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Motivation from neurophysiology  

 Goal: Design a learning algorithm that emulates the brain 

 Brain consists of ~1011 interconnected neurons, each connected to ~104 
other neurons 

 Neuron switching time ~10−3 seconds (relatively slow compared to number 
of operations a computer can do per second) 

 

 Hypothesis: In biological learning systems, there is only one generic 
learning algorithm 

 The same brain tissue can be adapted to perform various tasks 

 

Auditory cortex 
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Motivation: Sparse coding for visual processing  
(Olshausen & Field 1996) 

 The visual cortex processes stimuli from the environment by encoding 
them most efficiently, e.g. by removing redundancies and representing 
only the “strongest” stimuli 

 

 

 

 

 

 

 Only relatively “few” neurons are involved in this process 

 

 Each neuron handles certain reoccurring patterns 

Generic patterns occurring in natural images 
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Sparse coding: Formalization as linear model 

𝐯 = 𝑏𝑖  𝛟𝑖
𝑖

 

 In terms of matrix operations: 

𝚽 𝐯 

𝐛 

Target vector 
to be approximated 

Basis function / vector 
(from a dictionary 
of basis functions ) 

weight 
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Sparse coding: Example 1 

 Combination of dictionary entries to sparsely represent a hand-written 
number 

Source: http://wiki.ldv.ei.tum.de/Sparse%20Coding 
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Sparse coding: Example 2 

Source: http://wiki.ldv.ei.tum.de/Sparse%20Coding 
 

Dictionary derived from natural images Reconstruction by using dictionary entries 
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Recap of sparse coding 

 Generic features (i.e., dictionary entries) are combined to yield parts of 
the image 

 

 The reconstructed parts (i.e. super features) can be combined to yield an 
even larger part of the image 

 

 Seems like a hierarchical model … 

 

 Is there a general formalization of this? 
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Deep Belief ANNs: Learning Feature Structures 

 Multi-layer Artificial Neural Network (= Deep Belief Networks) 

𝑋1 𝑋2 𝑋3 𝑋4 Input features 

Model layer 1: Higher level concepts 

Model layer 2: Higher level concepts 

Model layer 3: Higher level concepts 
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Example: Face Recognition (H. Lee et al., ICML’09) 

Pixels 

Edges 

Models for facial parts 

Face models 

 Hierarchical sparse coding 
      through deep belief networks 

 
 Basic features are combined to  
      more general features 

 
 The final layer represents a  
      model of a real-world object 
 
 
 
 
 
 
 
For details see:  
http://dl.acm.org/citation.cfm?id=1553453 
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Example: Categorization of Images (Le et al., ICML’12) 

 ImageNet dataset: 20,000 Categories, 16,000,000 images  

 Task: Automated assignment of images to corresponding categories 

 Probability of correct assignment through random guess: 0,005%  

 State-of-the-art ML techniques: 9.5%  

 Unsupervised learning of features from raw pixels: 19.2% (see: 
http://icml.cc/discuss/2012/73.html) 

 

Source: http://www.image-net.org/explore 
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Common characteristics of problems to solve with ANNs 

 Input instances can be represented as attribute-value pairs 

 E.g.: (pixel position, pixel value), (term id, frequency), (patient, age)… 

 Input attributes can be correlated or independent 

 Input values can be any real values 
 

 Target function can be discrete- or real-valued or a vector of discrete or 
real-valued attributes 

 

 Training examples may contain errors; ANNs are quite robust with respect 
to noise 

 

 Long training times should be acceptable 

 Training time depends on number of weights in the network, the number of 
training examples, and the initial setting of the parameters 

 

 Understanding the learned target function is not critical (or important) 

 Target function is general a non-linear mapping of the input data onto the 
output space  12 



ALVINN: ANN system for autonomous driving 

Source: Machine Learning by T. Mitchell 

 960 inputs connected to 4 
hidden units, which in turn are 
connected to 30 output units 

 

 Matrix on the left depicts 
weight values for one hidden 
unit (the brighter the cells the 
higher the values) 

 

 Values from this hidden unit to 
the 30 output units are 
depicted on top of the matrix 

 

 ALVINN uses Backpropagation 
to adjust the weights and 
enables autonomous driving at 
speeds up to 112 km/h 
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Simplest ANN: The perceptron 

 Input is a vector of features 𝐱 = 𝑥1, … , 𝑥𝑛  of real values, e.g., a persons age, weight, 
height, blood pressure, heart rate, gender … 

 

 Predict risk for heart attack 

 

 Model: 𝑜 𝑥1, … , 𝑥𝑛 =  
   1,  𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑛𝑥𝑛 > 0
−1,                                 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

 Or simply: 𝑜 𝐱 = 𝑠𝑖𝑔𝑛 𝐰 ⋅ 𝐱  

. 

. 

. 

Σ 

𝑥0 = 1 

𝑥1 

𝑥2 

𝑥𝑛 

Σ𝑖𝑤𝑖𝑥𝑖 

𝑜 =  
   1,   Σ𝑖𝑤𝑖𝑥𝑖 > 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑤0 𝑤1 

𝑤2 

𝑤𝑛 

Intercept 
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Simplest ANN: The perceptron 

 Model: 𝑜 𝑥1, … , 𝑥𝑛 =  
   1,   𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑛𝑥𝑛 > 0
−1,                                  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 Or simply: 𝑜 𝐱 = 𝑠𝑖𝑔𝑛 𝐰 ⋅ 𝐱  

 

 Boolean AND, OR, NAND, and NOR can be represented 

 

 How? 

 

 Why is this important? 

 

. 

. 

. 

Σ 

𝑥0 = 1 

𝑥1 

𝑥2 

𝑥𝑛 

Σ𝑖𝑤𝑖𝑥𝑖 

𝑜 =  
   1,   Σ𝑖𝑤𝑖𝑥𝑖 > 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

𝑤0 𝑤1 

𝑤2 

𝑤𝑛 

Intercept 
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Limitations of perceptrons 

 XOR function cannot be 
represented 

 Can not separate training 
data that is not linearly 
separable 

 Note that a two-layer 
perceptron can represent 
any Boolean function 

+ 

+ 
+ 

+ 

- 

- 

- 

- 
- 

+ - 

+ 
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The perceptron training algorithm 

Start with random weights 𝑤1, …𝑤𝑛 

Until the perceptron classifies all training 

examples correctly 

   For each training example 𝐱 = 𝑥1, … , 𝑥𝑛 , 𝑙 𝐱  

 For each 𝑤𝑖  

      Compute ∆𝑤𝑖 = 𝜂 𝑙 𝐱 − 𝑜 𝐱 𝑥𝑖,  𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖 

Learning rate, e.g., 0.1 True value of 𝐱 

What if training data is not separable? 
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 Lets suppose we aim to minimize  

 Er 𝐰 =
1

2
 𝑙 𝐱 − 𝑜 𝐱

2
𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡  

 

 If we knew the gradient of Er, 𝛻Er 𝐰 =
𝜕Er

𝜕𝑤1
, … ,
𝜕Er

𝜕𝑤𝑛
 we would have 

an algorithm to minimize it 

 

 The negated gradient indicates the direction  

      of the steepest descent  

 

 We would only need to iteratively re-compute 

      the gradient and follow it 

 

 

 

 

 

 

The Gradient Descent Rule (1) 

Source: Machine Learning  
              by T. Mitchell 18 



The Gradient Descent Rule (2) 

 The partial derivative of E for a 𝑤𝑖 is 

 

𝜕Er

𝜕𝑤𝑖
=
1

2
 2 𝑙 𝐱 − 𝑜 𝐱

𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 

𝜕Er

𝜕𝑤𝑖
𝑙 𝐱 − 𝐰 ⋅ 𝐱

=  𝑙 𝐱 − 𝑜 𝐱 (−𝑥𝑖)

𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 

 

 

 Set ∆𝑤𝑖 = −𝜂  𝑙 𝐱 − 𝑜 𝐱 (−𝑥𝑖)𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡  

 

 Then by following the gradient we get 𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖  
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Gradient Descent Algorithm 

Start with random weights 𝑤1, …𝑤𝑛 

Until the error is smaller than some threshold 

 Initialize each ∆𝑤𝑖 to zero 

 For each training example 𝐱 = 𝑥1, … , 𝑥𝑛 , 𝑙 𝐱  

  For each 𝑤𝑖  

   Compute ∆𝑤𝑖 = ∆𝑤𝑖 + 𝜂 𝑙 𝐱 − 𝑜 𝐱 𝑥𝑖,   

  For each 𝑤𝑖  

  𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖 
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Stochastic Gradient Descent Algorithm 

Start with random weights 𝑤1, …𝑤𝑛 

Until the error is smaller than some threshold 

 Initialize each ∆𝑤𝑖 to zero 

 For each training example 𝐱 = 𝑥1, … , 𝑥𝑛 , 𝑙 𝐱  

  For each 𝑤𝑖  

   Compute ∆𝑤𝑖 = ∆𝑤𝑖 + 𝜂 𝑙 𝐱 − 𝑜 𝐱 𝑥𝑖 

      𝑤𝑖 = 𝑤𝑖 + 𝜂 𝑙 𝐱 − 𝑜 𝐱 𝑥𝑖   

  For each 𝑤𝑖  

  𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖 

Delta Rule  
or Least-Mean-Square Rule 
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Remarks to Stochastic Gradient Descent 

 It is an approximation to Gradient Descent 

 

 The actual error function we aimed to minimize is 

Er 𝐰 =
1

2
 𝑙 𝐱 − 𝑜 𝐱

2

𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡 

 

 

 Can be applied whenever the solution space is continuously 
parameterized and the error function can be differentiated 

 

 Should be applied whenever there are many possible solutions and the 
training data is too large (because gradient descent is not guaranteed to 
reach the global minimum) 

 

 By making 𝜂 sufficiently small, true gradient descent can be approximated 
arbitrarily closely 
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Multi-Layer Networks: Example 

 Recognize one of ten vowel sounds of the form “h_d” 

 From spectral analysis we can get the first  and the second principal 
component F1 and F2 

Source: “Machine Learning” by T. Mitchell 
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The sigmoid unit: A differentiable threshold unit 

 The cascaded combination of multiple linear threshold units can only 
produce (piece-wise) linear functions 

 As in the previous example, we are interested in representing highly non-
linear functions 

 

. 

. 

. 

Σ 

𝑥0 = 1 

𝑥1 

𝑥2 

𝑥𝑛 

𝑠 = Σ𝑖𝑤𝑖𝑥𝑖 
𝑜 𝑠 = 𝜎 𝑠 =

1

1 + 𝑒−𝑠
 

𝑤0 
𝑤1 

𝑤2 

𝑤𝑛 

The Logistic Regression model 
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Properties of the Logistic unit 

 Can be interpreted as probability  

 Easy to differentiate (i.e., gradients can be easily computed) 

  𝜎 𝑠 =
1

1+𝑒−𝑠
 ,    
𝜕𝜎 𝑠

𝜕𝑠
= 𝜎 𝑠 1 − 𝜎 𝑠  

 

 Can be replaced by other similar so-called sigmoid functions e.g., 
 

 

 𝜎𝑘 𝑠 =
𝑖

1+𝑒−𝑘𝑠
 

 

 

 Φ 𝑠 =  𝒩 𝑡; 0,1
𝑠

−∞
 d𝑡 

 

 

 

 

𝜎 𝑠  
          vs. 

Φ 𝜋/8 𝑠       
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Logistic Regression: a probabilistic perspective 

 Example task: How likely is a stroke for patient 𝐱𝑖 = 𝑥𝑖1, … , 𝑥𝑖𝑘 , e.g., with 
features age=57y, height=178cm, weight=95kg, gender=m, …? 

 

 For large number 𝑛𝑖 of people with same feature values as 𝐱𝑖 report fraction 
of stroke cases 

 

 But we are interested in general importance of the various features 

 

 Formally: 
 𝑌𝑖  ~𝐵𝑖𝑛 𝑛𝑖 , 𝑝𝑖 , i.e., binomially distributed variable (#strokes in 𝑛𝑖  observations) 

 Then 𝑝𝑖 = 𝐸 𝑌𝑖/𝑛𝑖|𝐱𝑖  

 Check log odds by using 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖 = log
𝑝𝑖

1−𝑝𝑖
→ ∞,𝑝𝑖 → 1 → −∞, 𝑝𝑖 → 0  

 Set 𝑤0 +𝐰 ⋅ 𝐱𝑖 = 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖 = log
𝑝𝑖

1−𝑝𝑖
 (i.e., linear combination of feature 

values) 

 If we are interested in 𝑝𝑖, we need to compute 𝑙𝑜𝑔𝑖𝑡−1 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖 =
1

1+𝑒−𝑙𝑜𝑔𝑖𝑡 𝑝𝑖
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Logit vs. logistic function 

 

 

 

 

 

 

 

 

 Properties of logistic regression 

 The smaller the training set, the worse the estimation of log odds 

 Few observations per explanatory variable 𝐱𝑖 may be enough to enable 
reliable predictions 

 In case of sparse data, discretization of the feature domains can be considered 

 Goodness-of-fit can be used to validate the model 

 Decision threshold can be adjusted later through calibration 
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Logistic calibration 

 For linearly separated data and weight vector 𝐰 

 Compute class mean scores 𝜇+ and 𝜇− and the standard deviation 𝑠 with 
respect to the score 𝑤0 +𝐰 ⋅ 𝐱𝑖 / 𝐰  

 For each 𝐱𝑖, compute:  𝛼𝑖 =
𝜇+−𝜇−

𝑠

𝑤0+𝐰⋅𝐱𝑖 / 𝐰

𝑠
−
𝜇+−𝜇−

2𝑠
 

 

 

 

 

 Compute 𝑃 +|𝐱𝑖 =
1

1+𝑒−𝛼𝑖
  

 

 Very effective calibration method that can also be used for feature 
calibration (i.e., for continuous features) 

 Underlying assumptions 

 Data is approximately normally distributed in each class 

 Similar variance in both classes  

Distance (in terms of standard  
deviations) between actual sore  
and the score mean  

# standard deviations between 
the score mean of the positive  
and the negative class 
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Visualization of logistic calibration 

Linearly separated classes with 
specific weight vector 𝐰 

Logistic calibration of data based 
on weight vector 𝐰 corresponds to 
non-linear transformation that pushes 
data away from decision boundary Source: Machine Learning by P. Flach 
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Feed-forward ANNs 

 There are no cycles in terms of information processing (i.e., the output of 
a node is always forwarded to the nodes in the layer above) 

 

 Here we will consider the logistic function as differentiable threshold unit 

𝑋1 𝑋2 𝑋3 𝑋4 

ℎ1 ℎ2 ℎ3 

𝑜1 𝑜2 

Input 

Output layer 

Hidden layer 
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Backpropagation Algorithm for multilayer ANNs 

Initialize all network weights to random values from 

[-0.05, 0.05] 

Until error is smaller than some threshold  

    For each training pair 𝐱𝑖 , 𝑙 𝐱𝑖  

    Forward the instance through the network 

    and compute output 𝑜𝑘 for each 𝑘 

    For each output 𝑜𝑘 

    𝛿𝑘 ← 𝑜𝑘 1 − 𝑜𝑘 𝑙𝑘 𝐱𝑖 − 𝑜𝑘  

    For each hidden unit ℎ 

    𝛿ℎ ← 𝑜ℎ 1 − 𝑜ℎ  𝑤𝑘ℎ𝛿𝑘𝑘∈𝑜𝑢𝑡(ℎ)  

    Update each network weight 𝑤𝑗𝑖 

    𝑤𝑗𝑖 ← 𝑤𝑗𝑖 + 𝜂𝛿𝑗𝑥𝑗𝑖,  

    where 𝑥𝑗𝑖 is the input from unit 𝑖 to 𝑗 
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Expressiveness of ANNs 

 Theorem 
 

 Every Boolean function can be represented by a two-layer ANN 

 

 Every bounded continuous function can  be approximated with arbitrary small 
error by a network with two layers 

 

 Any arbitrary function can be approximated to arbitrary accuracy by a network 
with three layers  
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Overfitting with ANNS 

Source: Machine Learning by T. M. Mitchell 
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Common issues of ANNs 

 Overfitting can be mitigated with more variability in the examples of the 
training data 

 

 Training data that covers many different examples is invaluable for deep 
ANNs (e.g., see recent projects like Google Brain Project) 

 

 To learn structure from basic features or accurate classification functions, 
millions of parameters have to be learned  

 

 Training can be extremely slow (if not parallelized) 
 

 If parallelized all machines need to know the current weights 
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Large-scale deep learning (J. Dean et al., 2012)  

Training Data 

Stochastic Gradient Descent: Model replicas  
asynchronously fetch parameters w and push  
gradients ∆w to the parameter server 

 Networks with up to 1.7B parameters 
 Distributed over hundreds of machines and thousands of cores 

Source of figures: J. Dean et al. NIPS 2012 
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Large-scale deep learning (J. Dean et al., 2012)  

Models with more parameters benefit  
more from additional machines 

Time to reach a fixed accuracy (16%) for  
different optimization strategies as a  
function of number of machines 

Source: J. Dean et al. NIPS 2012 
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Other types of ANNs 

 Recurrent ANNs  
 E.g., for applications to time series data 

 Output at time 𝑡 is used as input of time 𝑡 + 1 

 

 Dynamic ANNs 
 E.g., start with network that has no (or only few) hidden units and add units as 

needed (in order to minimize some error) 

 E.g., remove or add interconnections between units 

 

 Bayesian Networks and Markov Random Fields 
 Directly model logical dependencies between variables  

 Model interrelations between variables 

 

 Self-Organizing Maps 
 Learn structure in the data 

 Non-linear mapping of data to lower-dimensional space by preserving original 
neighborhood topology 
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