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Motivation from neurophysiology

» Goal: Design a learning algorithm that emulates the brain

> Brain consists of ~101! interconnected neurons, each connected to ~10%
other neurons

> Neuron switching time ~1073 seconds (relatively slow compared to number
of operations a computer can do per second)

» Hypothesis: In biological learning systems, there is only one generic
learning algorithm

» The same brain tissue can be adapted to perform various tasks

Auditory cortex
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» The visual cortex processes stimuli from the environment by encoding
them most efficiently, e.g. by removing redundancies and representing
only the “strongest” stimuli

5

Generic patterns occurring in natural images

» Only relatively “few” neurons are involved in this process

» Each neuron handles certain reoccurring patterns
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Sparse coding: Formalization as linear model

to be approximated

Basis function / vector
Target vector
& I VvV = z bi (I)i / (from a dictionary
> of basis functions )

In terms of matrix operations:
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LU Sparse coding: Example 1

» Combination of dictionary entries to sparsely represent a hand-written

number

TIo=1|" (1] T 1] 7 [#1] 11+, 408 7 [+08

A

Source: http://wiki.ldv.ei.tum.de/Sparse%20Coding
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Sparse coding: Example 2

WY AT CeaslTEhNer
WNCIaNSISARA NISPEN
UENSTUNrFPLIRSEENEY
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UZRTONAYSETINEENYAN
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ALIEIN FLY T ] T Bl g
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BUZNNSENSKYESENNUNN
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SMASASSZESENINNSVED
dAERLEVAENEVNIRSAEEEN
EZAMARNAINNZNDIERNN
NAddREENSUENA=ZD

Dictionary derived from natural images Reconstruction by using dictionary entries

Source: http://wiki.ldv.ei.tum.de/Sparse%20Coding
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Recap of sparse coding

» Generic features (i.e., dictionary entries) are combined to yield parts of
the image

» The reconstructed parts (i.e. super features) can be combined to yield an
even larger part of the image

> Seems like a hierarchical model ...

» |s there a general formalization of this?
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Deep Belief ANNs: Learning Feature Structures

» Multi-layer Artificial Neural Network (= Deep Belief Networks)

Model layer 3: Higher level concepts

Model layer 2: Higher level concepts

Model layer 1: Higher level concepts

Input features
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Example: Face Recognition (H. Lee et al., ICML'09)

> Hierarchical sparse coding ‘. - ;% N ,T
through deep belief networks . - ‘T, ‘H L)
Face models
Ovahesn
> Basic features are combined to | P o .
more general features
> The final layer represents a T = 7 el for facial
model of a real-world object 'r U—u. Models for facial parts

Edges

For details see:
http://dl.acm.org/citation.cfm?id=1553453

Pixels
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» ImageNet dataset: 20,000 Categories, 16,000,000 images

» Task: Automated assignment of images to corresponding categories
» Probability of correct assignment through random guess: 0,005%
» State-of-the-art ML techniques: 9.5%

» Unsupervised learning of features from raw pixels: 19.2% (see:
http://icml.cc/discuss/2012/73.html)

-~
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» Input instances can be represented as attribute-value pairs
» E.g.: (pixel position, pixel value), (term id, frequency), (patient, age)...
» Input attributes can be correlated or independent
» Input values can be any real values

» Target function can be discrete- or real-valued or a vector of discrete or
real-valued attributes

» Training examples may contain errors; ANNs are quite robust with respect
to noise

» Long training times should be acceptable

» Training time depends on number of weights in the network, the number of
training examples, and the initial setting of the parameters

» Understanding the learned target function is not critical (or important)

» Target function is general a non-linear mapping of the input data onto the
output space 12
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» 960 inputs connected to 4
hidden units, which in turn are
connected to 30 output units

» Matrix on the left depicts
weight values for one hidden
unit (the brighter the cells the
higher the values)

» Values from this hidden unit to
the 30 output units are
depicted on top of the matrix

> ALVINN uses Backpropagation L B
to adjust the weights and .
enables autonomous driving at
speeds up to 112 km/h

Source: Machine Learning by T. Mitchell
13
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Simplest ANN: The perceptron

> Input is a vector of features x = (x4, ..., x,,) of real values, e.g., a persons age, weight,
height, blood pressure, heart rate, gender ...

> Predict risk for heart attack

1, wo+wixi+--4+w,x, >0
> Model: 0(xq, ...,xn)={_1 0 1 otl;lerT:/vise

» Orsimply: o(x) = sign(w - x)
Intercept

{ 1, Ziwixi >0

0= .
—1, otherwise

®

L)
NV

Lwix;

14
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Simplest ANN: The perceptron

1, wog+wixqy+--+wpx, >0
-1, otherwise
» Orsimply: 0(x) = sign(w - x)

Model: o(xq, ..., X)) = {

» Boolean AND, OR, NAND, and NOR can be represented
> How?

» Why is this important?
Intercept

|

L)
NV

Lwix;

1, Zi W; X >0
—1, otherwise

15
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Limitations of perceptrons

> XOR function cannot be
represented

» Can not separate training +4
data that is not linearly +/ -
separable +

> Note that a two-layer ———p
perceptron can represent -
any Boolean function
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The perceptron training algorithm

Start with random weights wy,..w,

Until the perceptron classifies all training
examples correctly

For each training example (X==ijuuxn)l00)
For each w;

Compute AWi = T](l(X) — o(x))xi, w; < w; + AWi

Learning rate, e.g., 0.1  True value of X

What if training data is not separable?

17
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Lets suppose we aim to minimize

> Er(w) = %ZXETrainSet (l(X) - O(X))Z

> If we knew the gradient of Er, VEr(w) = [ﬂ OEr

ow,’ " ow,

] we would have

an algorithm to minimize it

» The negated gradient indicates the direction
of the steepest descent

» We would only need to iteratively re-compute
the gradient and follow it

Source: Machine Learning
by T. Mitchell 18



Hasso

Plattner
Institut
| Universitat Potsdam

T Systems Engineering

The Gradient Descent Rule (2)

» The partial derivative of E for a w; is

okr _1 IF
awr- ) z 2(1(x) —o(x)) awlj (LX) — w-X)
' XETrainSet [
B Z (1) = 000) (=)
XETrainSet

> Set Aw; = —1 (erTrainSet (l(X) - O(X))(_xi))

» Then by following the gradient we get w; « w; + Aw;

19
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Gradient Descent Algorithm

Start with random weights wy,..w,
Until the error is smaller than some threshold
Initialize each Aw; to zero
For each training example (X= (xl,...,xn),l(x))
For each w;
Compute Aw; = Aw; +1(1(x) — 0(x))x;,
For each w;

w; « w; + Aw;

20
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Stochastic Gradient Descent Algorithm

Start with random weights wy,..w,
Until the error 1s smaller than some threshold
i -
For each training example (X=(x1, ...,xn),l(x))
For each w;
COMPUT € ettt i

w; =w; + n(l(X) — O(X))Xi

A

— il
PR VY PPV A AT VT A—

Delta Rule
or Least-Mean-Square Rule

21
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Remarks to Stochastic Gradient Descent

It is an approximation to Gradient Descent

The actual error function we aimed to minimize is

1
Er(w) = - z (1) — 0(x))’

XETrainSet

Can be applied whenever the solution space is continuously
parameterized and the error function can be differentiated

Should be applied whenever there are many possible solutions and the
training data is too large (because gradient descent is not guaranteed to
reach the global minimum)

By making n sufficiently small, true gradient descent can be approximated
arbitrarily closely

22
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Multi-Layer Networks: Example

» Recognize one of ten vowel sounds of the form “h_d”

» From spectral analysis we can get the first and the second principal
component F1 and F2

O hand
« hid

+ hod

» had

+ haved
1 v heard
0 heed
« hud

» vho'd
a hood

Source: “Machine Learning” by T. Mitchell

23



Hasso
Plattner
Institut

== The sigmoid unit: A differentiable threshold unit

» The cascaded combination of multiple linear threshold units can only
produce (piece-wise) linear functions

» As in the previous example, we are interested in representing highly non-

linear functions

S = XWiX; % 1

o(s) =o0(s) = T o=

The Logistic Regression model

24
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Properties of the Logistic unit

» Can be interpreted as probability
» Easy to differentiate (i.e., gradients can be easily computed)

0(s) = —=, Z2=0(s)(1-0(s))

1+e~S’

» Can be replaced by other similar so-called sigmoid functions e.g.,

!

> oy (s) =

|

1+e‘k5

|

|

> o(s) = [°_N(t0,1) dt

0.0 0.1 02 03 04 05 06 07 08 09 1.0

25
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Logistic Regression: a probabilistic perspective

» Example task: How likely is a stroke for patient x; = (x;q, ..., X;x), €.8., with
features age=57y, height=178cm, weight=95kg, gender=m, ...?

» For large number n; of people with same feature values as Xx; report fraction
of stroke cases

» But we are interested in general importance of the various features

» Formally:
> Y; ~Bin(n;,p;), i.e., binomially distributed variable (#strokes in n; observations)
» Thenp; = E(Y;/n;|x;)
Pi
1-p;

» Check log odds by using logit(p;) = log( ) — o0o,p; &> 1 (> —o0,p; = 0)

> Setwy +w-X; = logit(p;) = log (—1p; ) (i.e., linear combination of feature
—Pi
values)
1

14~ logit(p;)

> If we are interested in p;, we need to compute logit~1(logit(p;)) =

26
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Logit vs. logistic function

B 1.0 Josic?)
. P P=
4] logit(P)= ]H(EJ 054 1+ o5t
a— 24
o 0.6
z o
3 0.4+
24
0.2-
4
N 0.0-
00 02 04 08 08 10 £5-422101233456
P Logit(P)

» Properties of logistic regression
» The smaller the training set, the worse the estimation of log odds

» Few observations per explanatory variable x; may be enough to enable
reliable predictions

» In case of sparse data, discretization of the feature domains can be considered
» Goodness-of-fit can be used to validate the model
» Decision threshold can be adjusted later through calibration

27
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Logistic calibration

» For linearly separated data and weight vector w

> Compute class mean scores u* and u~ and the standard deviation s with
respect to the score (wy, + w - x;)/||w]|

oy~ X +_ -

» For each x;, compute: a; = Gl )((W0+W x)/lwll — (u*-u7)
A S 2s

|

# standard deviations between Distance (in terms of standard
the score mean of the positive  deviations) between actual sore
and the negative class and the score mean

» Compute P(+|x;) =

1+e " %i

» Very effective calibration method that can also be used for feature
calibration (i.e., for continuous features)
» Underlying assumptions
» Data is approximately normally distributed in each class
» Similar variance in both classes

28



Hasso
Plattner
Institut

Visualization of logistic calibration

1

o 1 2 s 4 5 6
Linearly separated classes with Logistic calibration of data based
specific weight vector w on weight vector w corresponds to

non-linear transformation that pushes

data away from decision boundary

Source: Machine Learning by P. Flach
29
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Feed-forward ANNSs

Output layer

Hidden layer

Input

» There are no cycles in terms of information processing (i.e., the output of
a node is always forwarded to the nodes in the layer above)

» Here we will consider the logistic function as differentiable threshold unit

30
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Backpropagation Algorithm for multilayer ANNs

Initialize all network weights to random values from
[-0.05, 0.05]

Until error 1s smaller than some threshold
For each training pair (x;1(x;))
Forward the instance through the network
and compute output o0, for each k

For each output o

6 < 0k (1 — 0 ) (L (%) — 0y)
For each hidden unit h

6p < 0p(1 — 0n) Lkeout(n) WknOk
Update each network weight wy

Wj; < Wj; + 10jX;i,

where Xxj; is the input from unit i to j

31
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Expressiveness of ANNs

» Theorem

» Every Boolean function can be represented by a two-layer ANN

» Every bounded continuous function can be approximated with arbitrary small
error by a network with two layers

» Any arbitrary function can be approximated to arbitrary accuracy by a network
with three layers

32
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0.01
0.009
0.008
0.007
0.006
0.005
0.004
0.003
0.002

Overfitting with ANNS

| | I

Training set error
Validation set error

5000 10000 15000
Number of weight updates

Source: Machine Learning by T. M. Mitchell
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Common issues of ANNs

Overfitting can be mitigated with more variability in the examples of the
training data

Training data that covers many different examples is invaluable for deep
ANNs (e.g., see recent projects like Google Brain Project)

To learn structure from basic features or accurate classification functions,
millions of parameters have to be learned

Training can be extremely slow (if not parallelized)

If parallelized all machines need to know the current weights

34
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Large-scale deep learning (J. Dean et al., 2012)

» Networks with up to 1.7B parameters
> Distributed over hundreds of machines and thousands of cores

Training Data

7 aulydely

b BUIYIELY

Parameter Server W — W - Hﬂw

(000000
o/ 1]\
Model DD DD DD
reles ) (U (OO
9 B 8

Dasa
Shards

Stochastic Gradient Descent: Model replicas
asynchronously fetch parameters w and push
gradients Aw to the parameter server

Source of figures: J. Dean et al. NIPS 2012
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—a— Speech: 42M parameters

- & - Images: 20M paramstars
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Models with more parameters benefit

Machines per model instance

more from additional machines

Time {hours)

Large-scale deep learning (J. Dean et al., 2012)

Timea 1o 16% accuracy
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Time to reach a fixed accuracy (16%) for
different optimization strategies as a
function of number of machines

Source: J. Dean et al. NIPS 2012
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» Recurrent ANNs
» E.g., for applications to time series data
» Output at time t is used as input of time t + 1

Other types of ANNs

» Dynamic ANNs

» E.g., start with network that has no (or only few) hidden units and add units as
needed (in order to minimize some error)

» E.g., remove or add interconnections between units

» Bayesian Networks and Markov Random Fields
» Directly model logical dependencies between variables
» Model interrelations between variables

» Self-Organizing Maps
» Learn structure in the data

» Non-linear mapping of data to lower-dimensional space by preserving original
neighborhood topology
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