

LINEAR CLASSIFICATION MODELS

Outline

- Geometric classification models
 - Perceptron
 - Winnow
 - Support Vector Machines
- Probabilistic classification models
 - Naïve Bayes
 - ➤ Multinomial Naïve Bayes

Geometric classification models

- **Basic linear classifier** constructs a linear decision boundary $\mathbf{w} \cdot \mathbf{x} = t$
- **w** is the vector from negative to positive center
- > x is an instance feature vector to be classified
- ➤ In the above model: $t = \frac{(p-n)(p+n)}{2} = \frac{\|p\|^2 \|n\|^2}{2}$

Geometric models: Maximum-margin classifiers

- Decision boundary maximizes the margin between negative and positive class
- A geometric model is called **translation invariant** if it does not depend on the origin of the coordinate system is

Expressiveness of geometric linear models

General model (i.e., target function)

$$f(\mathbf{x}) = \begin{cases} 1, & w_1 x_1 + \dots + w_k x_k \ge t \\ -1, & otherwise \end{cases}$$

$$\Leftrightarrow$$

$$f(\mathbf{x}) = sign(\mathbf{w}' \cdot \mathbf{x}'),$$

$$\mathbf{w}' \leftarrow (-t, w_1, \dots, w_k), \qquad \mathbf{x}' = \begin{pmatrix} 1 \\ x_1 \\ \vdots \\ x_k \end{pmatrix}$$

- Classes that are expressed as a disjunction of Boolean features i.e., $C = X_1 \vee \cdots \vee X_k$ can separated
- Separation of Exclusive-Or or general DNF representations, e.g., $C = (X_1 \wedge \overline{X_2}) \vee (\overline{X_1} \wedge X_2)$, or $C = (X_1 \wedge X_2) \vee (X_3 \wedge X_4) \vee (X_2 \wedge X_3)$, is not possible
 - → Problem if data is not linearly separable

The Perceptron Algorithm

- Invented by F. Rosenblatt in 1957
- For labeled data $(\mathbf{x}_1, l(\mathbf{x}_1)), \dots, (\mathbf{x}_n, l(\mathbf{x}_n)), \quad \mathbf{x}_i \in \mathbb{R}^k, \ l(\mathbf{x}_i) \in \{-1,1\}$
- \triangleright Learn \mathbf{w}' for $f = sign(\mathbf{w}' \cdot \mathbf{x}')$ as follows
- 1. Initialize \mathbf{w}' to (0,...,0)
- 2. For each \mathbf{x}_i If $l(\mathbf{x}_i) \neq sign(\mathbf{w}' \cdot \mathbf{x}_i')$ then //e.g., learning rate r = 0.1 $\mathbf{w}' \leftarrow \mathbf{w}' + r \cdot l(\mathbf{x}_i) \cdot \mathbf{x}_i'$
- 3. Repeat 2. until $\frac{1}{n}\sum_{j=1}^n \left(l(\mathbf{x}_j) sign(\mathbf{w}' \cdot \mathbf{x}_j')\right) < \gamma$ //for user-set threshold γ

Example

Convergence of the Perceptron Algorithm

- > Theorem 1
 - If the data is not linearly separable, the algorithm may not finish

- > Theorem 2 (Novikoff 1962)
 - Let $\gamma \in \mathbb{R}$ be chosen in such a way that for all labeled instances $(\mathbf{w}' \cdot \mathbf{x}_i') l(\mathbf{x}_i) > \gamma$ and let $R = \max(|x_1|, ..., |x_{k+1}|; \mathbf{x} \in Training)$.

The number of all possible updates to \mathbf{w}' by the algorithm is bounded by $\frac{R^2}{\gamma^2}$

Expressiveness of the Perceptron Algorithm

> Theorem

- Classes that can be represented by primitive Boolean combination of features, (AND, OR, NAND, NOR) can be represented by the Perceptron Algorithm (i.e., can be separated from their complement)
- ➤ Classes represented by XOR feature combinations or more complex formulas (i.e., for which multiple NANDs or NORs are needed) cannot be represented by the Perceptron Algorithm
- Abstract representation of an XOR case (for: $x_1 \in \{a, -a\}, x_2 \in \{b, -b\}$)

$$C^+ = ((x_1 = -a) \land (x_2 = b)) \lor ((x_1 = a) \land (x_2 = -b))$$

Basic linear classifier vs. Perceptron algorithm

Source: Machine Learning by P. Flach

The Winnow Algorithm

$$f(\mathbf{x}) = \begin{cases} 1, & w_1 x_1 + \dots + w_k x_k \ge t \\ 0, & otherwise \end{cases}$$

- For labeled data $(\mathbf{x}_1, l(\mathbf{x}_1)), \dots, (\mathbf{x}_n, l(\mathbf{x}_n)), \quad \mathbf{x}_i \in \{0,1\}^k, \ l(\mathbf{x}_i) \in \{0,1\}$
- \triangleright Learn w for f(x) as follows
- 1. Set all $w_i\coloneqq 1$, $t\coloneqq \frac{n}{2}$ //leads to good bounds on the number of possible updates
- 2. For each example \mathbf{x}_i If $f(\mathbf{x}_i) = 0 \land l(\mathbf{x}_i) = 1$ //promote involved weights For each j with $x_j = 1$ set $w_j \leftarrow 2w_j$ If $f(\mathbf{x}_i) = 1 \land l(\mathbf{x}_i) = 0$ //demote involved weights For each j with $x_j = 1$ set $w_j \leftarrow \frac{w_j}{2}$
- 3. Repeat 2. until $\frac{1}{n}\sum_{j=1}^{n} (l(\mathbf{x}_j) f(\mathbf{x}_j)) < \gamma$

Number of updates for the Winnow Algorithm

- Initially $f(\mathbf{x}) = x_{i_1} \vee \cdots \vee x_{i_l}$ for certain $x_{i_j} \neq 0$ (i.e., a monotone Boolean function)
 - \rightarrow We need to update $l \leq k$ weight components
- > Also none of these weight components can get greater than t
- The algorithm performs "binary search" in the range of each weight component, which is given by $(0, \frac{n}{2}]$
 - \rightarrow Bound on updates $O(k \log n)$

Advantages of Winnow

- Winnow Algorithm is robust in the presence of label noise or feature noise (important because often training data does not represent well the class distributions)
- Popular in natural language processing where many features are binary
- There exist other robust variations
 - > Example: following updates can be used (balanced version)

2. For each example
$$\mathbf{x}_i$$
 If $(w_j^+ - w_j^-) \cdot \mathbf{x}_i < t \land l(\mathbf{x}_i) = 1$ //promote involved weights For each j with $x_j = 1$ set $w_j^+ \leftarrow 2w_j^+$, $w_j^- \leftarrow \frac{w_j^-}{2}$ If $(w_j^+ - w_j^-) \cdot \mathbf{x}_i > t \land l(\mathbf{x}_i) = 0$ //demote involved weights For each j with $x_j = 1$ set $w_j^+ \leftarrow \frac{w_j^+}{2}$, $w_j^- \leftarrow 2w_j^-$

Support Vector Machines

➢ Goal: Set the separation plane so that margin is maximized (→ maximum margin hyperplane)

Linear SVMs are also called maximum margin classifiers

- ightharpoonup Hyperplane is described by $\mathbf{w} \cdot \mathbf{x}_i t = 0$, where \mathbf{w} is a normal vector to the hyperplane and \mathbf{x} a point on the hyperplane
- The offset (distance) of the hyperplane from the origin: $\frac{t}{\|\mathbf{w}\|}$

Geometry of Support Vector Machines

Source: Machine Learning by P. Flach

Support Vector Machines: Margin width

For every data point on the positive side

$$\mathbf{w} \cdot \mathbf{x}_i - t \ge 1$$

For every data point on the negative side

$$\mathbf{w} \cdot \mathbf{x}_i - t \le -1$$

- \rightarrow Margin width: $\frac{2}{\|\mathbf{w}\|}$
- → Increasing width ⇔ Minimizing ||w||

- ➢ ||w|| is difficult to minimize (it involves square root)
- $\geq \frac{1}{2} \|\mathbf{w}\|^2$ is easier to minimize.

Optimization problem (1)

Quadratic programming optimization problem

$$\begin{aligned} & \text{argmin}_{\mathbf{w},t} \ \ \frac{1}{2} \|\mathbf{w}\|^2 \\ & \text{subject to } y_i(\mathbf{w} \cdot \mathbf{x}_i - t) \geq 1 \\ & \text{for all trainings instances } \mathbf{x}_1, \dots, \mathbf{x}_n \text{ and their true labels } y_1, \dots, y_n \end{aligned}$$

Optimization problem (2)

Quadratic programming optimization problem

 $\begin{aligned} & \text{argmin}_{\mathbf{w},t} \ \ \frac{1}{2} \|\mathbf{w}\|^2 \\ & \text{subject to} \ y_i(\mathbf{w} \cdot \mathbf{x}_i - t) \geq 1 \\ & \text{for all trainings instances} \ \mathbf{x}_1, \dots, \mathbf{x}_n \\ & \text{and their true labels} \ y_1, \dots, y_n \end{aligned}$

Primal form

$$\begin{split} & \boldsymbol{\Lambda}(\mathbf{w},t,\alpha_1,\ldots,\alpha_n) = \left(\frac{1}{2}\|\mathbf{w}\|^2 - \sum_i \alpha_i (y_i(\mathbf{w}\cdot\mathbf{x}_i-t)-1)\right) \\ & \underset{\mathbf{w},t}{\operatorname{argmin}} \max_{\alpha \geq 0} \boldsymbol{\Lambda}(\mathbf{w},t,\alpha_1,\ldots,\alpha_n) \\ & \underset{\mathbf{w},t}{\operatorname{for Lagrange multipliers}} \ \alpha_i \geq 0, 1 \leq i \leq n \end{split}$$

Note: We are not interested in instances \mathbf{x}_i for which $y_i(\mathbf{w} \cdot \mathbf{x}_i - t) - 1 > 0$, for these points α_i must be set to 0, in order to maximize the expression in α

Finding the optimal w

$$\begin{split} \boldsymbol{\Lambda}(\mathbf{w},t,\alpha_1,\ldots,\alpha_n) &= \left(\frac{1}{2}\|\mathbf{w}\|^2 - \sum_i \alpha_i (y_i(\mathbf{w}\cdot\mathbf{x}_i-t)-1)\right) \\ &= \frac{1}{2}\|\mathbf{w}\|^2 - \sum_i \alpha_i y_i(\mathbf{w}\cdot\mathbf{x}_i) + \sum_i \alpha_i y_i t + \sum_i \alpha_i \\ &= \frac{1}{2}\mathbf{w}\cdot\mathbf{w} - \mathbf{w}\left(\sum_i \alpha_i y_i \mathbf{x}_i\right) + t\left(\sum_i \alpha_i y_i\right) + \sum_i \alpha_i \end{split}$$

$$\frac{\partial \boldsymbol{\Lambda}(\mathbf{w},t,\alpha_1,\ldots,\alpha_n)}{\partial \mathbf{w}} = 0 \iff \mathbf{w} = \sum_i \alpha_i y_i \mathbf{x}_i$$
 By plugging these values back into $\boldsymbol{\Lambda}$ we can get rid of \mathbf{w} and t we can get rid of \mathbf{w} and t

$$\frac{\partial \Lambda(\mathbf{w}, t, \alpha_1, \dots, \alpha_n)}{\partial t} = 0 \iff \sum_{i} \alpha_i y_i = 0$$

Dual problem

$$\boldsymbol{\Lambda}(\mathbf{w},t,\alpha_1,\ldots,\alpha_n) = \frac{1}{2}\mathbf{w}\cdot\mathbf{w} - \mathbf{w}\left(\sum_i \alpha_i y_i \mathbf{x}_i\right) + t\left(\sum_i \alpha_i y_i\right) + \sum_i \alpha_i$$

$$\frac{\partial \Lambda(\mathbf{w}, t, \alpha_1, \dots, \alpha_n)}{\partial \mathbf{w}} = 0 \iff \mathbf{w} = \sum_{i} \alpha_i y_i \mathbf{x}_i$$

$$\frac{\partial \mathbf{\Lambda}(\mathbf{w}, t, \alpha_1, \dots, \alpha_n)}{\partial t} = 0 \iff \sum_{i} \alpha_i y_i = 0$$
 By plugging these values to we can get rid of \mathbf{w} and t

By plugging these values back into arLambda

Quadratic optimization problem

$$\boldsymbol{\Lambda}(\alpha_1,\ldots,\alpha_n) = -\frac{1}{2} \left(\sum_i \alpha_i y_i \mathbf{x}_i \right) \left(\sum_i \alpha_i y_i \mathbf{x}_i \right) + \sum_i \alpha_i$$

$$\underset{\alpha \ge 0}{\operatorname{argmax}} \sum_{i} \alpha_{i} - \frac{1}{2} \left(\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j} \right)$$

$$\underset{\text{kernel}}{\text{kernel}}$$

subject to
$$\sum_i \alpha_i y_i = 0$$
 (and $\alpha_i \ge 0$, $1 \le i \le n$)

Solving the SVM optimization problem

- In general, the dual form of a quadratic optimization problem is only a lower bound of the primal formulation
- Under certain conditions, known as Karush-Kuhn-Tucker conditions, which are satisfied by the dual form of the SVM optimization problem, the two solutions become equal
- In practice the dual form is solved through quadratic programming optimization techniques
- \blacktriangleright Once the α_i , $1 \le i \le n$ are known the SVM classifier is:

$$\mathbf{w} \cdot \mathbf{x} + t = \left(\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}\right) \cdot \mathbf{x} + t \begin{cases} \geq 1 \Rightarrow + \\ \leq -1 \Rightarrow - \end{cases}$$

What about t?

SVM vs. Perceptron or Winnow

Soft-margin SVMs

Can the model be extended to handle data that is "almost" linearly separable?

Primal form

 $\begin{aligned} & \operatorname{argmin}_{\mathbf{w},t,\xi} \tfrac{1}{2} \|\mathbf{w}\|^2 + C \sum_i \xi_i \\ & \text{subject to } y_i(\mathbf{w} \cdot \mathbf{x}_i - t) \geq 1 - \xi_i, \xi_i \geq 0 \\ & \text{for all trainings instances } \mathbf{x}_1, \dots, \mathbf{x}_n \\ & \text{and their true labels } y_1, \dots, y_n \end{aligned}$

- > C: is user-specified trade-off between margin width and error
- $\succ \xi_i$: slack variables representing real-valued errors

SVM vs. Soft-Margin SVM

Dual problem for the Soft-Margin SVM

$$\Lambda(\mathbf{w}, t, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) = \frac{1}{2} \mathbf{w} \cdot \mathbf{w} - \mathbf{w} \left(\sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i} \right) + t \left(\sum_{i} \alpha_{i} y_{i} \right) + \sum_{i} \alpha_{i} + \sum_{i} (C - \alpha_{i} - \beta_{i}) \, \xi_{i}$$

$$\partial \Lambda(\mathbf{w}, t, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta}) \qquad \mathbf{\nabla}$$

$$\frac{\partial \Lambda(\mathbf{w}, t, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \mathbf{w}} = 0 \iff \mathbf{w} = \sum_{i} \alpha_{i} y_{i} \mathbf{x}_{i}$$

$$\frac{\partial \Lambda(\mathbf{w}, t, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial t} = 0 \iff \sum_{i} \alpha_{i} y_{i} = 0$$

$$\frac{\partial \Lambda(\mathbf{w}, t, \boldsymbol{\xi}, \boldsymbol{\alpha}, \boldsymbol{\beta})}{\partial \xi_i} = 0 \iff \forall i \colon C - \alpha_i - \beta_i = 0 \iff_{\boldsymbol{\beta} \geq \mathbf{0}} C \geq \alpha_i \geq 0$$

Dual problem

$$\underset{\alpha \geq 0}{\operatorname{argmax}} \sum_{i} \alpha_{i} - \frac{1}{2} \bigg(\sum_{i} \sum_{j} \alpha_{i} \alpha_{j} y_{i} y_{j} \mathbf{x}_{i} \cdot \mathbf{x}_{j} \bigg)$$
 subject to $\sum_{i} \alpha_{i} y_{i} = 0$ (and $C \geq \alpha_{i} \geq 0, 1 \leq i \leq n$)

Summary of SVMs

- Come in different variations (principle is the same)
- Simultaneously minimize the empirical error and maximize the margin width
- Same expressiveness as the perceptron algorithm
- In general, quadratic training time (quadratic optimization)
 - T. Joachims showed linear training time for linear SVMs (www.joachims.org/publications/joachims_06a.pdf)
- > Directly applicable only to two-class problems
- Parameter values in a solution are difficult to interpret

Kernel Trick

- Apply non-linear transformation function $\phi \colon \mathbb{R}^{d_1} \mapsto \mathbb{R}^{d_2}, d_2 > d_1$ to input instances $\mathbf{x}_1, \dots, \mathbf{x}_n$ and find hyperplane $\mathbf{w} \cdot \phi(\mathbf{x}) = t$ that separates the classes
- Same optimization problem as before:

Classification through

$$\mathbf{w} \cdot \mathbf{x} - t = \sum_{i} \alpha_{i} y_{i} \kappa(\mathbf{x}_{i} \cdot \mathbf{x}) - t \begin{cases} \geq 1 \Rightarrow + \\ \leq -1 \Rightarrow - \end{cases}$$

Typical kernel functions:

$$\succ \kappa(\mathbf{x}_1, \mathbf{x}_2) = (\mathbf{x}_1 \cdot \mathbf{x}_2 + c)^d$$
 (polynomial kernel)

$$ightharpoonup \kappa(\mathbf{x}_1, \mathbf{x}_2) = \exp\left(-\frac{\|\mathbf{x}_1 - \mathbf{x}_2\|^2}{2\sigma^2}\right)$$
 (Gaussian kernel)

classification space

Input space

Kernel trick example

- > Suppose that $\mathbf{n} = (0,0)$ and $\mathbf{p} = (0,1)$
- Let us further suppose that $\bf p$ has been derived from two positive examples, i.e., $\bf p=\frac{1}{2}(\bf p_1+\bf p_2)$ with $\bf p_1=(-1,1)$ and $\bf p_2=(1,1)$
- For the basic linear classifier, the separation hyperplane was defined as

$$(\mathbf{p} - \mathbf{n}) \cdot \mathbf{x} = t \Leftrightarrow \frac{1}{2} (\mathbf{p}_1 \cdot \mathbf{x} + \mathbf{p}_2 \cdot \mathbf{x}) - \mathbf{n} \cdot \mathbf{x} = t$$

Applying the kernel trick

$$\mathbf{x} = (x, y) \mapsto \mathbf{x}' = (x^2, y^2, \sqrt{2}xy)$$

$$\mathbf{\kappa}(\mathbf{x}_1 \cdot \mathbf{x}_2) = \mathbf{x}_1' \cdot \mathbf{x}_2'$$

$$= x_1^2 x_2^2 + y_1^2 y_2^2 + 2x_1 y_1 x_2 y_2$$

$$= (\mathbf{x}_1 \cdot \mathbf{x}_2)^2$$

$$\frac{1}{2}\kappa(\mathbf{p}_1 \cdot \mathbf{x}) + \frac{1}{2}\kappa(\mathbf{p}_2 \cdot \mathbf{x}) - \kappa(\mathbf{n} \cdot \mathbf{x}) = t$$

$$\Leftrightarrow x^2 + y^2 = t \text{ (separation function)}$$

Probabilistic classifiers from linear classifiers

 \triangleright We can define $\|\mathbf{w}\|$ as the unit length, then

$$d(\mathbf{x}_i) = \frac{\mathbf{w} \cdot \mathbf{x}_i + t}{\|\mathbf{w}\|}$$

We can learn a (Gaussian) mixture model based on the distances and use Bayes' theorem to derive

$$P(+|d(\mathbf{x}_i)) = \frac{P(d(\mathbf{x}_i)|+)P(+)}{P(d(\mathbf{x}_i)|+)P(+) + P(d(\mathbf{x}_i)|-)P(-)}$$

Naïve Bayes (1)

 \triangleright **D** = {**d**₁, ..., **d**_n} a corpus of documents, where each document is seen as a set of words, and can be represented as a binary vector

$$\mathbf{d}_i = (w_{i1}, \dots, w_{im}), w_{ij} = \begin{cases} 1, w_j \in \mathbf{d}_i \\ 0, w_j \notin \mathbf{d}_i \end{cases}$$

- $\succ c_1, ..., c_k$ topics/classes to which a document can belong
- $\mathbf{V} = \{ w \in \mathbf{d} | \mathbf{d} \in \mathbf{D} \} = \{ w_1, \dots, w_m \}$ vocabulary of all terms in the corpus
- What is the most probable topic for a document?
- \succ We can compute the joint probability of a document \mathbf{d}_i and a topic c_j as

$$P(\mathbf{d}_i, c_j) = P(\mathbf{d}_i | c_j) P(c_j) = P(w_{i1}, \dots, w_{im} | c_j) P(c_j)$$

 \blacktriangleright Most probable topic for \mathbf{d}_i can be found by computing the maximum a posteriori (MAP)

$$\underset{c_j}{\operatorname{argmax}} P(w_{i1}, \dots, w_{im} | c_j) P(c_j)$$

Impossible to estimate!!!
Curse of dimensionality

Naïve Bayes (2)

> If we assume independence between the terms given the topic

$$\underset{c_j}{\operatorname{argmax}} P(w_{i1}, \dots, w_{im} | c_j) P(c_j) = \underset{c_j}{\operatorname{argmax}} P(w_{i1} | c_j) \cdot \dots \cdot P(w_{im} | c_j) P(c_j)$$

Assuming that words follow a multivariate Bernoulli distribution (i.e., categorical distribution) for a given topic

$$P(w|\mathbf{\theta}_j) = \prod_{w' \in c_j} P(w'|c_j)^{\llbracket w = w' \rrbracket}$$

the maximum likelihood estimation of $P(w_{il}|c_j)$ is given by

$$P(w_{il}|c_j) = \frac{\#(w_{il} \land c_j)}{\sum_{w \in \mathbf{V}} \#(w \land c_j)}, \text{ i.e., fraction of occurrences of } w_{il} \text{ in } c_j$$

Similar reasoning for topic distribution yields

$$P(c_j) = \frac{\sum_{\mathbf{d} \in \mathbf{D}} \|c_j \wedge \mathbf{d}\|}{\sum_{c} \sum_{\mathbf{d} \in \mathbf{D}} \|c \wedge \mathbf{d}\|}, \text{ i.e., fraction of occurrences of } c_j \text{ in } \mathbf{D}$$

Naïve Bayes: Smoothing

$$\underset{c_j}{\operatorname{argmax}} P(w_{i1}, \dots, w_{im} | c_j) P(c_j) = \underset{c_j}{\operatorname{argmax}} P(w_{i1} | c_j) \cdot \dots \cdot P(w_{im} | c_j) P(c_j)$$

- What if w_{il} does not occur in topic c_i?
- Use smoothing
 - Laplace smoothing

$$P(w_{il}|c_j) = \frac{\#(w_{il},c_j) + \alpha}{\sum_{w \in \mathbf{V}} (\#(w,c_j) + \alpha)}$$

Jelinek-Mercer smoothing

$$P(w_{il}|c_j) = \lambda P(w_{il}|c_j) + (1 - \lambda)P(w_{il}|\mathbf{D})$$

Dirichlet smoothing (the larger the topic the lower the smoothing)

$$P(w_{il}|c_j) = \frac{\#(w_{il},c_j) + \mu P(w_{il}|\mathbf{D})}{\mu + \sum_{w \in \mathbf{V}} \#(w,c_j)}$$

Example: Parameter estimation for Naïve Bayes

Source: *Machine Learning* by P. Flach

	Terms			
E-mail	a?	b?	c?	Class
e_1	0	1	0	+
e_2	0	1	1	+
e_3	1	0	0	+
e_4	1	1	0	+
e_5	1	1	0	-
e_6	1	0	1	-
e_7	1	0	0	-
e_8	.0	0	0	-

- Smoothed parameter estimation for positive class with Laplace smoothing with $\alpha=1: \theta^+=\left(\frac{3}{9},\frac{4}{9},\frac{2}{9}\right)$
- > Smoothed parameter estimation for the negative class: $\theta^- = \left(\frac{4}{8}, \frac{2}{8}, \frac{2}{8}\right)$

Naïve Bayes as a generative model

- Features are generates by some class
- Every feature is independent of the other features given the class
- In such cases, the joint probability $P(f_1, ..., f_n, c)$ is of interest, because

$$P(c|f_1,...,f_n) = \frac{P(f_1,...,f_n|c)P(c)}{P(f_1,...,f_n)}$$

This term is not defined by the above model, we only know $P(f_1, ..., f_n | c)P(c)$

Multinomial Naïve Bayes

- In the previous model, we dismissed multiple occurrences of words
- > Assuming that documents follow a multinomial distribution

$$P(\mathbf{d}_{i}|\mathbf{\theta}_{j}) = |\mathbf{d}_{i}|! \cdot \prod_{w_{il} \in \mathbf{d}_{i}} \frac{P(w_{il}|c_{j})^{freq(w_{il};\mathbf{d}_{i})}}{freq(w_{il};\mathbf{d}_{i})!}$$

we can estimate the maximum likelihood of $P(w_{il}|c_j)$ as

$$P(w_{il}|c_j) = \frac{\sum_{\mathbf{d} \in c_j} freq(w_{il}; \mathbf{d})}{\sum_{w \in \mathbf{V}} freq(w; c_j)}$$

(all previous smoothing strategies can be used)

ightharpoonup Similarly to before we estimate $P(c_j)$ as the fraction of occurrences of c_j in ${f D}$

Example: Prameters for the Multinomial Naïve Bayes

	Terms			
E-mail	a?	b?	c?	Class
e_1	0	1	0	+
e_2	0	1	1	+
e_3	1	0	0	+
e_4	1	1	0	+
e_5	1	1	0	-
e_6	1	0	1	_
e ₇	1	0	0	_
e_8	0	0	0	_

E-mail	#a	#b	# <i>c</i>	Class
e_1	0	3	0	+
e_2	0	3	3	+
e_3	3	0	0	+
e_4	2	3	0	+
e_5	4	3	0	_
e_6	4	0	3	-
e_7	3	0	0	
e_8	0	0	0	_

Source: Machine Learning by P. Flach

- Smoothed parameter estimation for positive class with Laplace smoothing with $\alpha=1: \theta^+=\left(\frac{6}{20},\frac{10}{20},\frac{4}{20}\right)$
- > Smoothed parameter estimation for the negative class: $\theta^- = \left(\frac{12}{20}, \frac{4}{20}, \frac{4}{20}\right)$

Naïve Bayes vs. Multinomial Naïve Bayes

	Terms			
E-mail	a?	b?	c?	Class
e_1	0	1	0	+
e_2	0	1	1	+
e_3	1	0	0	+
e_4	1	1	0	+
e_5	1	1	0	-
e_6	1	0	1	_
e_7	1	0	0	-
e_8	0	0	0	ı

$$\theta^{+} = \left(\frac{3}{9}, \frac{4}{9}, \frac{2}{9}\right)$$
 $\theta^{-} = \left(\frac{4}{8}, \frac{2}{8}, \frac{2}{8}\right)$

	T			
E-mail	#a	#b	# <i>c</i>	Class
e_1	0	3	0	+
e_2	0	3	3	+
e_3	3	0	0	+
e_4	2	3	0	+
e_5	4	3	0	_
e_6	4	0	3	_
e ₇	3	0	0	
e_8	0	0	0	_

$$\theta^{+} = \left(\frac{3}{9}, \frac{4}{9}, \frac{2}{9}\right) \qquad \qquad \theta^{-} = \left(\frac{4}{8}, \frac{2}{8}, \frac{2}{8}\right) \qquad \qquad \theta^{+} = \left(\frac{6}{20}, \frac{10}{20}, \frac{4}{20}\right) \qquad \theta^{-} = \left(\frac{12}{20}, \frac{4}{20}, \frac{4}{20}\right)$$

- Assume we see new document $\mathbf{d} = (\#a = 3, \#b = 1, \#c = 0)$
 - Naïve Bayes: $P(\mathbf{d}|\mathbf{\theta}^+)P(\mathbf{\theta}^+) = \frac{3}{9} \cdot \frac{4}{9} \cdot \left(1 \frac{2}{9}\right) \cdot 0.5 = 0.057$ and $P(\mathbf{d}|\mathbf{\theta}^{-})P(\mathbf{\theta}^{-}) = \frac{4}{9} \cdot \frac{2}{9} \cdot \left(1 - \frac{2}{9}\right) \cdot 0.5 = 0.047$
 - ➤ Multinomial Naïve Bayes: $P(\mathbf{d}|\mathbf{\theta}^+)P(\mathbf{\theta}^+) = 4! \cdot \frac{\left(\frac{6}{20}\right)^3}{3!} \cdot \frac{\left(\frac{10}{20}\right)^1}{1!} \cdot \frac{\left(\frac{4}{20}\right)^0}{0!} \cdot 0.5 = 0.027$ and $P(\mathbf{d}|\mathbf{\theta}^-)P(\mathbf{\theta}^-) = 4! \cdot \frac{\left(\frac{12}{20}\right)^3}{2!} \cdot \frac{\left(\frac{4}{20}\right)^1}{4!} \cdot \frac{\left(\frac{4}{20}\right)^0}{2!} \cdot 0.5 = 0.0864$ 37

Summary of Naïve Bayes models

- Fairly good performance even when independence assumption does not hold
- Can easily handle the dimensionality problem
- Needs relatively few training samples to estimate probabilities (misestimations do not hurt the final calculation of odds $\frac{P(f_1,...,f_n|c)P(c)}{P(f_1,...,f_n|\bar{c})P(\bar{c})}$)
- ➤ Performance (e.g. for text classification) is slightly worse than the performance of SVMs or neural networks, but NB methods are much simpler and more efficient
- When features are highly dependent on each other, performance can degrade notably (due to independence assumption)
- Multinomial Naïve Bayes shows empirically better performance than Naïve Bayes on large corpora with high variability in document lengths