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Motivation from neurophysiology  

 Goal: Design a learning algorithm that emulates the brain 

 Brain consists of ~1011 interconnected neurons, each connected to ~104 
other neurons 

 Neuron switching time ~10−3 seconds (relatively slow compared to number 
of operations a computer can do per second) 

 

 Hypothesis: In biological learning systems, there is only one generic 
learning algorithm 

 The same brain tissue can be adapted to perform various tasks 

 

Auditory cortex 
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Motivation: Sparse coding for visual processing  
(Olshausen & Field 1996) 

 The visual cortex processes stimuli from the environment by encoding 
them most efficiently, e.g. by removing redundancies and representing 
only the “strongest” stimuli 

 

 

 

 

 

 

 Only relatively “few” neurons are involved in this process 

 

 Each neuron handles certain reoccurring patterns 

Generic patterns occurring in natural images 
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Sparse coding: Formalization as linear model 

𝐯 = 𝑏𝑖  𝛟𝑖
𝑖

 

 In terms of matrix operations: 

𝚽 𝐯 

𝐛 

Target vector 
to be approximated 

Basis function / vector 
(from a dictionary 
of basis functions ) 

weight 
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Sparse coding: Example 1 

 Combination of dictionary entries to sparsely represent a hand-written 
number 

Source: http://wiki.ldv.ei.tum.de/Sparse%20Coding 
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Sparse coding: Example 2 

Source: http://wiki.ldv.ei.tum.de/Sparse%20Coding 
 

Dictionary derived from natural images Reconstruction by using dictionary entries 
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Recap of sparse coding 

 Generic features (i.e., dictionary entries) are combined to yield parts of 
the image 

 

 The reconstructed parts (i.e. super features) can be combined to yield an 
even larger part of the image 

 

 Seems like a hierarchical model … 

 

 Is there a general formalization of this? 
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Deep Belief ANNs: Learning Feature Structures 

 Multi-layer Artificial Neural Network (= Deep Belief Networks) 

𝑋1 𝑋2 𝑋3 𝑋4 Input features 

Model layer 1: Higher level concepts 

Model layer 2: Higher level concepts 

Model layer 3: Higher level concepts 
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Example: Face Recognition (H. Lee et al., ICML’09) 

Pixels 

Edges 

Models for facial parts 

Face models 

 Hierarchical sparse coding 
      through deep belief networks 

 
 Basic features are combined to  
      more general features 

 
 The final layer represents a  
      model of a real-world object 
 
 
 
 
 
 
 
For details see:  
http://dl.acm.org/citation.cfm?id=1553453 
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Example: Categorization of Images (Le et al., ICML’12) 

 ImageNet dataset: 20,000 Categories, 16,000,000 images  

 Task: Automated assignment of images to corresponding categories 

 Probability of correct assignment through random guess: 0,005%  

 State-of-the-art ML techniques: 9.5%  

 Unsupervised learning of features from raw pixels: 19.2% (see: 
http://icml.cc/discuss/2012/73.html) 

 

Source: http://www.image-net.org/explore 
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Common characteristics of problems to solve with ANNs 

 Input instances can be represented as attribute-value pairs 

 E.g.: (pixel position, pixel value), (term id, frequency), (patient, age)… 

 Input attributes can be correlated or independent 

 Input values can be any real values 
 

 Target function can be discrete- or real-valued or a vector of discrete or 
real-valued attributes 

 

 Training examples may contain errors; ANNs are quite robust with respect 
to noise 

 

 Long training times should be acceptable 

 Training time depends on number of weights in the network, the number of 
training examples, and the initial setting of the parameters 

 

 Understanding the learned target function is not critical (or important) 

 Target function is general a non-linear mapping of the input data onto the 
output space  12 



ALVINN: ANN system for autonomous driving 

Source: Machine Learning by T. Mitchell 

 960 inputs connected to 4 
hidden units, which in turn are 
connected to 30 output units 

 

 Matrix on the left depicts 
weight values for one hidden 
unit (the brighter the cells the 
higher the values) 

 

 Values from this hidden unit to 
the 30 output units are 
depicted on top of the matrix 

 

 ALVINN uses Backpropagation 
to adjust the weights and 
enables autonomous driving at 
speeds up to 112 km/h 
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Simplest ANN: The perceptron 

 Input is a vector of features 𝐱 = 𝑥1, … , 𝑥𝑛  of real values, e.g., a persons age, weight, 
height, blood pressure, heart rate, gender … 

 

 Predict risk for heart attack 

 

 Model: 𝑜 𝑥1, … , 𝑥𝑛 =  
   1,  𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑛𝑥𝑛 > 0
−1,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 Or simply: 𝑜 𝐱 = 𝑠𝑖𝑔𝑛 𝐰 ⋅ 𝐱  

. 

. 

. 

Σ 

𝑥0 = 1 

𝑥1 

𝑥2 

𝑥𝑛 

Σ𝑖𝑤𝑖𝑥𝑖 

𝑜 =  
   1,   Σ𝑖𝑤𝑖𝑥𝑖 > 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑤0 𝑤1 

𝑤2 

𝑤𝑛 

Intercept 
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Simplest ANN: The perceptron 

 Model: 𝑜 𝑥1, … , 𝑥𝑛 =  
   1,   𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑛𝑥𝑛 > 0
−1,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Or simply: 𝑜 𝐱 = 𝑠𝑖𝑔𝑛 𝐰 ⋅ 𝐱  

 

 Boolean AND, OR, NAND, and NOR can be represented 

 

 How? 

 

 Why is this important? 

 

. 

. 

. 

Σ 

𝑥0 = 1 

𝑥1 

𝑥2 

𝑥𝑛 

Σ𝑖𝑤𝑖𝑥𝑖 

𝑜 =  
   1,   Σ𝑖𝑤𝑖𝑥𝑖 > 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑤0 𝑤1 

𝑤2 

𝑤𝑛 

Intercept 
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Limitations of perceptrons 

 XOR function cannot be 
represented 

 Can not separate training 
data that is not linearly 
separable 

 Note that a two-layer 
perceptron can represent 
any Boolean function 

+ 

+ 
+ 

+ 

- 

- 

- 

- 
- 

+ - 

+ 
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The perceptron training algorithm 

Start with random weights 𝑤1, …𝑤𝑛 

Until the perceptron classifies all training 

examples correctly 

   For each training example 𝐱 = 𝑥1, … , 𝑥𝑛 , 𝑙 𝐱  

 For each 𝑤𝑖  

      Compute ∆𝑤𝑖 = 𝜂 𝑙 𝐱 − 𝑜 𝐱 𝑥𝑖,  𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖 

Learning rate, e.g., 0.1 True value of 𝐱 

What if training data is not separable? 
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 Lets suppose we aim to minimize  

 Er 𝐰 =
1

2
 𝑙 𝐱 − 𝑜 𝐱

2
𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡  

 

 If we knew the gradient of Er, 𝛻Er 𝐰 =
𝜕Er

𝜕𝑤1
, … ,
𝜕Er

𝜕𝑤𝑛
 we would have 

an algorithm to minimize it 

 

 The negated gradient indicates the direction  

      of the steepest descent  

 

 We would only need to iteratively re-compute 

      the gradient and follow it 

 

 

 

 

 

 

The Gradient Descent Rule (1) 

Source: Machine Learning  
              by T. Mitchell 18 



The Gradient Descent Rule (2) 

 The partial derivative of E for a 𝑤𝑖 is 

 

𝜕Er

𝜕𝑤𝑖
=
1

2
 2 𝑙 𝐱 − 𝑜 𝐱

𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 

𝜕Er

𝜕𝑤𝑖
𝑙 𝐱 − 𝐰 ⋅ 𝐱

=  𝑙 𝐱 − 𝑜 𝐱 (−𝑥𝑖)

𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 

 

 

 Set ∆𝑤𝑖 = −𝜂  𝑙 𝐱 − 𝑜 𝐱 (−𝑥𝑖)𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡  

 

 Then by following the gradient we get 𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖  
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Gradient Descent Algorithm 

Start with random weights 𝑤1, …𝑤𝑛 

Until the error is smaller than some threshold 

 Initialize each ∆𝑤𝑖 to zero 

 For each training example 𝐱 = 𝑥1, … , 𝑥𝑛 , 𝑙 𝐱  

  For each 𝑤𝑖  

   Compute ∆𝑤𝑖 = ∆𝑤𝑖 + 𝜂 𝑙 𝐱 − 𝑜 𝐱 𝑥𝑖,   

  For each 𝑤𝑖  

  𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖 
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Stochastic Gradient Descent Algorithm 

Start with random weights 𝑤1, …𝑤𝑛 

Until the error is smaller than some threshold 

 Initialize each ∆𝑤𝑖 to zero 

 For each training example 𝐱 = 𝑥1, … , 𝑥𝑛 , 𝑙 𝐱  

  For each 𝑤𝑖  

   Compute ∆𝑤𝑖 = ∆𝑤𝑖 + 𝜂 𝑙 𝐱 − 𝑜 𝐱 𝑥𝑖 

      𝑤𝑖 = 𝑤𝑖 + 𝜂 𝑙 𝐱 − 𝑜 𝐱 𝑥𝑖   

  For each 𝑤𝑖  

  𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖 

Delta Rule  
or Least-Mean-Square Rule 
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Remarks to Stochastic Gradient Descent 

 It is an approximation to Gradient Descent 

 

 The actual error function we aimed to minimize is 

Er 𝐰 =
1

2
 𝑙 𝐱 − 𝑜 𝐱

2

𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 

 

 

 Can be applied whenever the solution space is continuously 
parameterized and the error function can be differentiated 

 

 Should be applied whenever there are many possible solutions and the 
training data is too large (because gradient descent is not guaranteed to 
reach the global minimum) 

 

 By making 𝜂 sufficiently small, true gradient descent can be approximated 
arbitrarily closely 
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Multi-Layer Networks: Example 

 Recognize one of ten vowel sounds of the form “h_d” 

 From spectral analysis we can get the first  and the second principal 
component F1 and F2 

Source: “Machine Learning” by T. Mitchell 
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The sigmoid unit: A differentiable threshold unit 

 The cascaded combination of multiple linear threshold units can only 
produce (piece-wise) linear functions 

 As in the previous example, we are interested in representing highly non-
linear functions 

 

. 

. 

. 

Σ 

𝑥0 = 1 

𝑥1 

𝑥2 

𝑥𝑛 

𝑠 = Σ𝑖𝑤𝑖𝑥𝑖 
𝑜 𝑠 = 𝜎 𝑠 =

1

1 + 𝑒−𝑠
 

𝑤0 
𝑤1 

𝑤2 

𝑤𝑛 

The Logistic Regression model 
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Properties of the Logistic unit 

 Can be interpreted as probability  

 Easy to differentiate (i.e., gradients can be easily computed) 

  𝜎 𝑠 =
1

1+𝑒−𝑠
 ,    
𝜕𝜎 𝑠

𝜕𝑠
= 𝜎 𝑠 1 − 𝜎 𝑠  

 

 Can be replaced by other similar so-called sigmoid functions e.g., 
 

 

 𝜎𝑘 𝑠 =
𝑖

1+𝑒−𝑘𝑠
 

 

 

 Φ 𝑠 =  𝒩 𝑡; 0,1
𝑠

−∞
 d𝑡 

 

 

 

 

𝜎 𝑠  
          vs. 

Φ 𝜋/8 𝑠       
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Logistic Regression: a probabilistic perspective 

 Example task: How likely is a stroke for patient 𝐱𝑖 = 𝑥𝑖1, … , 𝑥𝑖𝑘 , e.g., with 
features age=57y, height=178cm, weight=95kg, gender=m, …? 

 

 For large number 𝑛𝑖 of people with same feature values as 𝐱𝑖 report fraction 
of stroke cases 

 

 But we are interested in general importance of the various features 

 

 Formally: 
 𝑌𝑖  ~𝐵𝑖𝑛 𝑛𝑖 , 𝑝𝑖 , i.e., binomially distributed variable (#strokes in 𝑛𝑖  observations) 

 Then 𝑝𝑖 = 𝐸 𝑌𝑖/𝑛𝑖|𝐱𝑖  

 Check log odds by using 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖 = log
𝑝𝑖

1−𝑝𝑖
→ ∞,𝑝𝑖 → 1 → −∞, 𝑝𝑖 → 0  

 Set 𝑤0 +𝐰 ⋅ 𝐱𝑖 = 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖 = log
𝑝𝑖

1−𝑝𝑖
 (i.e., linear combination of feature 

values) 

 If we are interested in 𝑝𝑖, we need to compute 𝑙𝑜𝑔𝑖𝑡−1 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖 =
1

1+𝑒−𝑙𝑜𝑔𝑖𝑡 𝑝𝑖
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Logit vs. logistic function 

 

 

 

 

 

 

 

 

 Properties of logistic regression 

 The smaller the training set, the worse the estimation of log odds 

 Few observations per explanatory variable 𝐱𝑖 may be enough to enable 
reliable predictions 

 In case of sparse data, discretization of the feature domains can be considered 

 Goodness-of-fit can be used to validate the model 

 Decision threshold can be adjusted later through calibration 
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Logistic calibration 

 For linearly separated data and weight vector 𝐰 

 Compute class mean scores 𝜇+ and 𝜇− and the standard deviation 𝑠 with 
respect to the score 𝑤0 +𝐰 ⋅ 𝐱𝑖 / 𝐰  

 For each 𝐱𝑖, compute:  𝛼𝑖 =
𝜇+−𝜇−

𝑠

𝑤0+𝐰⋅𝐱𝑖 / 𝐰

𝑠
−
𝜇+−𝜇−

2𝑠
 

 

 

 

 

 Compute 𝑃 +|𝐱𝑖 =
1

1+𝑒−𝛼𝑖
  

 

 Very effective calibration method that can also be used for feature 
calibration (i.e., for continuous features) 

 Underlying assumptions 

 Data is approximately normally distributed in each class 

 Similar variance in both classes  

Distance (in terms of standard  
deviations) between actual sore  
and the score mean  

# standard deviations between 
the score mean of the positive  
and the negative class 
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Visualization of logistic calibration 

Linearly separated classes with 
specific weight vector 𝐰 

Logistic calibration of data based 
on weight vector 𝐰 corresponds to 
non-linear transformation that pushes 
data away from decision boundary Source: Machine Learning by P. Flach 
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Feed-forward ANNs 

 There are no cycles in terms of information processing (i.e., the output of 
a node is always forwarded to the nodes in the layer above) 

 

 Here we will consider the logistic function as differentiable threshold unit 

𝑋1 𝑋2 𝑋3 𝑋4 

ℎ1 ℎ2 ℎ3 

𝑜1 𝑜2 

Input 

Output layer 

Hidden layer 
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Backpropagation Algorithm for multilayer ANNs 

Initialize all network weights to random values from 

[-0.05, 0.05] 

Until error is smaller than some threshold  

    For each training pair 𝐱𝑖 , 𝑙 𝐱𝑖  

    Forward the instance through the network 

    and compute output 𝑜𝑘 for each 𝑘 

    For each output 𝑜𝑘 

    𝛿𝑘 ← 𝑜𝑘 1 − 𝑜𝑘 𝑙𝑘 𝐱𝑖 − 𝑜𝑘  

    For each hidden unit ℎ 

    𝛿ℎ ← 𝑜ℎ 1 − 𝑜ℎ  𝑤𝑘ℎ𝛿𝑘𝑘∈𝑜𝑢𝑡(ℎ)  

    Update each network weight 𝑤𝑗𝑖 

    𝑤𝑗𝑖 ← 𝑤𝑗𝑖 + 𝜂𝛿𝑗𝑥𝑗𝑖,  

    where 𝑥𝑗𝑖 is the input from unit 𝑖 to 𝑗 
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Expressiveness of ANNs 

 Theorem 
 

 Every Boolean function can be represented by a two-layer ANN 

 

 Every bounded continuous function can  be approximated with arbitrary small 
error by a network with two layers 

 

 Any arbitrary function can be approximated to arbitrary accuracy by a network 
with three layers  

32 



Overfitting with ANNS 

Source: Machine Learning by T. M. Mitchell 
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Common issues of ANNs 

 Overfitting can be mitigated with more variability in the examples of the 
training data 

 

 Training data that covers many different examples is invaluable for deep 
ANNs (e.g., see recent projects like Google Brain Project) 

 

 To learn structure from basic features or accurate classification functions, 
millions of parameters have to be learned  

 

 Training can be extremely slow (if not parallelized) 
 

 If parallelized all machines need to know the current weights 
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Large-scale deep learning (J. Dean et al., 2012)  

Training Data 

Stochastic Gradient Descent: Model replicas  
asynchronously fetch parameters w and push  
gradients ∆w to the parameter server 

 Networks with up to 1.7B parameters 
 Distributed over hundreds of machines and thousands of cores 

Source of figures: J. Dean et al. NIPS 2012 
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Large-scale deep learning (J. Dean et al., 2012)  

Models with more parameters benefit  
more from additional machines 

Time to reach a fixed accuracy (16%) for  
different optimization strategies as a  
function of number of machines 

Source: J. Dean et al. NIPS 2012 

36 



Other types of ANNs 

 Recurrent ANNs  
 E.g., for applications to time series data 

 Output at time 𝑡 is used as input of time 𝑡 + 1 

 

 Dynamic ANNs 
 E.g., start with network that has no (or only few) hidden units and add units as 

needed (in order to minimize some error) 

 E.g., remove or add interconnections between units 

 

 Bayesian Networks and Markov Random Fields 
 Directly model logical dependencies between variables  

 Model interrelations between variables 

 

 Self-Organizing Maps 
 Learn structure in the data 

 Non-linear mapping of data to lower-dimensional space by preserving original 
neighborhood topology 
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