
NON-LINEAR CLASSIFICATION MODELS

1

Outline

 k-Nearest Neighbors

 Rule-based classification

 Decision trees

 Random forests

 Boosting

2

Distance metric

 Let 𝑿 = 𝐱1, 𝐱2, 𝐱3, … be the instance space

 A function 𝑑:𝑿 × 𝑿 → ℝ is called a distance metric if for every

𝐱𝑖 , 𝐱𝑗 , 𝐱𝑘 ∈ 𝑿 (i.e., the metric space):

1. 𝑑 𝐱𝑖 , 𝐱𝑗 = 0 only if 𝑖 = 𝑗, otherwise 𝑑 𝐱𝑖 , 𝐱𝑗 > 0

2. 𝑑 𝐱𝑖 , 𝐱𝑗 = 𝑑 𝐱𝑗 , 𝐱𝑖 (i.e., symmetry)

3. 𝑑 𝐱𝑖 , 𝐱𝑘 ≤ 𝑑 𝐱𝑖 , 𝐱𝑗 + 𝑑 𝐱𝑗 , 𝐱𝑘 (triangle inequality)

3

k-Nearest Neighbors

 Let 𝐱 be an instance and 𝑳 = 𝑐1, … , 𝑐𝑚 the possible classes

 Let N𝑘 𝐱 = {𝐱1, … , 𝐱𝑘} be the 𝑘 nearest labeled neighbors of 𝐱
(according to some metric)

 Classify 𝐱 as

argmax
𝑐∈𝑳

𝐱𝑖∈N𝑘 𝐱

𝑤𝑖 𝑙 𝐱𝑖 = 𝑐

𝑤𝑖 ≔
1

𝑑 𝐱, 𝐱𝑖
2

height

circumference

pears

apples

4

𝐱

Example: Euclidean vs. Manhattan Distance

5

Non-convex decision regionsLinear decision regions

Source: Machine Learning by P. Flach

Remarks on k-NN

 “Lazy” multi-class classifier, almost Bayes optimal (with twice Bayes error
rate as error upper bound)

 Very good performance if training instances from each class approach the
true distribution of the class

 Can be computationally intensive (efficient computation of k-nearest
neighbors is needed)

 All features/attributes are equally important (but in practical learning
situations some features are more important than others)

 Highly susceptible to the “curse of dimensionality”

6

Efficient techniques for finding k-NN

 Naive space partitioning and exhaustive search in near-by partitions

 K-d trees

 Space partitioning in-memory data structure for high-dimensional data

 R-trees (if data points have spatial extension)

 On-disc data structure for indexing an overlapping partitioning of the data
space; search is done based on bounding boxes and spatial joins

 Locality sensitive hashing for approximate k-NN search

 Data points are mapped to lower dimensional space so that topology
(according to some metric or similarity) is maintained

7

K-d trees

 Iterate over the dimensions and find the best splitting point(s) in each
dimension

Source: Wikipedia

8

kNN search with K-d trees

 k-NN search based on

Euclidean distance by iteratively

decreasing a bounding sphere

until k nearest neighbors are found

 What is the complexity of k-NN search?

9

Source: Wikipedia

Rule-based classification

How do we know whether rules will perform well for a given classification task?

𝑥 𝑒 ∧ ¬𝑦 𝑒 ∨ 𝑦 𝑒 ∧ ¬𝑥 𝑒 ⇒ 𝑒 =

¬𝑦 𝑒 ∧ ¬𝑥 𝑒 ∨ 𝑥 𝑒 ∧ 𝑦 𝑒 ⇒ 𝑒 =

0 1

0

1

𝑐𝑜𝑙𝑜𝑟 𝑒 = 𝑟𝑒𝑑 ⇒ 𝑒 = 𝑎𝑝𝑝𝑙𝑒

𝑐𝑜𝑙𝑜𝑟 𝑒 = 𝑦𝑒𝑙𝑙𝑜𝑤 ∧ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑒 < 150𝑔 ⇒ 𝑒 = 𝑝𝑒𝑎𝑟

𝑐𝑜𝑙𝑜𝑟 𝑒 = 𝑦𝑒𝑙𝑙𝑜𝑤 ∧ 𝑤𝑒𝑖𝑔ℎ𝑡 𝑒 ≥ 150𝑔 ⇒ 𝑒 = 𝑎𝑝𝑝𝑙𝑒

10

Association rules

 Rules of the form 𝒜 ⇒ 𝒞 (for classification: 𝒜 is a set of feature values, 𝒞 is a
single class or a set of feature values),𝒜 is called antecedent, 𝒞 is called
consequent

 Support/coverage of an association rule 𝒜 ⇒ 𝒞: Relative number of cases for

which implication is true, denoted by 𝑠𝑢𝑝𝑝 𝒜 ⇒ 𝒞 =
𝒜∪𝒞

𝑛
, where 𝑛 is the

number of all cases

 Confidence/accuracy of an association rule 𝒜 ⇒ 𝒞:

𝑐𝑜𝑛𝑓 𝒜 ⇒ 𝒞 =
𝑠𝑢𝑝𝑝(𝒜 ⇒ 𝒞)

𝑠𝑢𝑝𝑝(𝒜 ⇒∗)

 Lift of an association rule 𝒜 ⇒ 𝒞:

𝑙𝑖𝑓𝑡 𝒜 ⇒ 𝒞 =
𝑠𝑢𝑝𝑝(𝒜 ⇒ 𝒞)

𝑠𝑢𝑝𝑝 𝒜 ⇒∗ 𝑠𝑢𝑝𝑝(𝒞 ⇒∗)

 Association rules can be used to predict classes from feature values or
associations between feature values

11

Association rule mining

 Association rule-mining techniques consist of two steps

 Let 𝐼 be the set of all feature values and classes, i.e., the item set

1. Find all frequent subsets 𝒮 of 𝐼 (i.e. with 𝑠𝑢𝑝𝑝 𝒮 ≥ 𝜃)

2. Generate association rules 𝑅 from the frequent subsets with 𝑐𝑜𝑛𝑓 𝑅 > 𝛾

For step 1, generate occurrence lattice of items and identify frequent subsets:

Problem:
2𝑛 − 1 subsets
to be checked!

12

𝑠𝑢𝑝𝑝 A < 𝜃 𝑠𝑢𝑝𝑝 B, E < 𝜃

Association rule mining

 Association rule-mining techniques consist of two steps

 Let 𝐼 be the set of all feature values and classes, i.e., the item set

1. Find all frequent subsets 𝒮 of 𝐼 (i.e. with 𝑠𝑢𝑝𝑝 𝒮 ≥ 𝜃)

2. Generate association rules 𝑅 from the frequent subsets with 𝑐𝑜𝑛𝑓 𝑅 > 𝛾

For step 1, generate occurrence lattice of items and identify frequent subsets:

13

downward closure

Apriori algorithm

 Find all frequent subsets (i.e., with support ≥ 𝜃) by exploiting downward
closure property:

Set 𝑙 ≔ 1;

Find frequent subsets of size 𝑙;

While subsets 𝒮 of size 𝑙 with 𝑠𝑢𝑝𝑝 𝒮 ≥ 𝜃 are found

𝑙 ≔ 𝑙 + 1;

Generate subsets 𝒮 of size 𝑙 with 𝑠𝑢𝑝𝑝 𝒮 ≥ 𝜃

by combining subsets of size 𝑙 − 1

 Generate association rules 𝑅 from the frequent subsets with 𝑐𝑜𝑛𝑓 𝑅 > 𝛾

For each frequent subset 𝒮

Find all non-empty subsets 𝒜 of 𝒮 such that

𝑐𝑜𝑛𝑓 𝒜 ⇒ 𝒮\𝒜 > 𝛾

14

Remarks on the Apriori algorithm

 For a subset of feature values 𝒜 = A, B, C, D :
𝑐𝑜𝑛𝑓 A, B, C ⇒ D ≥ 𝑐𝑜𝑛𝑓 A, B ⇒ C,D ≥ 𝑐𝑜𝑛𝑓 A ⇒ B, C, D

 This kind of “downward closure property” can be used again for pruning

 Although on many practical datasets, the algorithm runs efficiently, its
runtime complexity (for 𝐼 = 𝑛) is 𝑂 2𝑛

 Runtime in practice is highly sensitive to the choice of 𝜃 and 𝛾

 Algorithm can be used for different goals

 Derive horn clauses (i.e., conjunctive deduction rules) for class prediction

 Grouping of features by association

 Finding most salient features for representing a class

15

1-R algorithm

 Much simpler than association rules

 Idea: Construct one-level rules

For each feature

For each value of that feature

Find most frequent class

Make rule assign class to this value

Calculate error rate of rule

Calculate error rate for feature

Choose rules from feature with smallest relative error

rate

 Can also be used to discretize features in a supervised fashion

 How?

16

Example of rule learning with the 1-R algorithm

 Source: Data Mining, Practical Machine Learning Tools and Techniques by I.
Witten, E. Frank, M. Hall

feature rules error per featureerror

Will event X take place?

outlook

sunny
rainy

overcast

yes yes no

One-level
decision tree

17

Decision tree stump

Hierarchical classifiers

 Divide the training space along feature dimensions:

 Construct decision tree for classes:

Rules can be inferred from tree paths

𝑥 > 1.2

𝑦 > 2.6b

b a

yesno

no yes

b b
b b

b
b

bb
b b

b
b

b
ba

a
a

aa
a

b b
b b

b
b

bb
b b

b
b

b
ba

a
a

aa
a

b b
b b

b
b

bb
b b

b
b

b
ba

a
a

aa
a

1.2

2.6

Which dimension to choose for partitioning???

18

𝑅1: 𝑥 ≤ 1.2 ⇒ 𝑏
𝑅2: 𝑥 > 1.2 ∧ 𝑦 ≤ 2.6 ⇒ 𝑏
𝑅3:¬𝑅1 ∧ ¬𝑅2 ⇒ 𝑎

1.2

General decision tree algorithm

 Input: Set of labeled instances 𝐷; set of features 𝐹

 Output: Tree 𝑇 with labelled leaves

growTree(𝐷, 𝐹)

If homogeneous(𝐷) //true if instances in 𝐷 represent one class

return class of 𝐷 as labeled leaf

𝑆 ← bestSplit(𝐷, 𝐹) //returns the most discriminative attribute

//of the instances in 𝐷

Split 𝐷 into subsets 𝐷𝑖 //according to the values of
//the attribute 𝑆

For each 𝑖

If 𝐷𝑖 ≠ ∅ then 𝑇𝑖 ← growTree(𝐷𝑖 , 𝐹)

Else label 𝑇𝑖 with the class of 𝐷

Return tree

19

Finding the Best Split

 A set of instances 𝐷, is pure if all instances belong to the same class

 Let 𝐼𝑚𝑝 𝐷 denote the impurity of 𝐷

 For a partition 𝐷1, 𝐷2, … , 𝐷𝑘 of For 𝐷, the purity gain can be defined as

𝐼𝑚𝑝 𝐷 −
𝑖=1

𝑘 |𝐷𝑖|

|𝐷|
𝐼𝑚𝑝 𝐷𝑖

 For classes 𝑐1, … , 𝑐𝑚 in 𝐷, popular measures for impurity:

 Entropy

𝐻 𝐷 =
𝑖=1

𝑚

− 𝑝𝑖 log 𝑝𝑖

 Gini index

𝐺𝑖𝑛𝑖 𝐷 =
𝑖=1

𝑚

 𝑝𝑖 1 − 𝑝𝑖

 Square root of Gini index

𝐺𝑖𝑛𝑖 𝐷

20

 𝑝𝑖: probability estimate
of the class 𝑐𝑖 in 𝐷

Entropy vs. Gini index

21

Entropy

Gini

Gini

 Gini is insensitive to fluctuations in the class distribution (i.e., the

relative impurity of the child w.r.t. its parent,
𝐼𝑚𝑝 𝑐ℎ𝑖𝑙𝑑

𝐼𝑚𝑝 𝑝𝑎𝑟𝑒𝑛𝑡
, does not

change if class distribution changes)

 Entropy and Gini index are sensitive to such fluctuations

 Information gain is the purity gain in terms of Entropy

General algorithm for the best split

 Input: Set of data instances 𝐷, set of features 𝐹

 Output: Feature 𝑓 to split on

bestSplit(𝐷, 𝐹)

𝐼𝑚𝑝𝐺𝑎𝑖𝑛 = 0

𝑠𝑝𝑙𝑖𝑡 = ∅

For each 𝑓 ∈ 𝐹

Partition 𝐷 into 𝐷1, … , 𝐷𝑚 according to values of 𝑓

If 𝐼𝑚𝑝 𝐷 − 𝐼𝑚𝑝 𝐷1, … , 𝐷𝑚 > 𝐼𝑚𝑝𝐺𝑎𝑖𝑛

𝐼𝑚𝑝𝐺𝑎𝑖𝑛 = 𝐼𝑚𝑝 𝐷 − 𝐼𝑚𝑝 𝐷1, … , 𝐷𝑚
𝑠𝑝𝑙𝑖𝑡 = 𝑓, 𝐷1, … , 𝐷𝑚

Return 𝑠𝑝𝑙𝑖𝑡

22

Information gain

𝐼𝐺 𝐷, 𝑓 = 𝐻 𝐷 − 𝐻 𝐷 𝑓 = 𝐻 𝐷 −

𝑣∈𝑉(𝑓)

|𝐷𝑣|

|𝐷|
𝐻 𝐷𝑣

 𝐻 𝐷 : Entropy in partition 𝐷

𝐻 𝐷 = −

𝑗

𝑛𝐷,𝑗

|𝐷|
log
𝑛𝐷,𝑗

|𝐷|

 𝑉(𝑓): Values of attribute 𝑓,

 𝐷𝑣: Instances in 𝐷 with value 𝑣 for 𝑓

 𝑛𝐷,𝑗: Number of instances belonging to class j in partition 𝐷

23

Split by information gain: Example

 Locally: Chosen split dimension should maximize information gain

 Globally: Tree should be as pure as possible, i.e., maximum purity is
achieved when each leaf represents a single class

outlook humidity wind golf

…

rain high weak yes

rain normal weak yes

…

rain normal strong no

rain normal weak yes

rain high strong no

Training examples

24

outlook

wind

yes no yes

rainingsunny

humidity
overcast

yes weakstronglow high

no

…

class
𝐻 𝐷 = −

3

5
log
3

5
−
2

5
log
2

5
= 0.971

𝐻 𝐷 −𝐻 𝐷 𝑤𝑖𝑛𝑑 = 0.971
𝐻 𝐷 − 𝐻 𝐷 ℎ𝑢𝑚𝑖𝑑𝑖𝑡𝑦 = 0.02

Decision tree algorithm for continuous attribute values

BuildTree(𝐷, 𝐹) //𝐷: current node representing the data, 𝐹: features

If 𝐷 contains only training data of the same class

Terminate

Determine split dimension 𝑓 ∈ 𝐹 //e.g. 𝑓 maximizes inf. gain

Determine split value x of 𝑓 //with respect to split value x

𝐷1 = 𝐷 ∩ {d | d. 𝑓 ≤ x} and 𝐷2 = 𝐷 ∩ {d | d. 𝑓 > x}

BuildTree(𝐷1, 𝐹); BuildTree(𝐷2, 𝐹)

 Average complexity (for 𝑚 attributes and 𝑛 training examples) is
𝑂 𝑚𝑛 log 𝑛

25

Decision tree pruning

 Important to mitigate overfitting

 Bottom-up pruning strategy

1. Start at the leaves and replace a subtree with its most popular class

2. If the prediction accuracy is not affected then the change is kept

 Incomplete/impure tree induction

1. Build the tree in top-down fashion

2. Test at each current leaf if impurity is below some threshold (alternatively,
do not expand a new leaf if it does not increase prediction accuracy for the
corresponding attribute)

26

Bottom-up pruning algorithm

For every internal node 𝑁

𝑇𝑁 ← tree rooted at 𝑁

𝐷𝑁 ← Data represented by 𝑁

If accuracy of 𝑇𝑁 over 𝐷𝑁 is worse than accuracy of

predicting majority class 𝑐∗ in 𝐷𝑁
Replace 𝑇𝑁 in 𝑇 by a leaf labelled with 𝑐∗

Return pruned version of 𝑇

 Average complexity (for tree size 𝑛 training examples) is 𝑂 𝑛 log 𝑛

27

Remarks on decision trees

 Can be turned into probabilistic ranking classifiers by ordering leaves in
non-decreasing order of empirical class probabilities

 Laplace smoothing can be applied to make estimates more robust for
small leaves

 Easy to interpret and explain (rules can be read off of paths)

 Very good performance on discrete attribute domains

 Danger of overfitting (e.g. high purity from few training samples)

 Performance degrades for continuous attribute domains

 Size can become relatively large

 Different implementations: ID3 (Entropy-based), C4.5 (Gini-based), MARS

28

Ensemble learners: Random forests (L. Breiman’01)

BuildForest(training points:𝐱1, . . , 𝐱𝑁,features:𝑓1, . . , 𝑓𝑀
Guess 𝑚 ≪ 𝑀

For each tree 𝑇 ∈ 𝑇1, … , 𝑇𝑘
Choose S𝑁 out of 𝑁 training points by sampling 𝑁
times with replacement //i.e., bootstrapping

Grow(𝑆𝑁, 𝑚, 𝑇)

Grow(𝑆𝑁, 𝑚, 𝑇)

If 𝑆𝑁 = ∅ return 𝑇

Randomly choose 𝑚 features

//hopefully the best 𝑚 decision features

Compute the best split on the 𝑆𝑁 training points

based on the 𝑚 features //e.g. split that maximizes inf.
//gain

Add new nodes 𝑆𝑁1 , 𝑆𝑁2 as children of 𝑆𝑁

Grow(𝑆𝑁1, 𝑚, 𝑇); Grow(𝑆𝑁2, 𝑚, 𝑇)

29

Remarks on random forests

 The error rate of each tree is computed on the remaining test points

 For a new sample, push it down each tree and compute weighted average

from all predictions

 More robust to noise than decision trees

 Less susceptible to overfitting

 No pruning is needed

 Relation between feature subsets and classification accuracy is revealed

 Can be easily parallelized

 Empirically shown to be one of the most accurate learning methods

 Difficult to interpret

 Maintenance and governance of large data structures

30

Ensemble learners: Boosting

 Combination of many simple/weak learners (typically binary classifiers
which classify better than a random class assignment based on very few
features) to a single strong learner

 Example

 For data instance 𝐱 = (𝑥1, … , 𝑥𝑚), a weak classifier 𝑀𝑗 can predict as follows:

𝑀𝑗 𝐱 =
1, 𝑥𝑗 > 𝜃𝑗
−1, 𝑥𝑗 ≤ 𝜃𝑗

 Define 𝑀 ≔ 𝑠𝑖𝑔𝑛 𝑗 𝛼𝑗𝑀𝑗 𝐱 , where 𝛼𝑗 is the weight of the j’th classifier

 Let 𝐱1, … , 𝐱𝑛 be training instances with ground truth labels 𝑡1, … , 𝑡𝑛 ∈ {−1,1}

 Minimize 𝑖𝑤𝑗𝑖𝑒
−𝑡𝑖𝑀𝑗(𝐱𝑖) (the so-called exponential loss function)

31

Boosting algorithm

 Input: Training instances 𝐱1, … , 𝐱𝑛, ensemble size 𝑇

 Output: Ensemble model 𝑀 𝐱 = 𝑠𝑖𝑔𝑛 𝑗=1
𝑇 𝛼𝑗𝑀𝑗 𝐱

𝑤1𝑖 ≔
1

𝑛
for each 𝐱𝑖; 𝛼𝑗 ≔ 1.0 for each 𝑀𝑗 , 1 ≤ 𝑗 ≤ 𝑇

For 𝑗 = 1 to 𝑇

Run 𝑀𝑐𝑢𝑟𝑟 𝐱𝑖 = 𝑠𝑖𝑔𝑛 𝑘=1
𝑗
𝛼𝑘𝑀𝑘 𝐱𝑖 on all 𝐱𝑖

Calculate weighted error 𝜖𝑗 of 𝑀𝑗

If 𝜖𝑗 ≥
1

2
//𝜖𝑗 ≔ 𝑖𝑤𝑗𝑖 𝑡𝑖 ≠ 𝑀𝑗 𝐱𝑖

𝑗 ≔ 𝑗 − 1 and break //previous ensemble was better

𝛼𝑗 ≔
1

2
ln
1−𝜖𝑗

𝜖𝑗
//confidence of the model

For each misclassified instance 𝐱𝑚

𝑤 𝑗+1 𝑚 ≔
𝑤𝑗𝑚

2𝜖𝑗
//increase weight

For each correctly classified instance 𝐱𝑐

𝑤 𝑗+1 𝑐 ≔
𝑤𝑗𝑐

2 1−𝜖𝑗
//decrease weight

32

Boosting formal

 The algorithm greedily minimizes loss for each of the j classifiers

𝑍𝑗 =

𝐱𝑖

𝑤𝑗𝑖 exp −𝛼𝑗𝑡𝑖𝑀𝑗 𝐱𝑖 ≈ 𝜖𝑗 exp 𝛼𝑗 + 1 − 𝜖𝑗 exp −𝛼𝑗

 Taking first derivative for 𝛼𝑗, setting it to 0, and solving for 𝛼𝑗 yields

𝛼𝑗 ≔
1

2
ln
1−𝜖𝑗

𝜖𝑗
and 𝑍𝑗 = 2 𝜖𝑗 1 − 𝜖𝑗 (Gini)

33

Remarks on Boosting

 Implicitly derives the “reliability” of features that should be considered for
the classification task (e.g., in case that each single classifier decides based
on one feature)

 Bias-reduction by adding in each iteration a new classifier that aims to
correct previous misclassifications (the goal for an ensemble is to classify
instances correctly on average)

 Easy to implement and efficient algorithm with good empirical
performance

34

