
ARTIFICIAL NEURAL NETWORKS

1

Outline

 Motivation from neuroscience

 Sparse coding

 Perceptron

 Logistic Regression

 Deep belief networks

 Backpropagation Algorithm

 Scalable inference with Artificial Neural Networks (ANNs)

2

Motivation from neurophysiology

 Goal: Design a learning algorithm that emulates the brain

 Brain consists of ~1011 interconnected neurons, each connected to ~104
other neurons

 Neuron switching time ~10−3 seconds (relatively slow compared to number
of operations a computer can do per second)

 Hypothesis: In biological learning systems, there is only one generic
learning algorithm

 The same brain tissue can be adapted to perform various tasks

Auditory cortex
3

Motivation: Sparse coding for visual processing
(Olshausen & Field 1996)

 The visual cortex processes stimuli from the environment by encoding
them most efficiently, e.g. by removing redundancies and representing
only the “strongest” stimuli

 Only relatively “few” neurons are involved in this process

 Each neuron handles certain reoccurring patterns

Generic patterns occurring in natural images

4

Sparse coding: Formalization as linear model

𝐯 = 𝑏𝑖 𝛟𝑖
𝑖

 In terms of matrix operations:

𝚽 𝐯

𝐛

Target vector
to be approximated

Basis function / vector
(from a dictionary
of basis functions)

weight

5

Sparse coding: Example 1

 Combination of dictionary entries to sparsely represent a hand-written
number

Source: http://wiki.ldv.ei.tum.de/Sparse%20Coding

6

http://wiki.ldv.ei.tum.de/Sparse Coding
http://wiki.ldv.ei.tum.de/Sparse Coding

Sparse coding: Example 2

Source: http://wiki.ldv.ei.tum.de/Sparse%20Coding

Dictionary derived from natural images Reconstruction by using dictionary entries

7

http://wiki.ldv.ei.tum.de/Sparse Coding
http://wiki.ldv.ei.tum.de/Sparse Coding

Recap of sparse coding

 Generic features (i.e., dictionary entries) are combined to yield parts of
the image

 The reconstructed parts (i.e. super features) can be combined to yield an
even larger part of the image

 Seems like a hierarchical model …

 Is there a general formalization of this?

8

Deep Belief ANNs: Learning Feature Structures

 Multi-layer Artificial Neural Network (= Deep Belief Networks)

𝑋1 𝑋2 𝑋3 𝑋4 Input features

Model layer 1: Higher level concepts

Model layer 2: Higher level concepts

Model layer 3: Higher level concepts

9

Example: Face Recognition (H. Lee et al., ICML’09)

Pixels

Edges

Models for facial parts

Face models

 Hierarchical sparse coding
 through deep belief networks

 Basic features are combined to
 more general features

 The final layer represents a
 model of a real-world object

For details see:
http://dl.acm.org/citation.cfm?id=1553453

10

http://dl.acm.org/citation.cfm?id=1553453
http://dl.acm.org/citation.cfm?id=1553453
http://dl.acm.org/citation.cfm?id=1553453

Example: Categorization of Images (Le et al., ICML’12)

 ImageNet dataset: 20,000 Categories, 16,000,000 images

 Task: Automated assignment of images to corresponding categories

 Probability of correct assignment through random guess: 0,005%

 State-of-the-art ML techniques: 9.5%

 Unsupervised learning of features from raw pixels: 19.2% (see:
http://icml.cc/discuss/2012/73.html)

Source: http://www.image-net.org/explore
11

http://icml.cc/discuss/2012/73.html
http://icml.cc/discuss/2012/73.html
http://www.image-net.org/explore
http://www.image-net.org/explore
http://www.image-net.org/explore

Common characteristics of problems to solve with ANNs

 Input instances can be represented as attribute-value pairs

 E.g.: (pixel position, pixel value), (term id, frequency), (patient, age)…

 Input attributes can be correlated or independent

 Input values can be any real values

 Target function can be discrete- or real-valued or a vector of discrete or
real-valued attributes

 Training examples may contain errors; ANNs are quite robust with respect
to noise

 Long training times should be acceptable

 Training time depends on number of weights in the network, the number of
training examples, and the initial setting of the parameters

 Understanding the learned target function is not critical (or important)

 Target function is general a non-linear mapping of the input data onto the
output space 12

ALVINN: ANN system for autonomous driving

Source: Machine Learning by T. Mitchell

 960 inputs connected to 4
hidden units, which in turn are
connected to 30 output units

 Matrix on the left depicts
weight values for one hidden
unit (the brighter the cells the
higher the values)

 Values from this hidden unit to
the 30 output units are
depicted on top of the matrix

 ALVINN uses Backpropagation
to adjust the weights and
enables autonomous driving at
speeds up to 112 km/h

13

Simplest ANN: The perceptron

 Input is a vector of features 𝐱 = 𝑥1, … , 𝑥𝑛 of real values, e.g., a persons age, weight,
height, blood pressure, heart rate, gender …

 Predict risk for heart attack

 Model: 𝑜 𝑥1, … , 𝑥𝑛 =
 1, 𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑛𝑥𝑛 > 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Or simply: 𝑜 𝐱 = 𝑠𝑖𝑔𝑛 𝐰 ⋅ 𝐱

.

.

.

Σ

𝑥0 = 1

𝑥1

𝑥2

𝑥𝑛

Σ𝑖𝑤𝑖𝑥𝑖

𝑜 =
 1, Σ𝑖𝑤𝑖𝑥𝑖 > 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤0 𝑤1

𝑤2

𝑤𝑛

Intercept

14

Simplest ANN: The perceptron

 Model: 𝑜 𝑥1, … , 𝑥𝑛 =
 1, 𝑤0 + 𝑤1𝑥1 +⋯+𝑤𝑛𝑥𝑛 > 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 Or simply: 𝑜 𝐱 = 𝑠𝑖𝑔𝑛 𝐰 ⋅ 𝐱

 Boolean AND, OR, NAND, and NOR can be represented

 How?

 Why is this important?

.

.

.

Σ

𝑥0 = 1

𝑥1

𝑥2

𝑥𝑛

Σ𝑖𝑤𝑖𝑥𝑖

𝑜 =
 1, Σ𝑖𝑤𝑖𝑥𝑖 > 0
−1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

𝑤0 𝑤1

𝑤2

𝑤𝑛

Intercept

15

Limitations of perceptrons

 XOR function cannot be
represented

 Can not separate training
data that is not linearly
separable

 Note that a two-layer
perceptron can represent
any Boolean function

+

+
+

+

-

-

-

-
-

+ -

+

16

The perceptron training algorithm

Start with random weights 𝑤1, …𝑤𝑛

Until the perceptron classifies all training

examples correctly

 For each training example 𝐱 = 𝑥1, … , 𝑥𝑛 , 𝑙 𝐱

 For each 𝑤𝑖

 Compute ∆𝑤𝑖 = 𝜂 𝑙 𝐱 − 𝑜 𝐱 𝑥𝑖, 𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖

Learning rate, e.g., 0.1 True value of 𝐱

What if training data is not separable?

17

 Lets suppose we aim to minimize

 Er 𝐰 =
1

2
 𝑙 𝐱 − 𝑜 𝐱

2
𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡

 If we knew the gradient of Er, 𝛻Er 𝐰 =
𝜕Er

𝜕𝑤1
, … ,
𝜕Er

𝜕𝑤𝑛
 we would have

an algorithm to minimize it

 The negated gradient indicates the direction

 of the steepest descent

 We would only need to iteratively re-compute

 the gradient and follow it

The Gradient Descent Rule (1)

Source: Machine Learning
 by T. Mitchell 18

The Gradient Descent Rule (2)

 The partial derivative of E for a 𝑤𝑖 is

𝜕Er

𝜕𝑤𝑖
=
1

2
 2 𝑙 𝐱 − 𝑜 𝐱

𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡

𝜕Er

𝜕𝑤𝑖
𝑙 𝐱 − 𝐰 ⋅ 𝐱

= 𝑙 𝐱 − 𝑜 𝐱 (−𝑥𝑖)

𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡

 Set ∆𝑤𝑖 = −𝜂 𝑙 𝐱 − 𝑜 𝐱 (−𝑥𝑖)𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡

 Then by following the gradient we get 𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖

19

Gradient Descent Algorithm

Start with random weights 𝑤1, …𝑤𝑛

Until the error is smaller than some threshold

 Initialize each ∆𝑤𝑖 to zero

 For each training example 𝐱 = 𝑥1, … , 𝑥𝑛 , 𝑙 𝐱

 For each 𝑤𝑖

 Compute ∆𝑤𝑖 = ∆𝑤𝑖 + 𝜂 𝑙 𝐱 − 𝑜 𝐱 𝑥𝑖,

 For each 𝑤𝑖

 𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖

20

Stochastic Gradient Descent Algorithm

Start with random weights 𝑤1, …𝑤𝑛

Until the error is smaller than some threshold

 Initialize each ∆𝑤𝑖 to zero

 For each training example 𝐱 = 𝑥1, … , 𝑥𝑛 , 𝑙 𝐱

 For each 𝑤𝑖

 Compute ∆𝑤𝑖 = ∆𝑤𝑖 + 𝜂 𝑙 𝐱 − 𝑜 𝐱 𝑥𝑖

 𝑤𝑖 = 𝑤𝑖 + 𝜂 𝑙 𝐱 − 𝑜 𝐱 𝑥𝑖

 For each 𝑤𝑖

 𝑤𝑖 ← 𝑤𝑖 + ∆𝑤𝑖

Delta Rule
or Least-Mean-Square Rule

21

Remarks to Stochastic Gradient Descent

 It is an approximation to Gradient Descent

 The actual error function we aimed to minimize is

Er 𝐰 =
1

2
 𝑙 𝐱 − 𝑜 𝐱

2

𝐱∈𝑇𝑟𝑎𝑖𝑛𝑆𝑒𝑡

 Can be applied whenever the solution space is continuously
parameterized and the error function can be differentiated

 Should be applied whenever there are many possible solutions and the
training data is too large (because gradient descent is not guaranteed to
reach the global minimum)

 By making 𝜂 sufficiently small, true gradient descent can be approximated
arbitrarily closely

 22

Multi-Layer Networks: Example

 Recognize one of ten vowel sounds of the form “h_d”

 From spectral analysis we can get the first and the second principal
component F1 and F2

Source: “Machine Learning” by T. Mitchell

23

The sigmoid unit: A differentiable threshold unit

 The cascaded combination of multiple linear threshold units can only
produce (piece-wise) linear functions

 As in the previous example, we are interested in representing highly non-
linear functions

.

.

.

Σ

𝑥0 = 1

𝑥1

𝑥2

𝑥𝑛

𝑠 = Σ𝑖𝑤𝑖𝑥𝑖
𝑜 𝑠 = 𝜎 𝑠 =

1

1 + 𝑒−𝑠

𝑤0
𝑤1

𝑤2

𝑤𝑛

The Logistic Regression model

24

Properties of the Logistic unit

 Can be interpreted as probability

 Easy to differentiate (i.e., gradients can be easily computed)

 𝜎 𝑠 =
1

1+𝑒−𝑠
 ,
𝜕𝜎 𝑠

𝜕𝑠
= 𝜎 𝑠 1 − 𝜎 𝑠

 Can be replaced by other similar so-called sigmoid functions e.g.,

 𝜎𝑘 𝑠 =
𝑖

1+𝑒−𝑘𝑠

 Φ 𝑠 = 𝒩 𝑡; 0,1
𝑠

−∞
 d𝑡

𝜎 𝑠
 vs.

Φ 𝜋/8 𝑠

25

Logistic Regression: a probabilistic perspective

 Example task: How likely is a stroke for patient 𝐱𝑖 = 𝑥𝑖1, … , 𝑥𝑖𝑘 , e.g., with
features age=57y, height=178cm, weight=95kg, gender=m, …?

 For large number 𝑛𝑖 of people with same feature values as 𝐱𝑖 report fraction
of stroke cases

 But we are interested in general importance of the various features

 Formally:
 𝑌𝑖 ~𝐵𝑖𝑛 𝑛𝑖 , 𝑝𝑖 , i.e., binomially distributed variable (#strokes in 𝑛𝑖 observations)

 Then 𝑝𝑖 = 𝐸 𝑌𝑖/𝑛𝑖|𝐱𝑖

 Check log odds by using 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖 = log
𝑝𝑖

1−𝑝𝑖
→ ∞,𝑝𝑖 → 1 → −∞, 𝑝𝑖 → 0

 Set 𝑤0 +𝐰 ⋅ 𝐱𝑖 = 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖 = log
𝑝𝑖

1−𝑝𝑖
 (i.e., linear combination of feature

values)

 If we are interested in 𝑝𝑖, we need to compute 𝑙𝑜𝑔𝑖𝑡−1 𝑙𝑜𝑔𝑖𝑡 𝑝𝑖 =
1

1+𝑒−𝑙𝑜𝑔𝑖𝑡 𝑝𝑖

26

Logit vs. logistic function

 Properties of logistic regression

 The smaller the training set, the worse the estimation of log odds

 Few observations per explanatory variable 𝐱𝑖 may be enough to enable
reliable predictions

 In case of sparse data, discretization of the feature domains can be considered

 Goodness-of-fit can be used to validate the model

 Decision threshold can be adjusted later through calibration

27

Logistic calibration

 For linearly separated data and weight vector 𝐰

 Compute class mean scores 𝜇+ and 𝜇− and the standard deviation 𝑠 with
respect to the score 𝑤0 +𝐰 ⋅ 𝐱𝑖 / 𝐰

 For each 𝐱𝑖, compute: 𝛼𝑖 =
𝜇+−𝜇−

𝑠

𝑤0+𝐰⋅𝐱𝑖 / 𝐰

𝑠
−
𝜇+−𝜇−

2𝑠

 Compute 𝑃 +|𝐱𝑖 =
1

1+𝑒−𝛼𝑖

 Very effective calibration method that can also be used for feature
calibration (i.e., for continuous features)

 Underlying assumptions

 Data is approximately normally distributed in each class

 Similar variance in both classes

Distance (in terms of standard
deviations) between actual sore
and the score mean

standard deviations between
the score mean of the positive
and the negative class

28

Visualization of logistic calibration

Linearly separated classes with
specific weight vector 𝐰

Logistic calibration of data based
on weight vector 𝐰 corresponds to
non-linear transformation that pushes
data away from decision boundary Source: Machine Learning by P. Flach

29

Feed-forward ANNs

 There are no cycles in terms of information processing (i.e., the output of
a node is always forwarded to the nodes in the layer above)

 Here we will consider the logistic function as differentiable threshold unit

𝑋1 𝑋2 𝑋3 𝑋4

ℎ1 ℎ2 ℎ3

𝑜1 𝑜2

Input

Output layer

Hidden layer

30

Backpropagation Algorithm for multilayer ANNs

Initialize all network weights to random values from

[-0.05, 0.05]

Until error is smaller than some threshold

 For each training pair 𝐱𝑖 , 𝑙 𝐱𝑖

 Forward the instance through the network

 and compute output 𝑜𝑘 for each 𝑘

 For each output 𝑜𝑘

 𝛿𝑘 ← 𝑜𝑘 1 − 𝑜𝑘 𝑙𝑘 𝐱𝑖 − 𝑜𝑘

 For each hidden unit ℎ

 𝛿ℎ ← 𝑜ℎ 1 − 𝑜ℎ 𝑤𝑘ℎ𝛿𝑘𝑘∈𝑜𝑢𝑡(ℎ)

 Update each network weight 𝑤𝑗𝑖

 𝑤𝑗𝑖 ← 𝑤𝑗𝑖 + 𝜂𝛿𝑗𝑥𝑗𝑖,

 where 𝑥𝑗𝑖 is the input from unit 𝑖 to 𝑗

31

Expressiveness of ANNs

 Theorem

 Every Boolean function can be represented by a two-layer ANN

 Every bounded continuous function can be approximated with arbitrary small
error by a network with two layers

 Any arbitrary function can be approximated to arbitrary accuracy by a network
with three layers

32

Overfitting with ANNS

Source: Machine Learning by T. M. Mitchell

33

Common issues of ANNs

 Overfitting can be mitigated with more variability in the examples of the
training data

 Training data that covers many different examples is invaluable for deep
ANNs (e.g., see recent projects like Google Brain Project)

 To learn structure from basic features or accurate classification functions,
millions of parameters have to be learned

 Training can be extremely slow (if not parallelized)

 If parallelized all machines need to know the current weights

34

Large-scale deep learning (J. Dean et al., 2012)

Training Data

Stochastic Gradient Descent: Model replicas
asynchronously fetch parameters w and push
gradients ∆w to the parameter server

 Networks with up to 1.7B parameters
 Distributed over hundreds of machines and thousands of cores

Source of figures: J. Dean et al. NIPS 2012
35

Large-scale deep learning (J. Dean et al., 2012)

Models with more parameters benefit
more from additional machines

Time to reach a fixed accuracy (16%) for
different optimization strategies as a
function of number of machines

Source: J. Dean et al. NIPS 2012

36

Other types of ANNs

 Recurrent ANNs
 E.g., for applications to time series data

 Output at time 𝑡 is used as input of time 𝑡 + 1

 Dynamic ANNs
 E.g., start with network that has no (or only few) hidden units and add units as

needed (in order to minimize some error)

 E.g., remove or add interconnections between units

 Bayesian Networks and Markov Random Fields
 Directly model logical dependencies between variables

 Model interrelations between variables

 Self-Organizing Maps
 Learn structure in the data

 Non-linear mapping of data to lower-dimensional space by preserving original
neighborhood topology

37

