𝑠𝑖𝑔𝑛 𝐰′ ⋅ 𝐱′ ,

𝐰′ ← −𝑡,𝑤1, … , 𝑤𝑘 , 𝐱′ =

1
𝑥1
.
.
.
𝑥𝑘

 Classes that are expressed as a disjunction of Boolean features i.e., 

𝐶 = 𝑋1 ∨ ⋯∨ 𝑋𝑘 can separated

 Separation of Exclusive-Or or general DNF representations, e.g., 

𝐶 = 𝑋1 ∧ 𝑋2 ∨ 𝑋1 ∧ 𝑋2 , or 𝐶 = 𝑋1 ∧ 𝑋2 ∨ 𝑋3 ∧ 𝑋4 ∨ 𝑋2 ∧ 𝑋3 , is not 

possible

 Problem if data is not linearly separable 5



The Perceptron Algorithm

 Invented by F. Rosenblatt in 1957

 For labeled data 𝐱1, 𝑙 𝐱1 , … , 𝐱𝑛, 𝑙 𝐱𝑛 , 𝐱𝑖 ∈ ℝ𝑘 , 𝑙 𝐱𝑖 ∈ −1,1

 Learn 𝐰′ for 𝑓 = 𝑠𝑖𝑔𝑛(𝐰′ ⋅ 𝐱′) as follows

1. Initialize 𝐰′ to (0,…,0) 

2. For each  𝐱𝑖
If 𝑙 𝐱𝑖 ≠ 𝑠𝑖𝑔𝑛 𝐰′ ⋅ 𝐱𝑖′ then 

𝐰′ ← 𝐰′ + 𝑟 ⋅ 𝑙 𝐱𝑖 ⋅ 𝐱𝑖′

3. Repeat 2. until 
1

n
 𝑗=1
𝑛 𝑙 𝐱𝑗 − 𝑠𝑖𝑔𝑛 𝐰′ ⋅ 𝐱𝑗′ < 𝛾
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//e.g., learning rate 𝑟 = 0.1

//for user-set threshold 𝛾



Example
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Convergence of the Perceptron Algorithm

 Theorem 1

 If the data is not linearly separable, the algorithm may not finish

 Theorem 2 (Novikoff 1962)

 Let 𝛾 ∈ ℝ be chosen in such a way that for all labeled instances

𝐰′ ⋅ 𝐱𝑖′ 𝑙 𝐱𝑖 > 𝛾 and let 𝑅 = max |𝑥1|, … , |𝑥𝑘+1|; 𝐱 ∈ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔 . 

The number of all possible updates to 𝐰′ by the algorithm is bounded by 
𝑅2

𝛾2
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Expressiveness of the Perceptron Algorithm

 Theorem

 Classes that can be represented by primitive Boolean combination of 
features, (AND, OR, NAND, NOR) can be represented by the Perceptron 
Algorithm (i.e., can be separated from their complement)

 Classes represented by XOR feature combinations or more complex formulas 
(i.e., for which multiple NANDs or NORs are needed) cannot be represented 
by the Perceptron Algorithm

 Abstract representation of an XOR case (for: 𝑥1 ∈ 𝑎,−𝑎 , 𝑥2 ∈ 𝑏, −𝑏 )

𝐶+ = 𝑥1 = −𝑎 ∧ 𝑥2 = 𝑏 ∨ 𝑥1 = 𝑎 ∧ 𝑥2 = −𝑏
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Basic linear classifier vs. Perceptron algorithm

10

+

Basic linear
classifier

Perceptron classifier

Source: Machine Learning by P. Flach

𝑥2

𝑥1



The Winnow Algorithm

𝑓 𝐱 =  
1, 𝑤1𝑥1 +⋯+𝑤𝑘𝑥𝑘 ≥ 𝑡
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 For labeled data 𝐱1, 𝑙 𝐱1 , … , 𝐱𝑛, 𝑙 𝐱𝑛 , 𝐱𝑖 ∈ 0,1 𝑘 , 𝑙 𝐱𝑖 ∈ 0,1

 Learn 𝐰 for 𝑓(𝐱) as follows

1. Set all 𝑤𝑖 ≔ 1, 𝑡 ≔
𝑛

2

//leads to good bounds on the number of possible updates

2. For each example 𝐱𝑖
If 𝑓 𝐱𝑖 = 0 ∧ 𝑙 𝐱𝑖 = 1 //promote involved weights 

For each 𝑗 with 𝑥𝑗 = 1 set 𝑤𝑗 ← 2𝑤𝑗

If 𝑓 𝐱𝑖 = 1 ∧ 𝑙 𝐱𝑖 = 0 //demote involved weights 

For each 𝑗 with 𝑥𝑗 = 1 set 𝑤𝑗 ←
𝑤𝑗

2

3. Repeat 2. until 
1

n
 𝑗=1
𝑛 𝑙 𝐱𝑗 − 𝑓(𝐱𝑗) < 𝛾
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Number of updates for the Winnow Algorithm

 Initially 𝑓 𝐱 = 𝑥𝑖1 ∨ ⋯∨ 𝑥𝑖𝑙 for certain 𝑥𝑖𝑗 ≠ 0 (i.e., a monotone Boolean 

function)

We need to update 𝑙 ≤ 𝑘 weight components

 Also none of these weight components can get greater than 𝑡

 The algorithm performs “binary search” in the range of each weight 

component, which is given by (0,
𝑛

2
]

 Bound on updates 𝑂 𝑘 log𝑛
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Advantages of Winnow

 Winnow Algorithm is robust  in the presence of label noise or feature 
noise (important because often training data does not represent well the 
class distributions)

 Popular in natural language processing where many features are binary
 There exist other robust variations

 Example: following updates can be used (balanced version)

2. For each example 𝐱𝑖

If 𝑤𝑗
+ − 𝑤𝑗

− ⋅ 𝐱𝑖 < 𝑡 ∧ 𝑙 𝐱𝑖 = 1 //promote involved weights 

For each 𝑗 with 𝑥𝑗 = 1 set 𝑤𝑗
+ ← 2𝑤𝑗

+
, 𝑤𝑗

− ←
𝑤𝑗

−

2

If 𝑤𝑗
+ − 𝑤𝑗

− ⋅ 𝐱𝑖 > 𝑡 ∧ 𝑙 𝐱𝑖 = 0 //demote involved weights 

For each 𝑗 with 𝑥𝑗 = 1 set 𝑤𝑗
+ ←

𝑤𝑗
+

2
, 𝑤𝑗

− ← 2𝑤𝑗
−
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Support Vector Machines

 Goal: Set the separation plane so that margin is

maximized (maximum margin hyperplane)

 Linear SVMs are also called maximum margin 

classifiers

 Hyperplane is described by 𝐰 ⋅ 𝐱𝑖 − 𝑡 = 0,

where 𝐰 is a normal vector to the hyperplane

and 𝐱 a point on the hyperplane

 The offset (distance) of the hyperplane from the 

origin: 
𝑡

𝐰

+
++

+

+
+

++

-
- -

-

-

-
-

𝑥1

𝑥2

separation hyperplane

margin

support vector
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Geometry of Support Vector Machines
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Source: Machine Learning by P. Flach



Support Vector Machines: Margin width

 For every data point on the positive side 

𝐰 ⋅ 𝐱𝑖 − 𝑡 ≥ 1

 For every data point on the negative side

𝐰 ⋅ 𝐱𝑖 − 𝑡 ≤ −1

 𝐰 is difficult to minimize (it involves square root) 


1

2
𝐰 2 is easier to minimize.

 Margin width:  
2

𝐰

 Increasing width Minimizing 𝐰

+
++

+

+
+

++

-
- -

-

-

-
-

𝑥1

𝑥2

separation hyperplane

margin

support vector
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Optimization problem (1)

 Quadratic programming optimization problem

argmin𝐰,𝑡
1

2
𝐰 2

subject to 𝑦𝑖 𝐰 ⋅ 𝐱𝑖 − 𝑡 ≥ 1

for all trainings instances 𝐱1, … , 𝐱𝑛 and their true labels 𝑦1, … , 𝑦𝑛

+
++

+

+
+

++

-
- -

-

-

-
-

𝑥1

𝑥2

separation hyperplane

margin

support vector
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Optimization problem (2)

 Quadratic programming optimization problem

argmin𝐰,𝑡
1

2
𝐰 2

subject to 𝑦𝑖 𝐰 ⋅ 𝐱𝑖 − 𝑡 ≥ 1

for all trainings instances 𝐱1, … , 𝐱𝑛
and their true labels 𝑦1, … , 𝑦𝑛

 Primal form

𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛 =
1

2
𝐰 2 − 

𝑖
𝛼𝑖 𝑦𝑖 𝐰 ⋅ 𝐱𝑖 − 𝑡 − 1

argmin
𝐰,𝑡

max
𝛂≥0

𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛

for Lagrange multipliers 𝛼𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛

Note: We are not interested in instances 𝐱𝑖 for which 𝑦𝑖 𝐰 ⋅ 𝐱𝑖 − 𝑡 − 1>0, for 
these points 𝛼𝑖 must be set to 0, in order to maximize the expression in 𝛂

+
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+

+
+

++

-
- -

-

-

-
-

𝑥1

𝑥2

separation hyperplane

margin

support vector
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Finding the optimal 𝐰

𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛 =
1

2
𝐰 2 − 

𝑖
𝛼𝑖 𝑦𝑖 𝐰 ⋅ 𝐱𝑖 − 𝑡 − 1

=
1

2
𝐰 2 − 

𝑖
𝛼𝑖𝑦𝑖 𝐰 ⋅ 𝐱𝑖 + 

𝑖
𝛼𝑖𝑦𝑖𝑡 + 

𝑖
𝛼𝑖

=
1

2
𝐰 ⋅ 𝐰 −𝐰  

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖 + 𝑡  

𝑖
𝛼𝑖𝑦𝑖 + 

𝑖
𝛼𝑖

𝜕𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛

𝜕𝐰
= 0 ⇔ 𝐰 =  

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖

𝜕𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛

𝜕𝑡
= 0 ⇔  

𝑖
𝛼𝑖𝑦𝑖 = 0

19

By plugging these values back into 𝜦
we can get rid of 𝐰 and 𝑡



Dual problem

𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛 =
1

2
𝐰 ⋅ 𝐰 −𝐰  

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖 + 𝑡  

𝑖
𝛼𝑖𝑦𝑖 + 

𝑖
𝛼𝑖

𝜕𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛

𝜕𝐰
= 0 ⇔ 𝐰 =  

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖

𝜕𝜦 𝐰, 𝑡, 𝛼1, … , 𝛼𝑛

𝜕𝑡
= 0 ⇔  

𝑖
𝛼𝑖𝑦𝑖 = 0

 Quadratic optimization problem

𝜦 𝛼1, … , 𝛼𝑛 = −
1

2
 

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖  

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖 + 

𝑖
𝛼𝑖

argmax
𝜶≥0

 
𝑖
𝛼𝑖 −

1

2
 

𝑖
 

𝑗
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐱𝑖 ⋅ 𝐱𝑗

subject to   𝑖 𝛼𝑖𝑦𝑖 = 0 (and 𝛼𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛)
20

By plugging these values back into 𝜦
we can get rid of 𝐰 and 𝑡

kernel



Solving the SVM optimization problem

 In general, the dual form of a quadratic optimization problem is only a 
lower bound of the primal formulation

 Under certain conditions, known as Karush-Kuhn-Tucker conditions, which 
are satisfied by the dual form of the SVM optimization problem, the two 
solutions become equal

 In practice the dual form is solved through quadratic programming 
optimization techniques

 Once the 𝛼𝑖 , 1 ≤ 𝑖 ≤ 𝑛 are known the SVM classifier is:

𝐰 ⋅ 𝐱 + 𝑡 =  
𝑖
𝛼𝑖𝑦𝑖𝐱𝑖 ⋅ 𝐱 + 𝑡  

≥ 1 ⇒ +
≤ −1 ⇒ −

 What about t?
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SVM vs. Perceptron or Winnow

22

Source: Wikipedia

For the Perceptron or Winnow Algorithm
the only goal is to classify every instance  
correctly

In addition an SVM aims
at maximizing the margin
between the two classes



Soft-margin SVMs

 Can the model be extended to handle data

that is “almost” linearly separable?

 Primal form

argmin𝐰,𝑡,𝛏
1

2
𝐰 2 + 𝐶  𝑖 𝜉𝑖

subject  to 𝑦𝑖 𝐰 ⋅ 𝐱𝑖 − 𝑡 ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0

for all trainings instances 𝐱1, … , 𝐱𝑛
and their true labels 𝑦1, … , 𝑦𝑛

 𝐶: is user-specified trade-off between margin width and error

 𝜉𝑖: slack variables representing real-valued errors

+
++

+

+
+

-+

-
- -

-

-

-
-

𝑥1

𝑥2

+
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SVM vs. Soft-Margin SVM

24

𝜉: slack variable
Penalty, also called hinge loss

SVM Soft-Margin SVM

Margin is 𝑚 = 1 − 𝜉



Dual problem for the Soft-Margin SVM 

𝜦 𝐰, 𝑡, 𝝃, 𝜶, 𝜷

=
1

2
𝐰 ⋅ 𝐰 −𝐰  

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖 + 𝑡  

𝑖
𝛼𝑖𝑦𝑖 + 

𝑖
𝛼𝑖 + 

𝑖
𝐶 − 𝛼𝑖 − 𝛽𝑖 𝜉𝑖

𝜕𝜦 𝐰, 𝑡, 𝝃, 𝜶, 𝜷

𝜕𝐰
= 0 ⇔ 𝐰 =  

𝑖
𝛼𝑖𝑦𝑖𝐱𝑖

𝜕𝜦 𝐰, 𝑡, 𝝃, 𝜶, 𝜷

𝜕𝑡
= 0 ⇔  

𝑖
𝛼𝑖𝑦𝑖 = 0

𝜕𝜦 𝐰, 𝑡, 𝝃, 𝜶, 𝜷

𝜕𝜉𝑖
= 0 ⇔ ∀𝑖: 𝐶 − 𝛼𝑖 − 𝛽𝑖 = 0 ⇔𝜷≥𝟎 𝐶 ≥ 𝛼𝑖 ≥ 0

 Dual problem

argmax
𝜶≥0

 
𝑖
𝛼𝑖 −

1

2
 

𝑖
 

𝑗
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝐱𝑖 ⋅ 𝐱𝑗

subject to  𝑖 𝛼𝑖𝑦𝑖 = 0 (and C ≥ 𝛼𝑖 ≥ 0, 1 ≤ 𝑖 ≤ 𝑛)
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Summary of SVMs

 Come in different variations (principle is the same)

 Simultaneously minimize the empirical error and maximize the margin 
width

 Same expressiveness as the perceptron algorithm 

 In general, quadratic training time (quadratic optimization) 

 T. Joachims showed linear training time for linear SVMs

(www.joachims.org/publications/joachims_06a.pdf)

 Directly applicable only to two-class problems

 Parameter values in a solution are difficult to interpret

26
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Input space classification space

Kernel Trick

 Apply non-linear transformation function 𝜙:ℝ𝑑1 ↦ ℝ𝑑2 , 𝑑2 > 𝑑1
to input instances 𝐱1, … , 𝐱𝑛 and find hyperplane

𝐰 ⋅ 𝜙 𝐱 = 𝑡 that separates the classes

 Same optimization problem as before:

argmax
𝛂

 
𝑖
𝛼𝑖 −

1

2
 

𝑖
 

𝑗
𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝜿(𝐱𝑖 , 𝐱𝑗)

subject to 𝛼𝑖 > 0, ∀𝛼𝑖 and  𝑖 𝛼𝑖𝑦𝑖 = 0

 Classification through

𝐰 ⋅ 𝐱 − 𝑡 =  𝑖 𝛼𝑖𝑦𝑖𝜿(𝐱𝑖 ⋅ 𝐱) − 𝑡  
≥ 1 ⇒ +
≤ −1 ⇒ −

 Typical kernel functions: 

 𝜿 𝐱1, 𝐱2 = 𝐱1 ⋅ 𝐱2 + 𝑐 𝑑 (polynomial kernel)

 𝜿 𝐱1, 𝐱2 = exp −
𝐱1−𝐱2

2

2𝜎2 (Gaussian kernel) 
27



Kernel trick example

 Suppose that 𝐧 = 0,0 and 𝐩 = 0,1

 Let us further suppose that 𝐩 has been derived from two positive 

examples, i.e., 𝐩 =
1

2
𝐩1 + 𝐩2 with 𝐩1 = −1,1 and 𝐩2 = 1,1

 For the basic linear classifier, the separation hyperplane was defined as

𝐩 − 𝐧 ⋅ 𝐱 = 𝑡 ⟺
1

2
𝐩1 ⋅ 𝐱 + 𝐩2 ⋅ 𝐱 − 𝐧 ⋅ 𝐱 = 𝑡

 Applying the kernel trick

𝐱 = 𝑥, 𝑦 ↦ 𝐱′ = 𝑥2, 𝑦2, 2𝑥𝑦

𝜿 𝐱1 ⋅ 𝐱2 = 𝐱1
′ ⋅ 𝐱 2

′

= 𝑥1
2𝑥2

2 + 𝑦1
2𝑦2

2 + 2𝑥1𝑦1𝑥2𝑦2
= 𝐱1 ⋅ 𝐱2

2

1

2
𝜿(𝐩1 ⋅ 𝐱) +

1

2
𝜿(𝐩2 ⋅ 𝐱) − 𝜿(𝐧 ⋅ 𝐱) = 𝑡

⇔ 𝑥2 + 𝑦2 = 𝑡 (separation function)

28



Probabilistic classifiers from linear classifiers 

 We can define 𝐰 as the unit length, then

𝑑 𝐱𝑖 =
𝐰 ⋅ 𝐱𝑖 +𝑡

𝐰

 We can learn a (Gaussian) mixture model based on the distances and use 
Bayes’ theorem to derive

𝑃 +|𝑑 𝐱𝑖 =
𝑃 𝑑 𝐱𝑖 | + 𝑃 +

𝑃 𝑑 𝐱𝑖 | + 𝑃 + + 𝑃 𝑑 𝐱𝑖 | − 𝑃 −
29

Source: Machine Learning 
by P. Flach



Naïve Bayes (1) 

 𝐃 = {𝐝1, … , 𝐝𝑛} a corpus of documents, where each document is seen as a set 
of words, and can be represented as a binary vector 

𝐝𝑖 = 𝑤𝑖1, … , 𝑤𝑖𝑚 , 𝑤𝑖𝑗 =  
1, 𝑤𝑗 ∈ 𝐝𝑖

0, 𝑤𝑗 ∉ 𝐝𝑖

 𝑐1, … , 𝑐𝑘 topics/classes to which a document can belong

 𝐕 = 𝑤 ∈ 𝐝|𝐝 ∈ 𝐃 = 𝑤1, … ,𝑤𝑚 vocabulary of all terms in the corpus

 What is the most probable topic for a document?

 We can compute the joint probability of a document 𝐝𝑖 and a topic 𝑐𝑗 as

𝑃 𝐝𝑖 , 𝑐𝑗 = 𝑃 𝐝𝑖|𝑐𝑗 𝑃 𝑐𝑗 = 𝑃 𝑤𝑖1, … , 𝑤𝑖𝑚|𝑐𝑗 𝑃 𝑐𝑗

 Most probable topic for 𝐝𝑖 can be found by computing the maximum a posteriori 
(MAP) 

argmax
𝑐𝑗

𝑃 𝑤𝑖1, … , 𝑤𝑖𝑚|𝑐𝑗 𝑃 𝑐𝑗
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Naïve Bayes (2)

 If we assume independence between the terms given the topic

argmax
𝑐𝑗

𝑃 𝑤𝑖1, … , 𝑤𝑖𝑚|𝑐𝑗 𝑃 𝑐𝑗 = argmax
𝑐𝑗

𝑃 𝑤𝑖1|𝑐𝑗 ⋅ … ⋅ 𝑃 𝑤𝑖𝑚|𝑐𝑗 𝑃(𝑐𝑗)

 Assuming that words follow a multivariate Bernoulli distribution (i.e., 
categorical distribution) for a given topic

𝑃 𝑤|𝛉𝑗 =  
𝑤′∈𝑐𝑗

𝑃 𝑤′|𝑐𝑗
𝑤=𝑤′

the maximum likelihood estimation of 𝑃 𝑤𝑖𝑙 𝑐𝑗 is given by

𝑃 𝑤𝑖𝑙 𝑐𝑗 =
# 𝑤𝑖𝑙∧𝑐𝑗

 𝑤∈𝐕 # 𝑤∧𝑐𝑗
, i.e., fraction of occurrences of  𝑤𝑖𝑙 in 𝑐𝑗

 Similar reasoning for topic distribution yields

𝑃 𝑐𝑗 =
 𝐝∈𝐃 𝑐𝑗∧d
 𝑐  𝐝∈𝐃 𝑐∧d

, i.e., fraction of occurrences of 𝑐𝑗 in 𝐃
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Naïve Bayes: Smoothing

argmax
𝑐𝑗

𝑃 𝑤𝑖1, … , 𝑤𝑖𝑚|𝑐𝑗 𝑃 𝑐𝑗 = argmax
𝑐𝑗

𝑃 𝑤𝑖1|𝑐𝑗 ⋅ … ⋅ 𝑃 𝑤𝑖𝑚|𝑐𝑗 𝑃(𝑐𝑗)

 What if 𝑤𝑖𝑙 does not occur in topic 𝑐𝑗?

 Use smoothing

 Laplace smoothing 

𝑃 𝑤𝑖𝑙 𝑐𝑗 =
# 𝑤𝑖𝑙, 𝑐𝑗 + 𝛼

 𝑤∈𝐕 # 𝑤, 𝑐𝑗 + 𝛼

 Jelinek-Mercer smoothing 

𝑃 𝑤𝑖𝑙 𝑐𝑗 = λ𝑃 𝑤𝑖𝑙 𝑐𝑗 + 1 − 𝜆 𝑃 𝑤𝑖𝑙 𝐃

 Dirichlet smoothing (the larger the topic the lower the smoothing)

𝑃 𝑤𝑖𝑙 𝑐𝑗 =
# 𝑤𝑖𝑙, 𝑐𝑗 + 𝜇𝑃(𝑤𝑖𝑙|𝐃)

𝜇 +  𝑤∈𝐕# 𝑤, 𝑐𝑗
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Example: Parameter estimation for Naïve Bayes

 Smoothed parameter estimation for positive class with Laplace smoothing 

with 𝛼 = 1 : 𝛉+ =
3

9
,
4

9
,
2

9

 Smoothed parameter estimation for the negative class:  𝛉− =
4

8
,
2

8
,
2

8
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Naïve Bayes as a generative model

 Features are generates by some class

 Every feature is independent of the other features given the class

 In such cases, the joint probability 𝑃 𝑓1, … , 𝑓𝑛, 𝑐 is of interest, because

𝑃 𝑐|𝑓1, … , 𝑓𝑛 =
𝑃 𝑓1, … , 𝑓𝑛|𝑐 𝑃 𝑐

𝑃 𝑓1, … , 𝑓𝑛

34

𝑐

𝑓1 𝑓2 𝑓𝑛
…

Unknown class

Observed features

This term is not defined 
by the above model, we 
only know 𝑃 𝑓1, … , 𝑓𝑛|𝑐 𝑃 𝑐



Multinomial Naïve Bayes

 In the previous model, we dismissed multiple occurrences of words

 Assuming that documents follow a multinomial distribution

𝑃 𝐝𝑖|𝛉𝑗 = 𝐝𝑖 ! ⋅ 
𝑤𝑖𝑙∈𝐝𝑖

𝑃 𝑤𝑖𝑙|𝑐𝑗
𝑓𝑟𝑒𝑞 𝑤𝑖𝑙;𝐝𝑖

𝑓𝑟𝑒𝑞 𝑤𝑖𝑙; 𝐝𝑖 !

we can estimate the maximum likelihood of 𝑃 𝑤𝑖𝑙 𝑐𝑗 as

𝑃 𝑤𝑖𝑙 𝑐𝑗 =
 𝐝∈𝑐𝑗

𝑓𝑟𝑒𝑞 𝑤𝑖𝑙; 𝐝

 𝑤∈𝐕 𝑓𝑟𝑒𝑞 𝑤; 𝑐𝑗

(all previous smoothing strategies can be used)

 Similarly to before we estimate 𝑃 𝑐𝑗 as the fraction of occurrences of 𝑐𝑗
in 𝐃
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Example: Prameters for the Multinomial Naïve Bayes

 Smoothed parameter estimation for positive class with Laplace smoothing 

with 𝛼 = 1 : 𝛉+ =
6

20
,
10

20
,
4

20

 Smoothed parameter estimation for the negative class:  𝛉− =
12

20
,
4

20
,
4

20
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Naïve Bayes vs. Multinomial Naïve Bayes

 Assume we see new document 𝐝 = #𝑎 = 3, #𝑏 = 1, #𝑐 = 0

 Naïve Bayes: 𝑃 𝐝|𝛉+ 𝑃 𝛉+ =
3

9
⋅
4

9
⋅ 1 −

2

9
⋅ 0.5 = 0.057 and 

𝑃 𝐝|𝛉− 𝑃 𝛉− =
4

8
⋅
2

8
⋅ 1 −

2

8
⋅ 0.5 = 0.047

 Multinomial Naïve Bayes: 𝑃 𝐝|𝛉+ 𝑃 𝛉+ = 4! ⋅
6

20

3

3!
⋅

10

20

1

1!
⋅

4

20

0

0!
⋅ 0.5 = 0.027

and  𝑃 𝐝|𝛉− 𝑃 𝛉− = 4! ⋅
12

20

3

3!
⋅

4

20

1

1!
⋅

4

20

0

0!
⋅ 0.5 = 0.0864
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𝛉+ =
𝟑

𝟗
,
𝟒

𝟗
,
𝟐

𝟗
𝛉− =

𝟒

𝟖
,
𝟐

𝟖
,
𝟐

𝟖
𝛉+ =

𝟔

𝟐𝟎
,
𝟏𝟎

𝟐𝟎
,
𝟒

𝟐𝟎
𝛉− =

𝟏𝟐

𝟐𝟎
,
𝟒

𝟐𝟎
,
𝟒

𝟐𝟎



Summary of Naïve Bayes models

 Fairly good performance even when independence assumption does not 
hold

 Can easily handle the dimensionality problem

 Needs relatively few training samples to estimate probabilities 

(misestimations do not hurt the final calculation of odds 
𝑃 𝑓1,…,𝑓𝑛|𝑐 𝑃 𝑐

𝑃 𝑓1,…,𝑓𝑛|  𝑐 𝑃  𝑐
)

 Performance (e.g. for text classification) is slightly worse than the 
performance of SVMs or neural networks, but NB methods are much 
simpler and more efficient

 When features are highly dependent on each other, performance can 
degrade notably (due to independence assumption)

 Multinomial Naïve Bayes shows empirically better performance than 
Naïve Bayes on large corpora with high variability in document lengths
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